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A new conservative numerical integration algorithm for the integrable Henon–Heiles system
is presented which conserves all of the constants of motion.

1 Introduction

The Henon–Heiles system in celestial mechanics is a well-known chaotic Hamiltonian system [4].
Since this two dimensional system has only one constant of motion, it is a non-integrable system.
By simple changes of the Hamiltonian we obtain some completely integrable Henon–Heiles type
systems. They are completely integrable in the sense of Liouville–Arnold. Namely, they are two-
dimensional systems having two constants of motion cf. [8]. To solve numerically the equations
of motion, one often tries to discretize them. Even for the integrable cases a good numerical
integration scheme will be useful for describing orbits for arbitrary given initial data.

The symplectic integrators [3, 9] and the energy preserving methods [2, 1] are well-known
as good numerical integration schemes. The symplectic integrators conserve the symplectic
form in the phase space, so that the resulting discrete-time evolution is regarded as a canonical
transformation. Though the symplectic integrators do not conserve Hamiltonian and other
additional constants of motion, for example, the angular momentum and the Runge–Lenz vector
for the Kepler motion, in general, they are widely used in numerical simulation for the solar
system. This is because the symplectic integrators give a good approximation of the orbits
of the Hamiltonian system in the sense in which they conserve a modified (or approximate)
Hamiltonian. However, a non-existence theorem of modified constant of motion besides the
modified Hamiltonian is proved recently in [10,11]. The energy preserving methods originated by
Greenspan [2] keep the value of the Hamiltonian constant. These methods are based on discrete
variational derivatives [1, 5]. Generally, they conserve only energy and do not preserve other
additional constants of motion. It has not been known for long time how to design an energy
preserving method which conserves all of the additional constants of motion of certain class of
integrable Hamiltonian systems. Especially, it is impossible to trace an ellipse of the Kepler
motion, since the Runge–Lentz vector is not conserved by any known numerical integrators
including the symplectic integrators and the usual energy preserving methods.

In the previous paper [6] the authors have established a new numerical integration algorithm
which conserves all of the constants of motion of the two-dimensional Kepler motion including
the Runge–Lenz vector. In this paper we consider one of the integrable Henon–Heiles type
systems discussed in [8]. We discretize the Henon–Heiles system which preserves all constants
of motion as an application of the numerical integration algorithm.

It is also shown in this paper that 1) a time step size, which is larger than those of other
known integrators, is easily used, 2) a variable time step is naturally introduced. These basic
properties underlie the efficiency of the new numerical integration algorithm.
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2 Integrable Henon–Heiles system
and canonical transformation

The integrable Henon–Heiles system is defined by the Hamiltonian

Hhh−1(px, py, x, y) = p2
x + p2

y + x2 + y2 +
2
3
x3 + 2xy2 − Ehh (1)

on a subset of R4 = {px, py, x, y}, where Ehh is an arbitrary constant. The time variable is t.
When the positive sign of 2

3x3 in (1) becomes changed to negative, (1) is the Hamiltonian
of a chaotic dynamical system in celestial mechanics [4]. The equation of motion for (1) are
expressed with

dx

dt
= 2px,

dy

dt
= 2py,

dpx

dt
= −2x2 − 2x − 2y2,

dpy

dt
= −4xy − 2y. (2)

After a canonical transformation

q1 =
1
2
(x + y), q2 =

1
2
(x − y), p1 = px + py, p2 = px − py, (3)

the Hamiltonian (1) leads to the Hamiltonian

Hhh−2(p1, p2, q1, q2) =
1
2

(
p2
1 + p2

2 + U(q1) + U(q2)
)

(4)

on a subset of R4 = {p1, p2, q1, q2}, where the potential functions are

U(qj) =
16
3

q3
j + 4q2

j − Ej,hh, j = 1, 2. (5)

The variables pk and qk are now separated. Note that the canonical transformation (3) is
a mapping from R4 to R4. The equations of motion are then

dqk

dt
= pk,

dpk

dt
= −8q2

k − 4qk, k = 1, 2. (6)

They are just the equations of the two-dimensional anharmonic oscillator with the Hamiltonian
(4) on R4 = {p1, p2, q1, q2} with the time t. Let us set the constant Ehh in Hhh−2 such that

Hhh−2(p1, p2, q1, q2) = 0. (7)

Obviously, Hhh−1(px, py, x, y) = 0 for such Ehh. Since Hhh−2 is a constant of motion of (6), the
value of the constant Ehh reflects the initial values of the variables pk and qk. Namely, Ehh is
expressed as

Ehh = E1,hh + E2,hh, (8)

where

Ej,hh =
1
2

(
pj(0)2 + U(qj(0))

)
, j = 1, 2. (9)

We see that the canonical transformation (3) generates a transformation that maps the integrable
Henon–Heiles system to a system of anharmonic oscillators.

