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We perform the complete group classification in the class of cubic Schrödinger equations
of the form iψt + ψxx + ψ2ψ∗ + V (t, x)ψ = 0, where V is an arbitrary complex-valued
potential depending on t and x. We construct all possible inequivalent potentials for which
these equations have non-trivial Lie symmetries using algebraic and compatibility methods
simultaneously. Our classification essentially amends earlier works on the subject.

Nonlinear Schrödinger equations (NSchEs) have a number of applications in wave propagation
in inhomogeneous media. They arise as a model of plasma phenomena, namely, of different
processes in nonlinear and non-uniform dielectric medium and in other branches of physics.
Schrödinger equations have been investigated by means of symmetry methods by a number
of authors, see e.g. [2–10] and references there. In fact, group classification for Schrödinger
equations was first performed by S. Lie. More precisely, his classification [1] of all the linear
equations with two independent complex variables contains, in an implicit form, solution of
the classification problem for the linear (1+1)-dimensional Schrödinger equations with arbitrary
potentials.

In this paper we study a class of NSchEs of the form

iψt + ψxx + ψ2ψ∗ + V ψ = 0, (1)

where the potential V = V (t, x) is an arbitrary complex-valued smooth function of the variab-
les t and x. (Here and below subscripts of functions denote differentiation with respect to the
corresponding variables.) To find a complete set of inequivalent cases of V admitting exten-
sions of the maximal Lie invariance algebra, we combine the classical Lie approach, studying
the algebra generated by all the possible Lie symmetry operators for equations from class (1)
(the adjoint representation, the inequivalent one-dimensional subalgebras etc.) and investiga-
tion of compatibility of classifying equations. See [2, 3, 11–13] for precise formulation of group
classification problems and more details on the used methods.

Finishing excellent series of papers [8–10] on group analysis and exact solutions of NSchEs,
in [10] L. Gagnon and P. Winternitz investigated essentially more general class of variable
coefficient NSchEs than (1). Unfortunately, we were not able to see a direct and simple way for
deducing classifications obtained here from their results.

Theorem 1. Any operator Q = ξt∂t + ξx∂x + η∂ψ + η∗∂ψ∗ from the maximal Lie invariance
algebra Amax(V ) of equation (1) with arbitrary potential V lies in the linear span of operators
of the form

D(ξ) = ξ∂t + 1
2ξtx∂x + 1

8ξttx
2M − 1

2ξtI, G(χ) = χ∂x + 1
2χtxM, λM. (2)

Here χ = χ(t), ξ = ξ(t) and λ = λ(t) are arbitrary smooth functions of t, M = i(ψ∂ψ −ψ∗∂ψ∗),
I = ψ∂ψ + ψ∗∂ψ∗ . Moreover, the coefficients of Q should satisfy the classifying condition

iηψt + ηψxx + ξtVt + ξxVx + ξttV = 0. (3)
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Note 1. The linear span of operators of the form (2) is an (infinite-dimensional) Lie algebra A∪

under the usual Lie bracket of vector fields. Since for any Q ∈ A∪ where (ξt, ξx) �= (0, 0) we can
find V satisfying condition (3) then A∪ = 〈⋃V A

max(V ) 〉. The non-zero commutation relations
between the basis elements of A∪ are the following ones:[

D
(
ξ1
)
, D
(
ξ2
)]

= D
(
ξ1ξ2t − ξ2ξ1t

)
, [D(ξ), G(χ)] = G

(
ξχt − 1

2 ξtχ
)
,

[D(ξ), λM ] = ξλtM,
[
G
(
χ1
)
, G
(
χ1
)]

= 1
2

(
χ1χ2

t − χ2χ1
t

)
M.

