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We have solved completely the problem of the description of quasi-linear evolution differen-
tial equations in two independent variables that are invariant under so(3) and sl(2,R) Lie
algebras.

1 Introduction

The basic idea is to combine the standard Lie algorithm for point symmetries with the equiva-
lence group of the given type of equation in order to give a classification of evolution equations
in some canonical form [1].

We consider third-order evolution equations of the type

ut = F (t, x, u, ux, uxx)uxxx +G(t, x, u, ux, uxx). (1)

Hereafter u = u(t, x), F , G are sufficiently smooth functions of the corresponding arguments,
ut = ∂u

∂t , ux = ∂u
∂x , uxx = ∂2u

∂x2 , uxxx = ∂3u
∂x3 , F �= 0.

The first step of the algorithm is the determination of the most general form of the infinites-
imal symmetry operator admitted by the PDE (1). To this end, we use Lie’s method and look
for a symmetry generator in the form

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, (2)

where τ , ξ, η are arbitrary, real-valued smooth functions defined in some subspace of the space
V = X ⊗ R

1 of the independent variables X = 〈t, x〉 and the dependent variable R
1 = 〈u〉.

As a result, we find that the operator (2) generates a one-parameter symmetry group of
equation (1) if

ϕt − [τFt + ξFx + ηFu + ϕxFux + ϕxxFuxx ]uxxx

− ϕxxxF − τGt − ξGx − ηGu − ϕxGux − ϕxxGuxx

∣∣∣
ut=Fuxxx+G

= 0,

where

ϕt = Dt(η) − utDt(τ) − uxDt(ξ),
ϕx = Dx(η) − utDx(τ) − uxDx(ξ),
ϕxx = Dx(ϕx) − utxDx(τ) − uxxDx(ξ),
ϕxxx = Dx(ϕxx) − uxxtDx(τ) − uxxxDx(ξ)

and Dt, Dx are operators of total differentiation in t and x respectively.
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We then find the following results:

Theorem 1. The symmetry group of the equation (1) is generated by the infinitesimal operators
of the form

Q = τ(t) ∂t + ξ(t, x, u)∂x + η(t, x, u) ∂u, (3)

where τ , ξ, η are real-valued functions that satisfy the system

(τt − 3ξx − 3uxξu)F + τFt + ξFx + ηFux + (ηx + ux(ηu − ξx) − u2
xξu)Fux + (ηxx

+ ux(2ηxu − ξxx) + u2
x(ηuu − 2ξxu) − u3

xξuu + uxx(ηu − 2ξx) − 3uxuxxξu)Fuxx = 0,

−ηt + uxξt − (ηu − τt + uxξu)G+ F (ηxxx + ux(3ηxxu − ξxxx) + 3u2
x(ηxuu − ξxxu)

+ u3
x(ηuuu − 3ξxuu) − u4

xξuuu + 3uxx(ηxu − ξxx) + 3uxuxx(ηuu − 3ξxu)

− 6uxxu
2
xξuu − 3u2

xxξu) + τGt + ξGx + ηGu + (ηx + ux(ηu − ξx) − u2
xξu)Gux

+ (ηxx + ux(2ηxu − ξxx) + u2
x(ηuu − 2ξxu)

− u3
xξuu + uxx(ηu − 2ξx) − 3uxuxxξu)Guxx = 0. (4)

As one can see from equation (4) unless F and G are functions of one variable, it is well-
night impossible to make the usual step of splitting this equation in terms of powers of the
derivative ux. This is where it is necessary to add a further element into the argument. The
idea is simple: given that we are not able to derive the Lie invariance algebra by first obtaining
the defining equations form (4), we then begin by specifying a Lie algebra and then requiring that
it be symmetry algebra of (1). Given a Lie algebra, we then look at the possible representations
of this Lie algebra within the class of operators of the form given in (2), and it is in this step that
we make use of the equivalence group of equation (1). This gives us canonical representations
of the symmetry algebra candidates. The final step is to calculate the allowed forms for the
function F and G for a given canonical representation of our chosen Lie algebra. This procedure
yields canonical forms of evolution equations which are inequivalent under point transformations
of the equivalence group of equation (1). Then, for each such canonical evolution equation, one
can calculate the maximal symmetry algebra.

