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The general self-consistent approach for calculating of spectral parameters of the one-
dimensional Schrödinger operator with the finite-gap Abelian potential is proposed. It is
based on use of finite-band equations and solution of the Jacobi inverse problem in terms of
hyperelliptic Weierstrass functions.

1 Introduction

General solutions of completely integrable systems are expressed in terms of the Riemann theta
functions containing unknown parameters. Obtaining these solutions in an explicit form is
reduced to the problem of calculation of the mentioned parameters. Usually, solving of this
problem is realized in the framework of two following approaches. The first algebro-geometric
approach is based on an use of the so-called Thomae formulae describing relations between the
unknown parameters and so-called theta-constants (see [1–3]). In so doing, it is assumed that
spectral branch points are given, and their calculation is a special problem. Role of independent
parameters in this formulae is played by the period matrix τ generated by the hyperelliptic

Riemann curve Γg : y2 =
2g+1∏
i=1

(ε− εi) (see [2]). The second approach is based on construction of

algebraic equations for the unknown parameters by forward substitution of the general solutions
in to an original integrable equation (see [3]). These two approaches assume that the explicit
form of the generated Riemann curve is given and do not provide their calculation.

In the same time, the full and self-consistent solving of the considered problem assumes
construction of a unique system of equations determining all unknown parameters. This can be
realized in the form of so-called finite-band equations in the framework of the spectral problem
for auxiliary linear operators (see [4–7]) corresponding to a given integrable equation.

In the case of the KdV equation under consideration this problem is connected with the
spectral problem for the finite-gap Schrödinger operator. In the presented paper the effective
method for full solving of the spectral problem for the one-dimensional Schrödinger operator is
proposed on the basis of finite-band equations. As distinct from the above-mentioned second
approach, the substitution of solutions (the Schrödinger potential) is realized with respect to the
finite-band equations. In so doing, the problem is reduced to solving of a self-consistent system
of algebraic equations determining all unknown parameters through theta-constants (see [1]).
This provides calculation of both parameters of the potential and spectral parameters of the
Schrödinger operator.

The presented paper consists of three sections. General analytic solving of the spectral
problem for the finite-gap Schrödinger operator in terms of hyperelliptic Weierstrass functions
is considered in Section 2. In Section 3 we obtain the system of algebraic equations for the
unknown parameters including spectral parameters and consider particular cases of one- and
two-gap spectra.
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2 Finite-gap solutions

Eigenfunctions of linear differential operators with a finite-gap spectrum are characterized by
their dependence on a spectral variable ε through polynomials in ε [5]. Therefore solving of
the corresponding spectral problem is based on the comparison of asymptotic expansions in ε
of general and finite-gap eigenfunctions. This is expressed in the form of so-called finite-band
equations describing all unknown parameters of finite-gap solutions.

The spectral equation (HΨ = εΨ) of the general and finite-gap one-dimensional Schrödinger
operator (H) determines its eigenfunction in the form

Ψ±(x) = C
√

χ(ε, x) exp
(
±ı

∫ x

x0

dxχ(ε, x)
)

with χ(ε, x) determined by the general spectral equation and χ(ε, x) = y(ε)/X(ε, x) for the
finite-gap spectra. Here polynomial functions y(ε) and X(ε, x) are of (2g+1)-th and g-th orders
in ε, respectively. Here the X-polynomial is characterized by a dependence on x of coefficients
at powers of ε.

The function X(ε, x) is the product of two eigenfunctions (X(ε, x) = Ψ+(ε, x)Ψ−(ε, x)) and
satisfies to the equation, which in terms of X-polynomial roots µj(x) take the form (see [8])

∂xX(ε, x)|ε=µj(x) = 2ıy(µj(x)).