The integrable Henon–Heiles system has an additional constant of motion. This constant is
the angular momentum

I2,hh−1(px, py, x, y) = 2pxpy + 4x2y +
4
3
y3 + 4xy − E1,hh + E2,hh. (10)

The constants of motion are expressed by using the canonical variables pk and qk as follows.
The Hamiltonian Hhh−2(pk, qk) is as (4), where (pk, qk) = (p1, p2, q1, q2), for simplicity. Note
that (10) is expressed as

I2,hh−2 =
1
2

(
p2
1 − p2

2

)
+

8
3

(
q3
1 − q3

2

)
+ 2

(
q2
1 − q2

2

)
. (11)
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3 Discrete integrable Henon–Heiles system

The equations of motion of the two-dimensional oscillator (6) are discretized by the energy
preserving method (cf. [2, 5]) as follows,

Q
(j+1)
k − Q

(j)
k

t(j+1) − t(j)
=

P
(j)
k + P

(j+1)
k

2
,

P
(j+1)
k − P

(j)
k

t(j+1) − t(j)
= −

8
((

Q
(j+1)
k

)2 + Q
(j+1)
k Q

(j)
k +

(
Q

(j)
k

)2
)

+ 6
(
Q

(j+1)
k + Q

(j)
k

)

3
,

t(0) < · · · < t(j−1) < t(j) < t(j+1) < · · · , (12)

where t(j) is an arbitrarily increasing sequence which indicates a discrete-time, P
(j)
k , Q

(j)
k are

the values of the variables Pk, Qk at the time t(j), respectively. Here Pk and Qk are discrete
analogues of the canonical variables pk and qk, respectively, where we set

P
(0)
k = pk(0), Q

(0)
k = qk(0), k = 1, 2. (13)

On the orbit of the two-dimensional discrete-time harmonic oscillator (12) the Hamiltonian (4)
is kept constant for any t(j), namely,

Hhh−2

(
P

(j+1)
k , Q

(j+1)
k

)
= Hhh−2

(
P

(j)
k , Q

(j)
k

)
, j = 0, 1, . . . , (14)

where
(
P

(j)
k , Q

(j)
k

)
=

(
P

(j)
1 , P

(j)
2 , Q

(j)
1 , Q

(j)
2

)
. This is a direct consequence of the energy preserving

method. Since Hhh−2(pk, qk) = 0, P
(0)
k = pk(0) and Q

(0)
k = qk(0), we obtain

Hhh−2

(
P

(j)
k , Q

(j)
k

)
= 0, j = 0, 1, · · · ,

Ek,hh =
1
2
(
P

(0)
k

)2 +
8
3
(
Q

(0)
k

)3 + 2
(
Q

(0)
k

)2
, k = 1, 2. (15)

Through the inverse of the canonical transformation (3) the discrete-time system (12) is con-
verted to

X(j+1) − X(j)

t(j+1) − t(j)
= P

(j+1)
X + P

(j)
X ,

Y (j+1) − Y (j)

t(j+1) − t(j)
= P

(j+1)
Y + P

(j)
Y ,

P
(j+1)
X − P

(j)
X

t(j+1) − t(j)
= −2

3

(((
X(j+1)

)2 + X(j+1)X(j) +
(
X(j)

)2
)

+
((

Y (j+1)
)2 + Y (j+1)Y (j) +

(
Y (j)

)2
))

− (
X(j+1) + X(j)

)
,

P
(j+1)
Y − P

(j)
Y

t(j+1) − t(j)
= −2

3

(
2X(j+1)Y (j+1) + 2X(j)Y (j)

+ X(j+1)Y (j) + X(j)Y (j+1)
)
− (

Y (j+1) + Y (j)
)
. (16)

Equations (16) preserve the value of Hhh−1

(
P

(j)
X , P

(j)
Y , X

(j)
1 , Y (j)

)
as zero. We call (16) the

discrete integrable Henon–Heiles system.

