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We use symmetry methods to study the model of growth of a tumour of the brain proposed by
Wein and Koplow (Mathematical modeling of brain cancer to identify promising combination
treatments, Preprint, D Sloan School of Management, MIT, 1999). The aim here is also to
demonstrate the use of symmetries to obtain more complex and reliable models. We translate
some of the results found into properties of the tumour of the brain.

1 Introduction

A brain tumour is a dynamic system in which cancer cells grow and spread eventually killing
good cells in the brain by deprivation of space and nutrients. The tumour spreads along the
periphery and often dies out in the Centre due to a lack of fuel (oxygen and nutrients from the
blood). This behaviour has been compared to that of a fire [10]. To be able to destroy the
tumour treatments must be able to move faster than the tumour spreads if the treatment is to
destroy effectively the tumour. Tumours are known to grow extremely fast. In reference [15] the
tumour growth is assumed to be uniform and we claim that an improvement to the assumption of
uniformity can be made. Since there are many aspects that can be considered in this particular
problem, we concentrate only on the treatment aspect of the problem.

2 Spatio-temporal model

We recall that brain-cancer cells grow very fast and, at any point in time, only a portion of them
are replicating and most cancer treatments only kill cells during this active phase.

This means that, when determining the net tumour-cell kill rates, models need take this
constraint into account. A small fraction of tumour cells (about one in a thousand) called
clonogenic cells are capable of regrowing the entire tumour. What does this mean? If the
tumour is not to grow back after treatment all these cells must be killed. A tumour such as
glioblastoma multiforme has many billions of cells and no single treatment presently available
is capable of such a high kill rate. Wein’s paper [15] demonstrates this. For example a log cell
kill rate would kill 90 % of the tumour cells. A two log treatment (such as radiation) would
kill 99 % of the tumour cells etc. It is important for the treatment to have the ability to target
tumour cells rather than healthy cells and to move through the brain to reach the periphery of
the tumour. This does affect how well a particular treatment works. We consider the following
model [15], known as the Burgess equation [1],
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where

• n(r, t) is the concentration of tumour cells at location r at time t,

• D is the diffusion coefficient (estimated at 0.0013 cm2 per day for glioblastoma multiforme)
which measures the invasiveness of the glioblastoma multiforme cells,

• p is the proliferation rate of the tumour,

• kt is the (therapy-dependent) killing rate at time t and

• r measures the distance from the Centre (i.e. the origin of glioblastoma multiforme).

Under the rescaling t = (p− kt)T , R = (|p − kt|D)2 r we may write (1) in the parameter-free
form
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in which we have reverted to lower case variables.
Equations (1) and (2) assume spherical symmetry. Without that assumption we have
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in which the dependent variable n = n(t, r, θ, φ). This enables us to consider a growth of the
tumour which does not possess spherical symmetry and thereby opens the possibility to deal
with an initial boundary of the tumour which is not spherical. The assumption that the tumour
is spherical on detection is restrictive, but it is a starting point. In this paper we accept this
restriction and concentrate on treatment models of this problem and leave the extension to
nonspherical symmetry to future work.

3 Lie point symmetries for the differential equation
with general K(x, t)

Equation (2) may be written in the normal form

∂u

∂t
=

∂2u

∂x2
+ u (4)

by the standard substitution u(t, x) = rn(t, r), x = r. Here we consider the more general
differential equation for a single cell type given by

∂2u

∂x2
− K(x, t)u − ∂u

∂t
= 0, (5)

where K(x, t) describes the temporal profile of the treatment and K(x, t)u is the rate of removal
of the tumour cells. In the model in reference [15] the treatment is allowed to be only a function
of the time and we modify this to make it a function of both the position of the of the cancerous
cells and time. This is a more realistic assumption.

The analysis of (5) for its Lie point symmetries has been established for a long time [4] (see
also [5] and [13]). No matter the structure of K(x, t) and there are always the homogeneity and
solution symmetries, videlicet

Γh = u∂u and Γs = f(t, x)∂u, (6)

where f(t, x) and is any solution of (5). There are four possibilities for the structure of K(x, t).
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• Case I: K(x, t) is an undifferentiated function. There is no symmetry additional to the
two generic symmetries in (6).

• Case II: K(x, t) = K(x). There is the additional symmetry

Γ1 = ∂t (7)

which reflects the invariant of (5) under time translation. Since [Γ1, Γh]LB = 0, the Lie
algebra of the finite symmetries is 2A1 Mubarakzyanov classification scheme [6–9].