This equation is integrated by the Abelian map ζj =
g∑

k=1

∫ µk(x)
ak

dvj(ε), where dvj =
g∑

i=1
Cijdωi

is normalized holomorphic differential on the Riemann curve Γg: y2 =
2g+1∏
i=1

(ε − εi) and dωj =

εj−1dε/y(ε). Corresponding solutions have the form ζj = 2ıCgjx. Thus calculation of sym-
metrized products of the set {µj(x)} is reduced to inverse of the Abelian map (see for in-
stance [1, 2]). Symmetrized products of {µj(x)}, considered as the point set on the Riemann
curve Γg, can be calculated with help of the Riemann theta functions

θ[α](z|τ ) =
∑
n∈Zg

exp[πı(n + α1)τ(n + α1) + 2πız · (n + α2)], (1)

where

z =
∫ x

x0

dω − Cu − K, uj =
g∑

k=1

∫ xk

ak

dωj(x)

which vanish in points {µj(x)}.
Here α is the 2 × g half-integer matrix with rows represented by vectors α1 and α2; τ is the

period matrix on the Riemann curve Γg, K is a so-called Riemann constant vector.
In the framework of the Kleinian construction (see [9]) the so-called hyperelliptic σ-function

σ(u) = C exp
(
uκu + 2πıq′(−Cu + rq′/2 − q′)

)
θ

(∫ x

x0

Cdω − Cu − K|τ
)

, (2)

plays the role of the generating functions for hyperelliptic Abelian functions. Absence of θ(z)
implies the function (1) at α = 0.

Here rj is determined by the expression drj = rjdx (rj =
2g+1−j∑

k=j

(k + 1 − j)λk+1+jx
k/2y),

which describes canonical Abelian differential of second kind on the Riemann curve Γg; q′ and q
are half-integer characteristics of the Riemann constant vector K.
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Hyperelliptic zeta and Weierstrass functions are defined as logarithmic derivatives of the
function (2) by the formulae

ζj1(u) =
∂

∂uj1

lnσ(u), ℘j1j2···jn(u) = − ∂j1+j2+···+jn

∂uj1∂uj2 . . . ∂ujn

lnσ(u), n ≥ 2. (3)

The Weierstrass functions in (3) implicitly contain unknown parameters {Cij} and the period
matrix τ as an independent parameter. Taking into account the dependence of u on points {xi}
on the Riemann curve Γg it is see that second derivative of the σ-function (2) represents a poly-
nomial in xi with coefficient functions ℘j1j2(u). Evidently the equality for a such polynomial
enable to determine symmetrized products of µj(x) through hyperelliptic functions ℘j1j2(u),
which, with account of above-mentioned relations between vectors ζ and u, will contain un-
known parameters Cij .

This equality can be obtained on the basis of the known Baker relation (see [9])∫ x

ν

g∑
i=1

∫ xi

νi

dΩ(x, xi) = ln

(
σ

(∫ x

x0

dω −
g∑

i=1

∫ xi

x0

dω

)
σ−1

(∫ x

x0

dω −
g∑

i=1

∫ νi

x0

dω

))∣∣∣∣∣
x

x=ν

, (4)

where the fundamental 2-differential of the second kind dΩ(x, xi) is defined by the expression

dΩ(x, xi) =
∂

∂x

(
y(x) + y(xi)
2y(x)(x − xi)

)
dxdxi + dω(x)dr(xi).

The partial derivation of (4) with respect to x and xk taking into account the definition (3)
leads to the relation

g∑
i,j=1

℘ij

(∫ x

x0

dω −
g∑

i=1

∫ xi

x0

d ω

)
xixj

k =
F (x, xk) − 2yyk

4(x − xk)2
, (5)

with known [9] F -function which has the form of polynomial in variables x and xk. Using the
known relation F (x, xk) → xg+1xg+1

k at x → ∞ from (5) in the asymptotic limit x → ∞ we
obtain the equation

xg
k −

g∑
j=1

℘g,g+1−j(u)xg−j
k = 0. (6)

In view of (6) the coefficient function ℘g,g+1−j(u) equals to the symmetrized product of a j
degree of the above mentioned point set {xk} of the Riemann curve Γg. This is true also with
respect to the point set {µk(x)}.

Thus coefficient functions bj(x) are expressed through generalized Weierstrass ℘-functions by
the relation

bj(x) = −℘g,g+1−j(u). (7)

In terms of the above-mentioned normalized vectors ζ = Cu belonging to Abelian map on the
basis of the normalized first-kind Abelian holomorphic differentials v, the relation (6) takes the
form

bj(x) = −
g∑

n,m=1

CgnCg,g+1−j℘nm(αx), (α)j = Cgj . (8)

Thus the spectral problem for the one-dimensional Schrödinger operator with a finite-gap
spectrum is reduced to calculation of the normalized coefficient matrix C. Normalized coeffi-
cients in (8) are described by algebraic equations, which can be obtained by substitution of the
expression (8) into known finite-band equations with transition to the theta function represen-
tation.
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3 Calculation of unknown parameters

The system of finite-band equations represents relations between coefficient functions bj(x) and
polynomials in derivatives of the Schrödinger potential U(x) with respect to x. This system
follows from comparison of asymptotic expansions in ε for general and finite-gap χ-functions
entering in the above-mentioned expression for the eigenfunction Ψ(ε, x) of the Schrödinger
spectral equation (see [4]).