The above method requires a list of inequivalent Lie algebra presentations (in terms of commu-
tation relations). All simple (and therefore all semi-simple) finite-dimensional real and complex
Lie algebras have been classified [2,3]. However, the list of solvable Lie algebras is far from com-
plete, and as far as we can ascertain, they are given in the work of Morozov and Mubarakzyanov
and Turkowski [4–10]. The work of Morozov and Mubarakzyanov are, as far as we are aware,
not translated from the original Russian. Here, the solvable Lie algebras up to and including
dimension six are classified. Our method is constructive in the sense that we are able to use
the low-dimensional Lie algebras up to dimension five in order to give our complete point sym-
metry classification, and we conclude that no non-linear evolution equation of the form (1) has
a point-symmetry invariance algebra of dimension greater that five. We note that a classification
in terms of contact symmetries has been given by Magadeev [11].

2 Some previous work

The problem of group classification of such equations was discussed by many authors (see for
instance [1,12–18]). Work on classification using the equivalence group has been done by Torrisi
and his co-workers [20–22]. The methods of Torrisi et al are based on the infinitesimal repre-
sentation of the equivalence transformations, in contrast to our approach which involves finite
forms of the equivalence transformations.
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3 Results

In this section we give some results and show how the equivalence group of the equation plays
its role in the classification of representation of a given Lie algebra. First, we begin with the
description of the equivalence group of equation (1).

Lemma 1. The maximal equivalence group E of equation (1) reads as

t̄ = T (t), x̄ = X(t, x, u), v = U(t, x, u), (5)

where Ṫ �= 0, D(X,U)
D(x,u) �= 0.

The next step is to give a canonical form (linearization) for a vector field, with respect to the
allowed transformations (5). This is given in the following result:

Lemma 2. There are changes of variables (5), that reduce an operator (3) to one of the operators
below:

Q = ∂t, (6)
Q = ∂x. (7)

Proof. Making the change of variables (5) transforms operator (3) to the following one:

Q→ Q′ = τ Ṫ ∂t̄ + (τXt + ξXx + ηXu)∂x̄ + (τUt + ξUx + ηUu)∂v. (8)

Suppose τ �= 0. Then, choosing in (5) the function T to be a solution of the equation Ṫ = τ−1

and the functions X and U to be independent fundamental solutions of the first-order PDE

τYt + ξYx + ηYu = 0, Y = Y (t, x, u),

we find that the operator (8) takes the form Q′ = ∂t̄.
Now suppose a = 0. Then ξ2 + η2 �= 0. If b �= 0, then choosing in (5) a particular solution of

PDE ξXx + ηXu = 1 as the function X and a fundamental solution of PDE ξUx + ηUu = 0 as
the function U , we transform (8) to become Q′ = ∂x̄.

If ξ = 0, η �= 0, then making the change of variables (5) with t̄ = t, x̄ = u, v = x, we again
get the case ξ �= 0.

By the direct calculation we can verify that there is no transformation from E , that reduce
operator (6) to the form (7). �

Example 1. sl(2,R). Now we give an example of the calculations involved. We do this using the
Lie algebra sl(2,R) which is the Lie algebra with basis 〈Q1, Q2, Q3〉 satisfying the commutation
relations

[Q1, Q2] = 2Q2, [Q1, Q3] = −2Q3, [Q2, Q3] = Q1. (9)

First, we take one operator from the basis and put it into canonical form. So let us choose Q3

for this purpose (this is done for purely practical reasons.) By Lemma 2, we can choose Q3 in
one of two canonical forms: Q3 = ∂t or Q3 = ∂x.

We consider in detail the case Q3 = ∂t. With this choice of Q3 we proceed to find the
allowable forms for Q3 or Q3. So put

Q1 = τ(t)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u.

The second commutation relation in (9) then implies that

τ̇ = 2, ξ̇ = η̇ = 0.
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Therefore, τ(t) = 2t+ c, c = const and ξ, η are independent of t. So we take

Q1 = 2t∂t + ξ(x, u)∂x + η(x, u)∂u.