We use the notation Aut(A∪) for the automorphism group acting on A∪, which is generated by all
the one-parameter groups corresponding to the adjoint representations of operators ofA∪ into A∪

and two discrete transformations Ad Ix and Ad It included additionally. The actions of Ad Ix and
Ad It on the basis elements of A∪ are defined by the formulas Ad Ix G(χ) = G(−χ) (the other
basis operators do not change) and Ad It D(ξ) = D(ξ̃), Ad It G(χ) = G(χ̃), Ad It λM = λ̃M ,
where ξ̃(t) = −ξ(−t), χ̃(t) = χ(−t) and λ̃(t) = −λ(−t).
Theorem 2. The Lie algebra of the kernel of maximal Lie invariance groups of equations from
class (1) is Aker = 〈M〉.
Theorem 3. The Lie algebra A equiv of the equivalence group G equiv of the class (1) is generated
by the operators

D′(ξ) = D(ξ) + 1
8ξtttx

2(∂V + ∂V ∗) + i
2ξtt(∂V − ∂V ∗) − ξt(V ∂V + V ∗∂V ∗),

G′(χ) = G(χ) + 1
2χttx(∂V + ∂V ∗), M ′(λ) = λM + λt(∂V + ∂V ∗).

Therefore, A equiv � A∪, and the isomorphism is determined by means of prolongation of opera-
tors from A∪ to the space (V, V ∗).

Theorem 4. The equivalence group G equiv of the class (1) is generated by the family of contin-
uous transformations

t̃ = T, x̃ = xε
√
Tt +X, ψ̃ = ψ

1√
Tt

exp
(
i

8
Ttt
Tt

x2 +
i

2
Xt√
Tt
x+ iΨ

)
,

Ṽ =
1
Tt

(
V +

1
8

(
Ttt
Tt

)
t

x2 +
1
2

(
Xt√
Tt

)
t

x+
i

4
Ttt
Tt

−
(

1
4
Ttt
Tt

x+
1
2
Xt√
Tt

)2

+ Ψt

)
,

(4)

and two discrete transformations: the space reflection Ix (t̃ = t, x̃ = −x, ψ̃ = ψ, Ṽ = V ) and
the Wigner time reflection It (t̃ = −t, x̃ = x, ψ̃ = ψ∗, Ṽ = V ∗). Here T , X and Ψ are arbitrary
smooth functions of t, Tt > 0.

Corollary 1. 1. G equiv � AutA∪. 2. Let A1 and A2 be the maximal Lie invariance algebras
of equations from class (1) for some potentials, and V i = {V |Amax(V ) = Ai}, i = 1, 2. Then
V1 ∼ V2 modG equiv iff A1 ∼ A2 mod AutA∪.

Lemma 1. A complete list of AutA∪-inequivalent one-dimensional subalgebras of A∪ is ex-
hausted by the algebras 〈∂t〉, 〈∂x〉, 〈tM〉, 〈M〉.
Proof. Consider any operator Q ∈ A∪, i.e. Q = D(ξ) +G(χ) + λM. Depending on the values
of ξ, χ and λ it is equivalent under AutA∪ and multiplication by a number to one from the
following operators: D(1) if ξ �= 0; G(1) if ξ = 0 and χ �= 0; tM if ξ = χ = 0, λt �= 0; M if
ξ = χ = λt = 0. �

Corollary 2. If Amax(V ) �= Aker then VtVx = 0 mod G equiv.
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Proof. Under the corollary assumption there exists an operator Q = D(ξ) + G(χ) + λM ∈
Amax(V ) which do not belong to 〈M〉. Condition (3) implies (ξ, χ) �= (0, 0). Therefore, in force
of Lemma 1 〈Q〉 ∼ 〈∂t〉 or 〈∂x〉 mod AutA∪, i.e. VtVx = 0 mod G equiv. �

Theorem 5. A complete set of inequivalent cases of V admitting extensions of the maximal
Lie invariance algebra of equations (1) is exhausted by the potentials given in Table 1.

Table 1. Results of classification. Here W (t), ν, α, β ∈ R, (α, β) �= (0, 0).

N V Conditions mod G equiv Basis of Amax

0 V (t, x) M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 iW (t) M, ∂x, G(t)

2
i

2

t + ν

t2 + 1
ν ≥ 0 M, ∂x, G(t), D(t2 + 1)

3 iνt−1, ν �= 0, 1
2

ν ≥ 1
4

M, ∂x, G(t), D(t)

4 i M, ∂x, G(t), ∂t

5 0 M, ∂x, G(t), ∂t, D(t)

6 V (x) M, ∂t

7 (α + iβ)x−2 β ≥ 0 M, ∂t, D(t)

If we use Corollary 2, then to prove Theorem 5 it is sufficient to study two cases: Vx = 0 and
Vt = 0. In fact, below we obtain the complete results of group classifications for both special
cases and then unite them for the general case under consideration.