4 Discrete integrable Henon–Heiles system
as exactly conservative integrator

In the previous section the Hamiltonian Hhh−1(P
(j)
X , P

(j)
Y , X(j), Y (j)) is shown to be constant

under the time evolution of the discrete integrable Henon–Heiles system (16). The other constant
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of motion (10) of the continuous-time integrable Henon–Heiles is also conserved. Now we are in
a position to state the main result.

Theorem 1. The integrable Henon–Heiles system (16) has the following two constants of mo-
tion. The first is the Hamiltonian

Hd−hh−1

(
P

(j)
X , P

(j)
Y , X(j), Y (j)

)
= Hhh−1

(
P

(j)
X , P

(j)
Y , X(j), Y (j)

)
. (17)

The second constant is a discrete analogue of the angular momentum (10)

I2,d−hh−1

(
P

(j)
X , P

(j)
Y , X(j), Y (j)

)

= 2P
(j)
X P

(j)
Y + 4

(
X(j)

)2
Y (j) +

4
3
(
Y (j)

)3 + 4X(j)Y (j) − E1,hh + E2,hh. (18)

The proof follows by a direct calculation with an alternative expression of the discrete inte-
grable Henon–Heiles system (16). We here give an important remark.

Remark 1. The form of the constants (17) and (18) of motion is consistent with that of the
continuous-time integrable Henon–Heiles system. Namely,

Hd−hh−1

(
P

(j)
X , P

(j)
Y , X(j), Y (j)

)
= Hhh−1

(
P

(j)
X , P

(j)
Y , X(j), Y (j)

)
,

I2,d−hh−1

(
P

(j)
X , P

(j)
Y , X(j), Y (j)

)
= I2,hh−1

(
P

(j)
X , P

(j)
Y , X(j), Y (j)

)
. (19)

Finally in this section we give a numerical example for the discrete integrable Henon–Heiles
system. Fig. 11 indicates the orbits of the symplectic Euler scheme with step-size t(j+1) −
t(j) = dt = 0.1, 0.2, 0.4, the initial value is X(0) = 0.0, Y (0) = 0.0, P

(0)
X = 0.35, P

(0)
Y =

−0.15. Especially, the orbit with step-size t(j+1) − t(j) = dt = 0.4 is quite different from that
of the continuous-time integrable Henon–Heiles system. In contract to the orbits given by the
symplectic Euler scheme, the discrete integrable Henon–Heiles system with the constant discrete
step-size t(j+1) − t(j) = δ = 0.1, 0.2, 0.4 draws orbits which give a better approximation than
those of the symplectic Euler scheme in Fig. 2. Moreover, the discrete integrable Henon–Heiles
system with variable step-size gives the almost same orbit as the continuous-time integrable
Henon–Heiles system has. Fig. 3 displays the orbit of the discrete integrable Henon–Heiles
system with a step-size changing periodically from 0.1 to 0.2.
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Figure 1. Symplectic Euler scheme δ = 0.1, 0.2, 0.4.

1Figures in colour will be available only in electronic version.



448 Y. Minesaki and Y. Nakamura

−0.5 −0.3 −0.1 0.1 0.3
X

−0.4

−0.2

0

0.2

0.4

0.6

Y

dt=0.1
dt=0.2
dt=0.4

Figure 2. Discrete integrable Henon–Heiles δ = 0.1, 0.2, 0.4.
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Figure 3. Discrete Integrable Henon–Heiles with a variable step-size.

5 Conclusion

In this paper a new numerical integration algorithm for the integrable Henon–Heiles system is
designed with the help of canonical transformation. All of the constants of motion are then
exactly conserved. This property is rather different from the known numerical integrators of the
integrable Henon–Heiles system. Other types of the integrable Henon–Heiles systems [8] can be
discretized in the same method.

There are some additional advantages of the integrable Henon–Heiles system. As is observed
in numerical examples, the orbit of the discrete integrable Henon–Heiles gives a better approxi-
mation than the symplectic Euler scheme. Secondly, a variable step time is naturally assigned
to the discrete integrable Henon–Heiles system. Using the new stable numerical integration
algorithm, the authors wish to discretize some other integrable Hamiltonian systems besides the
integrable Henon–Heiles system and the two-dimensional Kepler motion.
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