For the general solution, coefficients of the power expansion

χ =
√

ε

(
1 +

∞∑
n=0

(
(−1)n/22n+1

)
χ2n+1ε

−(n+1)

)

are polynomial in derivatives of U(x). For the finite-gap solutions, coefficients of the power
expansion χ(ε, x) = y(ε)/X(ε, x) are represented polynomial in spectral coefficients {aj} and
coefficient functions bj(x). Comparison of power expansions for both cases leads to the so-called
finite-band system of equations

1
n!

∂n

∂n
z




(
2g+1∑
k=0

akz
k

)1/2

g∑
k=0

bk(x)zk




z=0

=
(−1)n−1

22n−1
χ2n−1(x), a0, b0 = 1,

χn+1 =
∂

∂x
χn +

n−1∑
k=1

χkχn−k, χ1 = −U(x), (9)

in which bk(x) = 0 at k > g. Feature of this equations is that the coefficient function bj(x) enters
linearly to each equation (9) at n = j and is algebraically expressed through all previous coef-
ficient functions bi(x), i = 1, j − 1. The same regularity takes place for spectral parameters aj

at j > g.
Therefore all coefficient functions bj at j ≤ g are expressed as polynomials in derivatives

of potential U(x). The system of spectral parameters aj at j = g + 1, 2g + 1 is algebraically
expressed through first g parameters a1, . . . , ag and polynomials in derivatives U (i).

Thus, use of an eliminating method concerning aj and bj(x) reduces equations (9) at n =
2g + 2, 3g + 1 to the closed system (RS) of algebraic equations for g unknowns aj , j = 1, g.

The potential U(x) in (9) is connected with the coefficient function b1(x) by the relation

b1(x) =
1
2

(U(x) + a1) ,

which together with the equality (7) result in the explicit expression

U(x) = −2
g∑

j,j′=1

αjαj′℘jj′(αx|τ ) − a1. (10)

describing the Schrödinger potential in terms of generalized Weierstrass ℘-functions at the given
module matrix τ of the Riemann curve Γ (in future for simplicity τ will be omitted). Here
components αj , j = 1, g must be calculated from the above-mentioned reduced system.

Substitution of the expression (10) into equations (9) results in a system of nonlinear equations
for unknowns aj , j = 1, 2g + 1 and αj , j = 1, g with coefficients expressed through derivatives
of ℘-function with respect to x. In view of independence on x this system is represented by
algebraic nonlinear equations with respect to aj and αj . In representation of above-mentioned
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theta functions such system is reduced to algebraic nonlinear equations with coefficients which
are expressed through theta-constants (i.e. theta functions with zero argument). Correspon-
dingly, the above-mentioned RC system is transformed in to the algebraic system of equations
concerning unknowns aj and αj at j = 1, g.

For obtaining above-mentioned equations it is convenient to introduce j-component vector

nj = (n1, . . . , nj) and notations αnj = 2
j∏

ni=1
αni and ℘nj = ℘n1···nj . Then the expression (10)

can be rewritten more compactly as

U(x) = αn2℘n(αx) − a1, (11)

where summing by repetitive subscript components is implied.
Substitution of the expression (11) into the equations (9) results in the equation

b2(x) =
1
8
(
3 (αn2g℘n2 − a1)

2 − (αn4g℘n4)
)

− 1
4
a1 (αn2g℘n2 − a1) +

1
2
a2 − 1

8
a3

1 (12)

and

b3(x) =
1
32
(
αn4g℘n4 + 10 (αn2g℘n2 − a1)

3 − 5 (Cn3g℘n3)
2

− 10 (αn2g℘n2 − a1) αn4g℘n4

)− 1
16

a1

(
3 (αn2g℘n2 − a1)

2 − αn4g℘n4

)
+

1
16

(αn2g℘n2 − a1)
(
a2

1 − 4a2

)
+

1
2
a3 +

1
4
a1a2 +

1
16

a3
1. (13)