Lemma 2. Let Vx = 0, i.e. V = V (t).

1. Aker
Vx=0

= 〈M,G(1), G(t)〉. A equiv
Vx=0

= 〈M ′(λ) ∀λ = λ(t), G′(1), G′(t), D′(1), D′(t), D′(t2)〉.
G equiv
Vx=0

is generated by It, Ix and the transformations of form (4) where X = c1t + c0,

T = (a1t+a0)/(b1t+b0), Ψ is an arbitrary smooth function of t. ai, bi and ci are arbitrary
constants such that a1b0 − b1a0 > 0.

2. V ∼ iW mod G equiv
Vx=0

where W = ImV. Amax(iW ) ⊂ A∪
{iW} = Aker

Vx=0
⊃+ 〈D(1), D(t), D(t2)〉.

Aker
{iW} = Aker

Vx=0
. A∪

{iW} = 〈⋃W Amax(iW ) 〉. A equiv
{iW} = 〈M,G′(1), G′(t), D′(1), D′(t), D′(t2)〉.

G equiv
{iW} = G equiv

Vx=0

∣∣∣
Ψ=const

. A∪
{iW}� A equiv

{iW} = pr(V,V ∗)A
∪
{iW} .

3. S = 〈D(1), D(t), D(t2)〉 � sl(2,R). The complete list of AutA∪
{iW}-inequivalent proper

subalgebras of S is exhausted by 〈D(1)〉, 〈D(t)〉, 〈D(t2 + 1)〉, 〈D(1), D(t)〉.
4. Let A1 and A2 be the maximal Lie invariance algebras of equations from class (1) for some

potentials from {iW (t)}, and W i = {W (t) |Amax(iW ) = Ai}, i = 1, 2. Then W1 ∼ W2

modG equiv
{iW} iff A1

⋂
S ∼ A2

⋂
S mod AutS.

5. If Amax
{iW} �= Aker

Vx=0
the potential iW (t) is G equiv

{iW}-equivalent to one from Cases 2–5 of Table 1.

Note 2. For any W Amax(iW ) �⊃ S (otherwise, condition (3) would imply an incompatible
system for W ). If W =const W ∈{0, 1} mod G equiv

{iW} (Cases 5 and 4 correspondingly). Cases 2ν
and 2ν̃ (3ν and 3ν̃ where ν, ν̃ ≥ 1

4) are G equiv-inequivalent if ν �= ν̃. Since D(t2 + 1) cannot be
contained in any two-dimensional subalgebra of S it is not possible to extend Amax in Case 2.
There are two possibilities for extension of Amax(iνt−1) , namely with either D(1) (for ν = 0,
Case 5) or D(t2) (for ν = 1

2 that is equivalent to Case 5 with respect to G equiv
{iW}).
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Lemma 3. Let Vt = 0, i.e. V = V (x).
1. Aker

Vt=0
= 〈M,D(1)〉. A equiv

Vt=0
= 〈M ′(1),M ′(t), G′(1), D′(1), D′(t)〉. G equiv

Vt=0
consists of It, Ix

and the transformations of form (4) where Ttt = Xt = Ψtt = 0.

2. If Amax(V ) �= Aker
Vt=0

the potential V (x) is G equiv

Vt=0
-equivalent to one from cases of Table 2.

Table 2. Results of classification for the subclass {V =V (x)}. Here ν, α, β ∈ R, (α, β) �= (0, 0).