The next step is to find a canonical form for Q1 under the equivalence transformations (5).
However, we must now use only those equivalence transformations of (5) which preserve the
form Q3 → Q̄3 with

Q̄3 = Ṫ ∂t̄ +Xt∂x̄ + Ut∂v = ∂t̄

which yields Ṫ = 1, Xt = Ut = 0. Thus we take T (t) = t, X = X(x, u), U = U(x, u). Under this
type of transformation we find

Q1 → Q̄1 = 2t̄∂t̄ + (ξXx + ηXu)∂x̄ + (ξUx + ηUu)∂v.

We now choose X and U so that

ξXx + ηXu = X, ξUx + ηUu = 0.

This gives us the canonical form

Q̄1 = 2t̄∂t̄ + x̄∂x̄.

This means that we can, up to an equivalence transformation of equation (1), take

Q3 = ∂t, Q1 = 2t∂t + x∂x.

Finally, we need to determine Q2. We put

Q2 = α(t)∂t + β(t, x, u)∂x + γ(t, x, u)∂u.

The commutation relation [Q2, Q3] = Q1 gives

α(t) = −t2 + c, β = −xt+ b(x, u), γ = γ(x, u).

Thus we may take

Q2 = −t2∂t + (b(x, u) − xt)∂x + γ(x, u)∂u.

Then we use the relation [Q1, Q2] = 2Q2. From this we obtain

b(x, u) = m(u)x3, γ(x, u) = n(u)x2

and we have

Q2 = −t2∂t +
(
m(u)x3 − xt

)
∂x + n(u)x2∂u.

All that remains to be done is to find a canonical form for Q2. We do this using equivalence
transformations (5) which leave invariant the form of Q1, Q3. These are given by

T (t) = t, X(tx, u) = q(u)x, U = p(u)

with q(u) �= 0 and ṗ(u) �= 0. Under this transformation we find

Q̄2 = −t̄2∂t̄ +
(
q(u)m(u) + n(u)q̇(u)

q3(u)
x̄3 − x̄t̄

)
∂x̄ +

n(u)ṗ(u)
q2(u)

x̄2∂v.
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There are two cases: n(u) �= 0 and n(u) = 0. If n(u) �= 0 then we may choose p(u) and q(u)
such that

q(u)m(u) + n(u)q̇(u)
q3(u)

= 1,
n(u)ṗ(u)
q2(u)

= 1

which give us

Q̄2 = −t̄2∂t̄ +
(
x̄3 − x̄t̄

)
∂x̄ + x̄2∂v.

If, however, n(u) = 0 then we have

Q̄2 = −t̄2∂t̄ +
(
q(u)m(u) + n(u)q̇(u)

q3(u)
x̄3 − x̄t̄

)
∂x̄.

If now m(u) > 0 we may choose m(u) = q2(u) and we find

Q̄2 = −t̄2∂t̄ +
(
x̄3 − x̄t̄

)
∂x̄.

If m(u) < 0 then we choose m(u) = −q2(u) and we find

Q̄2 = −t̄2∂t̄ +
( − x̄3 − x̄t̄

)
∂x̄.

Finally, we note that t→ −t, x→ x, u→ u is an equivalence transformation of equation (1),
and the last two canonical forms for Q2 are equivalent under this transformation. Summarizing
this calculation, we find that the algebra sl(2,R) has four canonical forms with Q3 = ∂t:

〈2t∂t + x∂x, −t2∂t − tx∂x + x2∂u, ∂t〉,
〈2t∂t + x∂x, −t2∂t + x(x2 − t)∂x, ∂t〉,
〈2t∂t, −t2∂t, ∂t〉,
〈2t∂t + x∂x, −t2∂t − xt∂x, ∂t〉,

and these are inequivalent under the equivalence group given by (5). The canonical formQ3 = ∂x

gives rise to a similar calculation, and three inequivalent representations for the Lie algebra
sl(2,R) are found. Other six realizations of the algebra sl(2,R) be able admitted by PDEs of
the form (1).

