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Direct and inverse recursion operator is derived for the vacuum Einstein equations for metrics
with two commuting Killing vectors that are orthogonal to a foliation by 2-dimensional
leaves.

1 Introduction

In the past decade, inverse recursion operators became the subject of a number of papers [7, 8,
14, 15]. In particular, the work of Guthrie [7] opened a new perspective on recursion operators
by essentially identifying them with auto-Bäcklund transformations for linearized equation [18].

It is known for a long time that recursion operators of integrable systems are obtainable from
their Lax pairs (see [6] and references therein) and ZCR’s (see [10, 24]). However, recently it
became clear that zero curvature representations are related much closer to inverse recursion
operators than to their ‘direct’ counterparts [19,20]. Examples that have been already published
elsewhere include the Korteweg–de Vries and Tzitzéica equation [19] and the stationary Nizhnik–
Novikov–Veselov equation [20]. In the present paper, the methods of [19, 20] are applied to
equations of General Relativity.

2 Recursion operators

Let E = {F l = 0} be a system of PDE’s in unknown functions uk of two independent variab-
les x, y. We assume that F l are functions of x, y, uk and a finite number of the derivatives

uk
ij =

∂i+juk

∂xi∂yj

(
uk

00 = uk
)
.

Consider the infinite-dimensional jet space J∞ with local coordinates x, y, uk
ij along with the

commuting vector fields

Dx =
∂

∂x
+

∑
ij

uk
i+1,j

∂

∂uk
ij

, Dy =
∂

∂y
+

∑
ij

uk
i,j+1

∂

∂uk
ij

,

called total derivatives. The submanifold E determined by equations F l = 0 and their differential
consequences DxF l = 0, DyF

l = 0, D2
xF l = 0, DxDyF

l = 0, D2
yF

l = 0, . . . , is called the equation
manifold (and is an underlying space of the diffiety structure [12] employed in [19]). In this
context, infinitesimal symmetries (more precisely, their generating functions) are functions Uk

defined on E such that

∑
k,i,j

∂F l

∂uk
ij

Di
xDj

yU
k = 0.
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It is then natural to consider the jet space with coordinates x, y, uk
ij , Uk

ij , and denote

LF l =
∑
k,i,j

∂F l

∂uk
ij

Uk
ij . (1)

The system LE := {F l = 0, LF l = 0} on unknowns uk, Uk will be called the linearized equation.
Now, Guthrie’s recursion operators [7] may be interpreted as auto-Bäcklund transformations of
the linearized equation LE that keep variables uk unchanged [19].

In now standard formalism [21], recursion operators are pseudodifferential operators, cha-
racterized by the occurrence of inverses of total derivatives D−1

x . Under Guthrie’s approach,
p = D−1

x f is introduced as an auxiliary nonlocal variable satisfying

px = f, py = g, (2)

provided such a g exists, and it actually does without known exception; see Sergyeyev [23] for
a proof in the case of evolution systems. Thus, p is a potential of a conservation law f dx + g dy
of the linearized equation LE .

For the inverse recursion operators, the nonlocalities tend to be genuinely non-Abelian pseu-
dopotentials related to a zero curvature representation of the system in question. Let g be
a matrix Lie algebra. Let α = A dx + B dy be a g-valued zero curvature representation (ZCR)
for the system E . This means that A, B are g-valued functions on the equation submanifold E
and DyA−DxB + [A, B] = 0 holds on E. Let us introduce the associated pseudopotential P as
a g-valued solution of the compatible system

Px = [A, P ] + LA, Py = [B, P ] + LB. (3)

A recursion operator R is then a linear operator in Uk and P such that U ′ = R(U, P ) solves the
linearized system LE whenever U does and P satisfies (3) (see [19,20]). In this way, the inverse
recursion operator can be found without previous knowledge of the direct recursion operator.
A remarkable aspect of this approach is that R(U, P ) tends to be a very simple expression.