Finite-gap equations (12), (13) and of higher order are valid with any arguments of genera-
lized Weierstrass ℘-functions. Therefore these equations can be represented in terms of theta-
constants (theta-functions on zero argument) by the formal substitute

℘nj → (ln θ)nj , (ln θ)nj = ∂n1,...,nj ln θ(z|τ )z=0). (14)

In the case of the one-gap spectrum, the generalized Weierstrass functions transform in to
the elliptic Weierstrass function (℘nj → ℘11) and α1 = 1. In this case bj(x) = 0 at j > 1.
Therefore reducing in (12) and (13) similar terms and vanishing coefficients at degrees of ℘11

we immediately obtain the following solutions for spectral parameters a1, a2, a3

a1 = 0, a2 = ℘(ω1)℘(ω2) + ℘(ω1)℘(ω3) + ℘(ω2)℘(ω3),
a3 = ℘(ω1)℘(ω2)℘(ω3), ω1 = ω, ω2 = ω + ω′, ω3 = ω′,

where ω and ω′ are real and imaginary self-periods of the elliptic Weierstrass function.
In the two-gap case (g = 2) normalized constants {Cj} are not known and are determined

by equations (13) and (14). Unknowns aj , αj , j = 1, 2 are solutions of the above-mentioned RC
system (corresponding to (9) at n = 6, 9 ). This system takes the form of algebraic nonlinear
equations which can be written as

0 = B6
22
10(αn2℘n2)a

2
2 + B6

21
1j (αn2℘n2)a2a

j
1|10 + B6

20
1j (αn2℘n2)a

j
1|40,

0 = B7
22
1j (αn2℘n2)a

2
2a

j
1|10 + B7

21
1j (αn2℘n2)a2a

j
1|30 + B7

20
1j (αn2℘n2)a

j
1|50,

0 = B8
23
10(αn2℘n2)a

3
2 + B8

22
1j (αn2℘n2)a

2
2a

j
1|20 + B8

21
1j (αn2℘n2)a2a

j
1|40 + B8

20
1j (αn2℘n2)a

j
1|60,

0 = B9
23
1j (αn2℘n2)a

3
2a

j
1|10 + B9

22
1j (αn2℘n2)a

2
2a

j
1|30

+ B9
21
1j (αn2℘n2)a2a

j
1|50 + B8

20
1j (αn2℘n2)a

j
1|80,
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where summing by repetitive subindexes in boundaries which are denoted at vertical hyphens
is implied. Also the formal transfer (14) is suggested. Here Bm

2i
1j(z) implies coefficient function

at ai
2a

j
1 corresponding to the equation (9) at n = m. This coefficient function is a polynomial in

derivatives of its argument with respect to x and therefore contains terms ∂k
x℘n2 = αn2+k

℘n2+k
in

accordance with (11). The latter system is represented by the closed system of the four algebraic
nonlinear equations which determines two spectral parameters a1, a2 and components α1, α2.
The remaining unknowns aj , j = 3, 5 are calculated by forward substitution of obtained a1, a2

and α1, α2 into the reduced equations (9) at n = 3, 5. In so doing, the matrix τ plays a role of
a independent parameter.

Similar calculation can be applied in the case of the arbitrary number of spectral gaps in
the spectrum of the one-dimensional Schrödinger operator. Then unknown spectral parameters
a1, . . . , ag and the parameters α1, . . . , αg will be determined by reduced equations a system
of 2g reduced algebraic equations (9) at n = 2g + 2, 4g + 1. The rest spectral parameters aj ,
j = g + 1, 2g + 1 will be calculated by forward substitution of computed a1, . . . , ag and α1, . . . , αg

into the reduced equations (9) at n = g + 1, 2g + 1.
The general reduced algebraic equations are represented by the necessary conditions that

the Riemann τ -matrix will be the period matrix of holomorphic differentials on the Riemann
curve Γ. Thus there are no restrictions on the number of gaps in spectra.

The suggested finite-gap method gives simple and common algorithm for solving the spectral
problem for the finite-gap Schrödinger operator. This problem is reduced to calculation of the
closed system of algebraic nonlinear equations. The method is represented by the hyperelliptic
generalization of the earlier suggested approach [10] for solution of the spectral problem in the
one-gap case for the one-dimensional elliptic Schrödinger operator.
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