• Case III: K(x, t) = N (Ax + B)2 + C + M/ (Ax + B)2 , where A, B, C, M and N are
arbitrary constants and M and A are nonzero. This case can be reduced to the equivalence
class

KE(x) =
µ

x2
(8)

by means of a suitable transformation [12]. With K as in (8) the additional symmetries
are

Γ1 = ∂t, Γ2 = 2t∂t + x∂x, Γ3 = 4t2∂t + 4tx∂x − (
x2 − 2t

)
u∂u (9)

which have the Lie brackets [Γ1, Γ2] = 2Γ1, [Γ2, Γ3] = 2Γ3 and [Γ3, Γ1] = −4Γ2 which is
a representation of sl(2, R). Since [Γi, Γh] = 0, i = 0, 3, the algebra of the finite symmetries
is sl(2, R) ⊕ A1.

• Case IV: K(x) = Ax2 + Bx + C, where again A, B and C are arbitrary constants. This
case can be reduced to the equivalence class

KE = 0 (10)

by the same transformation as used in Case III. The additional Lie point symmetries are
those in (9) plus

Γ4 = ∂x, Γ5 = 2t∂x − xu∂u (11)

which have the Lie brackets [Γ4, Γ5] = −Γ4. Consequently one needs to introduce Γh to
close the algebra. Since [Γ4, Γh] = 0 and [Γ5, Γh] = 0, the algebra is A3,1, commonly known
as the Weyl algebra.

We note that the existence of the exceptional symmetries, Γ1, Γ2± and Γ3±, is directly related
to the existence of Noether symmetries [11] for a Lagrangian of the form 1

2

(
ẋ2 + 4K

)
[3].

Each of these cases, although Case I is trivial, is the representative of an equivalence class
under point transformation. The essential point is that the number of Lie point symmetries
additional to the generic symmetries, Γh and Γs, is limited to 0, 1, 3 or 5 for an equation of
the form (5). To construct solutions using the symmetries viable forms of K(x, t) are those for
which the number of Lie point symmetries is 3 or 5, then we can use the method of construction
employed by Lemmer et al [3] in the case of the time-dependent Schrödinger equation.

4 Similarity solutions of the Burgess equation

In the original model [15] equation (5) has the form

∂u

∂t
− ∂2u

∂x2
− (p − kt)u = 0, (12)
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where we recall that the constants p and kt representative proliferation rate and the killing rate
respectively. Equation (12) is of Class IV and has the nontrivial Lie point symmetries

Γ1 = ∂t, Γ2 = 2t∂t + x∂x + 2(p − kt)tu∂u,

Γ3 = 4t2∂t + 4tx∂x +
[
4(p − kt)t2 − 2t − x2

]
u∂u,

Γ4 = ∂x, Γ5 = 2t∂x − xu∂u, (13)

where we note the differences in Γ2 and Γ3 due to the presence of the term (p − kt)u (12). Any
of these symmetries apart from Γ1 are suitable symmetries for the construction of similarities
solutions and, guided by the example of Lemmer et al [3] in a treatment of the time-dependent
Schrödinger equation, we choose Γ4. The invariants of Γ4 are found from the solution of the
associated Lagrange’s system

dt

0
=

dx

1
=

du

0
(14)

and are

v = t and w = u (15)

so that we may set

u = f(t) (16)

and substitute it into (12) to obtain

f(t) = exp [(p − kt) t] , (17)

where we omit the multiplicitive constant of integration. Hence

u0 = exp [(p − kt) t] , (18)

where we use the subscript zero to denote the basic solution. We use the property that symme-
tries map solutions into solutions and apply Γ5 to the solution surface for u0, videlicet

Σ0 = u−1 exp [(p − kt) t] (19)

to obtain

u1 = x exp [(p − kt) t] . (20)

Similarly we obtain

u2 =
(
2t + x2

)
exp [(p − kt) t] , u3 =

(
6tx + x3

)
exp [(p − kt) t] , . . . . (21)

Equally we could commence with Γ5 to obtain a basic solution and use Γ4 to create further
solutions from the solution surface. We find that

v0 = t−1/2 exp
[
(p − kt) t − x2

4t

]
, v1 = − x

2t3/2
exp

[
(p − kt) t − x2

4t

]
,

v2 = t−1/2

(
x2

4t2
− 1

2t

)
exp

[
(p − kt) t − x2

4t

]
, . . . . (22)