For the above scheme to work, it is not necessary that the ZCR α a priori depends on the
“spectral parameter”. However, if R is a recursion operator related to the ZCR α as above, then
(R−1 + µ Id)−1 is another recursion operator, associated with a ZCR αµ which depends on µ.

3 The results

We consider vacuum Einstein equations for a space-time with two commuting Killing vectors that
are orthogonal to a foliation by 2-dimensional surfaces [4,5]. Our presentation will be restricted
to the case when both Killing vectors are space-like. The case when one of the Killing vectors
is time-like is equivalent to ours via an appropriate complex transformation of coordinates.

As is well known, there exist coordinates x, y, z1, z2 such that the metric in question can be
written in the form ds2 = 2f(x, y) dx dy + gij(x, y) dzi dzj (the Lewis [13] metric). The vacuum
Einstein equations essentially reduce to

(√
det g gxg−1

)
y

+
(√

det g gyg
−1

)
x

= 0, (4)

while f can be obtained by quadrature. Using the standard normalization det g = (x + y)2

compatible with equation (4), we parametrize g as follows: g11 = (x + y)/u, g12 = (x + y)v/u,
g22 = (x + y)(u2 + v2)/u. Equation (4) then becomes

uxy =
uxuy − vxvy

u
− 1

2
ux + uy

x + y
, vxy =

vxuy + uxvy

u
− 1

2
vx + vy

x + y
. (5)



Recursion Operators for Vacuum Einstein Equations with Symmetries 181

As is well known, equation (5) has a ZCR and a Bäcklund transformation [1–3,9,16,17,22]. The
ZCR reads

A =
1
2

(−(θ + 1)ux/u (θ + 1)vx/u2

(θ − 1)vx (θ + 1)ux/u

)
, B =

1
2θ

(−(θ + 1)uy/u (θ + 1)vy/u2

(−θ + 1)vy (θ + 1)uy/u

)
,

where θ =
√

(µ + y)/(µ − x), µ being the spectral parameter.
The main result of this paper, obtained by the methods of [19, 20], is as follows: If nonlocal

variables p11, p12, p21 satisfy

p11,x = −θ − 1
2
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θ + 1

2
vx

u2
p21 − θ + 1

2
1
u

Ux +
θ + 1

2
ux

u2
U,

p12,x = −(θ + 1)
vx

u2
p11 − (θ + 1)

ux

u
p12 − (θ + 1)

vx

u3
U +

θ + 1
2

1
u2

Vx,

p21,x = (θ − 1)vxp11 + (θ + 1)
ux

u
p21 +

θ − 1
2

Vx,

p11,y =
θ − 1
2θ

vyp12 +
θ + 1
2θ

vy

u2
p21 +

θ + 1
2θ

uy

u2
U − θ + 1

2θ

1
u

Uy,

p12,y = −θ + 1
θ

vy

u2
p11 − θ + 1

θ

uy

u
p12 − θ + 1

θ

vy

u3
U +

θ + 1
2θ

1
u2

Vy,

p21,y = −θ − 1
θ

vyp11 +
θ + 1

θ

uy

u
p21 − θ − 1

2θ
Vy, (6)

then

U ′ = 2
u√

(µ − x)(µ + y)
p11 +

1√
(µ − x)(µ + y)

U,

V ′ = − u2√
(µ − x)(µ + y)

p12 − 1√
(µ − x)(µ + y)

p21 (7)

is a recursion operator for equation (5), namely, it sends symmetries to symmetries if the latter
are viewed as solutions of the linearized system

Uxy =
(

uy

u
− 1

2(x + y)

)
Ux +

(
ux

u
− 1

2(x + y)

)
Uy − uxuy − vxvy

u2
U − vy

u
Vx − vx

u
Vy,

Vxy =
vy

u
Ux +

vx

u
Uy − vxuy + uxvy

u2
U +

(
uy

u
− 1

2(x + y)

)
Vx +

(
ux

u
− 1

2(x + y)

)
Vy.