These results are summarized in the following:

Theorem 2. There exist six inequivalent realizations of the algebra sl(2,R) by operators (3),
which are admitted by PDEs of the form (1)

〈2t∂t + x∂x, −t2∂t − tx∂x + x2∂u, ∂t〉, (10)

〈2t∂t + x∂x, −t2∂t + x
(
x2 − t

)
∂x, ∂t〉, (11)

〈2x∂x − u∂u,−x2∂x + xu∂u, ∂x〉, (12)

〈2x∂x − u∂u,
(
u−4 − x2

)
∂x + xu∂u, ∂x〉, (13)

〈2x∂x − u∂u, −(
u−4 + x2

)
∂x + xu∂u, ∂x〉, (14)

〈2x∂x, −x2∂x, ∂x〉. (15)

The forms of the functions F , G determining the corresponding invariant equations are given
in Table 1, where F̃ , G̃ are arbitrary functions.
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Table 1.

sl(2,R) F G

(10) xF̃ (ω, v), u2
x

4 + x−2G̃(ω, v)
ω = 2u− xu1, v = 2u− x2uxx

(11) x−3u−4
x F̃ (σ, u), σ = uxxu

−2
x + 3x−1u−1

x −x−2ω
4 + x−2

(
9σ
ω2 − 12

ω3

)
F̃ (u, σ) + 1

x2ω G̃(u, δ),
ω = xux, δ = uxxu

−2
x − 3x−1u−1

x ,
σ = u−1

xxu
2
x − xux

3

(12) u−6F̃ (t, ω), ω = u−5uxx − 2u−6u2
x uG̃(t, ω) + (12u−9u3

x − 9u−8uxuxx)F̃ (t, ω)

(13) u−6

(1+4ω2)
3
2
F̃ (t, σ), uG̃(t, σ)

√
1 + 4ω2 − u

[
12σ2ω

√
1 + 4ω2

σ = 2v−10ω2−1

2(1+4ω2)
3
2

, ω = u−3ux, v = u−5uxx + 21σω + 15
2

ω+6ω3

(1+4ω2)
3
2

]
F̃ (t, σ)

(14) u−6

(4ω2−1)
3
2
F̃ (t, σ1) if 4ω2 > 1, uG̃(t, σ1)

√
4ω2 − 1 − u

[
12σ2

1ω
√

4ω2 − 1

ω = u−3ux, v = u−5uxx, σ1 = 2v−10ω2−1

2(4ω2−1)
3
2

+ 21σ1ω + 15
2

6ω3−ω

(1−4ω2)
3
2

]
F̃ (t, σ)

u−6

(1−4ω2)
3
2
F̃ (t, σ2) if 4ω2 < 1 uG̃(t, σ2)

√
1 − 4ω2 − u

[
12σ2

2ω
√

1 − 4ω2

ω = u−3ux, v = u−5uxx, σ2 = 2v−10ω2−1

2(1−4ω2)
3
2

+ 21σ2ω + 15
2

6ω3−ω

(1−4ω2)
3
2

]
F̃ (t, σ2)

(15) u−3
x F̃ (t, u) − 3

2
u2

xx

u4
x
F̃ (t, u) + G̃(t, u)

Theorem 3. There exists only one realization of the algebra so(3) by operators of the form (2)
which is an invariance algebra of (1):

〈∂x, tanu sinx∂x + cosx∂u, tanu cosx∂x − sinx∂u〉. (16)

Furthermore, the most general form of the functions F , G allowing for PDE (1) to be invariant
under the above realization is given by

F =
sec3 u

(1 + ω2)3/2
F̃ (t, ψ),

G =
[
9ωψ tanu− 3ωψ2(1 + ω2)1/2 +

ω(1 + 2ω2)
(ω2 + 1)3/2

− ω(5 + 6ω2) tan2 u

(ω2 + 1)3/2

]
F̃ (t, ψ)

+ (ω2 + 1)1/2G̃(t, ψ),

where we have used the notation

ω = ux secu, ψ =
uxx sec2 u+ (1 + 2ω2) tanu

(1 + ω2)3/2
.

Provided the function G̃ is arbitrary, the realization (16) is the maximal symmetry algebra of
the corresponding equation (1).

Our approach is, as we have demonstrated, a combination of the Lie point symmetry analysis
and an exploitation of the equivalence group of the equation to give possible canonical forms for
the various Lie algebras. Each representation of the Lie algebra is then tested as a symmetry
algebra, and is discarded if it gives no result (by which we mean, amongst other things, that the
equation admitting a given representation as symmetry algebra must have F �= 0 in (1)).

The present method gives a complete point-symmetry classification of (1), so that any evo-
lution equation of the form is necessarily point-equivalent under the transformations (5) to one
of the canonical forms for equation (1).
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