We note that we can use Γ2 and Γ3 to generate solutions in the same way and that they also
act as ladder operators on the solutions obtained by the other symmetries.
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We recall that intensity of cells is essentially given by n = u/x so that the number of cells
within a sphere of radius X is

NX = 4π

∫ X

0
x2dx n(x, t) = 4π

∫ X

0
xu(x, t) dx. (23)

A feature of the solutions is the critical nature of the value of the expression p−kt. If p−kt > 0,
the number of cells increases exponentially with time which is one of the salient properties of
glioblastoma multiforme and the reason for its generally fatal outcome. By the time the tumour
is large enough to be detected the number of cells is proliferating at a prodigious rate.

In the case that p−kt < 0 the solutions indicate a rapid drop in the number of cells. However,
the assumption of a constant killing rate is not a good one. In the case of chemotherapy the
efficacy of the chemical decreases with time, usually in an exponential fashion. Thus we should
replace kt with something like k exp[−σt]. The number of nontrivial symmetries is unchanged.
They are

Λ1 = ∂t + ku exp [−σt] ∂u, Λ2 = 2t∂t + x∂x + 2t [p − k exp [−σt]] u∂u,

Λ3 = 4t2∂t + 4tx∂x − [
2t + x2 − 4t2 (p − k exp [−σt])

]
u∂u,

Λ4 = ∂x, Λ5 = 2t∂x − xu∂u. (24)

In the same fashion as above we obtain the two families of solutions
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in which we note the first similarity to the solutions listed in (21) and (22) and from which we
see that the concentration of the tumor cells increases with time for both series of solutions and
eventually decreases with radial distance in the second series. The assumption of a constant kill
rate in space is suspect since the inner cells are more crowded and the supply of nutrients is
not as great as on the surface of the tumour. From our discussion of the symmetries available
for different K(x, t) we can see that there are several possibilities which maintain a rich supply
of Lie point symmetries. For example, we take K(x, t) = px − k, with both p and k constant
for simplicity although they both could be time-dependent. Equation (12) now has the five
nontrivial Lie point symmetries

∆1 = ∂t, ∆2 = 2t∂t +
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and from ∆4 and ∆5 we obtain, in the manner described above, the solutions
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from which we can infer the first set of solutions increases with no bound for both t and x and
the second series of solutions tends to zero for large t and x.

5 Conclusion

We conclude that the therapy-dependent killing rate K need not be a function of time only
but of both position and time. This is an improvement to the model of Wein & Koplow [15].
The symmetry analysis of the model yields some interesting properties, i.e., the symmetries are
ladder operators and can be used to map solutions into solutions of the model. Several aspects of
the problem remain unanswered from a mathematical point of view and, as additional therapies
are developed, definitions of parameters in the model will be helpful in planning the dose and
timing of these therapies which are currently limited by the tolerance of normal brain for XRay-
irradiation and hematopeotic tissues for chemotherapies. In addition to this one may ask how
much the diffusion constant D varies from one glioma to another and how the cell concentration
or cell type contributes independently to D. In his book on Mathematical Biology Murray [10]
remarks that the prediction of tumour response to therapy is a goal which mathematical models
could help to reach.

In the treatment of HIV-AIDS the use of recombinant viruses has been proposed [14] and
numerical simulations suggest that such viruses are very effective in reducing the viral load
of the HIV and reasonably effective in restoring the number of healthy cells. Effectively the
recombinant virus controls the evolution of the disease although it does not provide a cure. In
the case of a tumour such as glioblastoma multiforme the development of a viral therapy could
remedy the problem of exponential decay of the therapeutic agent. Now there are two coupled
equations, one for the growth of the number of cancer cells and one for the growth of the number
of viruses. A model for such a system is a generalisation of the Burgess equation (1) such as

∂n1

∂t
= D1

1
r2

∂

∂r
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r2 ∂n1
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)
+ (p1 − k2n2) n1,

∂n2
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1
r2

∂

∂r

(
r2 ∂n2

∂r

)
+ (p2 − k1n1) n2 (27)

in which n1 and n2 represent the densities of the tumour cells and viruses, p1 and p2 their
proliferation rates and k1 and k2 the killing rates for cells/virus. Such models are to be the
subject of further investigation.
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