The ‘direct’ recursion operator for this equation seems to be missing in the literature; we can
obtain it by inverting the operator (7), the result being

U ′ = uvp1 − up2 + (y − x)U,

V ′ = −1
2

(
u2 − v2

)
p1 − vp2 − 1

2p3 + (y − x)V,

where p1, p2, p3 satisfy

p1,x = (x + y)
(
−2

vx

u3
U +

1
u2

Vx

)
,

p2,x = (x + y)
(
−uux + 2vvx

u3
U +

1
u

Ux +
vx

u2
V +

v

u2
Vx

)
,

p3,x = (x + y)
(

2
(uux + vvx)v

u3
U − 2

v

u
Ux − 2

uux + vvx

u2
V +

u2 − v2

u2
Vx

)
,
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p1,y = (x + y)
(

2
vy

u3
U − 1

u2
Vy

)
,

p2,y = (x + y)
(

uuy + 2vvy

u3
U − 1

u
Uy − vy

u2
V − v

u2
Vy

)
,

p3,y = (x + y)
(
−2

(uuy + vvy)v
u3

U + 2
v

u
Uy + 2

uuy + vvy

u2
V − u2 − v2

u2
Vy

)
.

It is readily seen that pi are potentials of the linearizations [18] of the three obvious conservation
laws of equation (4).

Quite unusually, neither of the recursion operators found generates an infinite series of local
symmetries (and no such series is known). The action of our operators on the infinite-dimensional
Geroch group of nonlocal symmetries [5, 11] remains to be investigated.

It is convenient to rewrite system (6) in triangular form. To achieve this, we introduce the
Riccati pseudopotential q by

qx =
θ − 1

2
vxq2 − (θ + 1)

ux

u
q − θ + 1

2
vx

u2
, qy = −θ − 1

2θ
vyq

2 − θ + 1
2θ

uy

u
q − θ + 1

2θ

vy

u2

and a nonlocal potential r by

rx = (θ − 1)vxq − (θ + 1)
ux

u
, ry = −θ − 1

θ
vyq − θ + 1

θ

uy

u
.

Then the inverse recursion operator assumes the form

U ′ =
1√

(µ − x)(µ + y)

(
2uQ − 2

uq

er
R + U

)
,

V ′ =
1√
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(
−u2erP − 2u2qQ +

u2q2 − 1
er

R

)
,

where P , Q, R are supposed to satisfy

Px = (θ + 1)
q

u
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(
θ + 1

2
1
u2

− θ − 1
2

q2

)
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(
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Qx = −θ + 1
2
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u
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2
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θ + 1
2
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2
vxerP,

Rx =
θ − 1

2
erVx + (θ − 1)vxerQ,

Py =
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θ

q

u
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(
θ + 1
2θ

1
u2

+
θ − 1
2θ

q2

)
e−rVy − θ + 1

θ

(
quy

u2
+

vy

u3

)
e−rU,

Qy = −θ + 1
2θ

1
u

Uy − θ − 1
2θ

qVy +
θ + 1
2θ

uy

u2
U +

θ − 1
2θ

vyerP,

Ry = −θ − 1
2θ

erVy − θ − 1
θ

vyerQ.

This form of the inverse recursion operator is better adapted to generation of symmetries, which
is, however, beyond the scope of this paper.
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[22] Omote M. and Wadati M., Bäcklund transformations for the Einstein equation, in Advanced Nonlinear
Waves, Res. Notes in Math., Vol. 95, Boston, Pitman, 1984, V.1, 242–253.

[23] Sergyeyev A., On recursion operators and nonlocal symmetries of evolution equations, in Proceedings of the
Seminar on Differential Geometry (2000, Opava), Editor D. Krupka, Opava, Silesian University in Opava,
2000, 159–173; nlin.SI/0012011.

[24] Sakovich S.Yu., Cyclic bases of zero-curvature representations: five illustrations to one concept, Acta Appl.
Math., to appear; nlin.SI/0212019.