N N1 V mod Gequiv Basis of Amax

0 6 V (x) M, ∂t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 7 (α + iβ)x−2 β ≥ 0 M, ∂t, D(t)

2 7 x2 + i + (α + iβ)x−2 M, ∂t, D(e4t)

3 4 i M, ∂t, ∂x, G(t)

4 4 x + iν ν > 0 M, ∂t, G(1) + tM, G(2t) + t2M

5 2 −x2 + iν ν ≥ 0 M, ∂t, G(sin 2t), G(cos 2t)

6 3 x2 + iν, ν �= ±1 ν ≥ 0 M, ∂t, G(e2t), G(e−2t)

7 5 0 M, ∂t, ∂x, G(t), D(t)

8 5 x M, ∂t, G(1) + tM, G(2t) + t2M, D(2t) + G(3t2) + t3M

9 5 x2 + i M, ∂t, G(e2t), G(e−2t), D(e4t)

Proof. 2. Let V = V (x) and Amax(V ) �= Aker
Vt=0. Consider an arbitrary operator Q = D(ξ) +

G(χ)+λM ∈ Amax(V ). Under Lemma’s assumption, the condition (3) implies a set of equations
on V of the general form

(ax+ b)Vx + 2aV = c2x
2 + c1x+ c̃0 + ic0, where a, b, c2, c1, c̃0, c0 = const ∈ R.

The exact number k of such equations with the linear independent sets of coefficients can be
equal to either 1 or 2. (The value k = 0 corresponds to the general case Vt = 0 without any
extensions of Amax.)

For k = 1 (a, b) �= (0, 0) and there exist two possibilities a = 0 and a �= 0. If a = 0 without loss
of generality we can put b = 1. Condition (3) results in ξt = 0, c2 = c0 = 0, i.e. Vx = c1x+ c̃0,
and then k = 2 that is impossible.

Therefore, a �= 0 and we can put a = 1. c̃0, b = 0 mod G equiv
Vt=0. Condition (3) results in χ = 0

(then c1 = 0), λt = 0, ξtt = 2c0ξt and c2 = c20. Depending on c0 = 0 and c0 �= 0, we obtain
Cases 1 and 2 (of Table 2) correspondingly.

The condition k = 2 involves V = d2x
2 + d1x + d̃0 + id0. d̃0 = 0 mod G equiv

Vt=0. Considering
different possibilities for values of the constants d2, d1 and d0, we obtain Cases 3–9:

d2 = d1 = d0 = 0 → 7; d2 = d1 = 0, d0 �= 0 → 3;
d2 = d0 = 0, d1 �= 0 → 8; d2 = 0, d0, d1 �= 0 → 4;

d2 < 0 → 5; d2 > 0, d2 �= d2
0 → 6; d2 > 0, d2 = d2

0 → 9.

Note 3. To prove Theorem 5, it is sufficient to consider only the case k = 1, a �= 0 in Lemma 3
since the other cases of extensions of Amax(V ) with V = V (x) admit operators of the form
G(χ) + λM (χ �= 0) and, therefore (by Corollary 1), are equivalent to Cases 1–5 of Table 1.

Note 4. The number N1 for each line of Table 2 is equal to the number of the same or equivalent
case in Table 1. The corresponding equivalence transformations have the form (4) where the
functions T, X and Ψ are as follows:

2 → 7, 9 → 5: T = −e−4t, X = Ψ = 0;

6 → 3(ν̃ = 1−ν
4 ): T = −e−4t, X = Ψ = 0; 5 → 2(ν̃ = ν): T = tan 2t, X = Ψ = 0;

8 → 5: T = t, X = −t2, Ψ =
t3

3
; 4 → 4: T = |ν|t, X = −

√
|ν| t2, Ψ =

t3

3
.
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The results of the group classification obtained in this paper can be used to construct both
invariant and partially invariant exact solutions of equations having the form (1). Moreover, we
plan to study conditional symmetries of (1) to find non-Lie exact solutions.

Another direction for our future research to develop the above results is investigation of a
more general class of (1 + n)-dimensional NSchEs with potentials

iψt + ∆ψ + F (ψ,ψ∗) + V (t, �x)ψ = 0, (5)

where the F = F (ψ,ψ∗) is an arbitrary complex-valued smooth function of the variables ψ
and ψ∗. We have already described all possible inequivalent forms of the parameter-function F
(without any restriction on the dimension n) for which an equation of the form (5) with a some
potential V has an extension of the maximal Lie invariance algebra. We believe that the classi-
fication method suggested in this paper can be effectively applied to complete the group classi-
fication in (5) for the small values of n.
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