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The structure of the physical and strange attractors is inherently associated with the bound-
edness of fluctuations. The idea behind the boundedness is that a stable long-term evolution
of any natural and engineered system is possible if and only if the fluctuations that the system
exerts are bounded so that the system permanently stays within its thresholds of stability.
It has been established that the asymptotic structure of the physical and strange attractors
is identical. Now it is found out that though the non-asymptotic behavior is universal it can
be very different, namely: on coarse-graining the physical attractors can exhibit a variety of
behavior while the strange attractors always have hyperuniversal properties. Yet, under cer-
tain levels of coarse-graining both physical and strange attractors match non-asymptotically
a variety of noise type behavior.

1 Introduction

The notion of a physical attractor is inherently consistent with the notion of the boundedness
of fluctuations. The idea behind the boundedness is that a stable long-term evolution of any
natural and engineered system is possible if and only if the fluctuations that the system exerts
are bounded so that the system permanently stays within its thresholds of stability. Thus,
the thresholds of stability match the boundaries of a finite volume in the phase space so that
every phase trajectory is confined in that volume called physical attractor [1]. Further, we
have proved [1] that any bounded irregular sequence (BIS) has certain asymptotic properties
insensitive to the increment statistics. These properties are called 1/fα-type noise. They are:
(a) the power spectrum comprises a continuous band that uniformly fits the shape 1/fα(f)

where α(f) monotonically increases starting from 1 at f = 1/T (T is the length of the sequence)
up to p as f approaches infinity (p is arbitrary but p > 2); (b) the physical (strange) attractor is
non-homogeneous; (c) the Kolmogorov entropy is finite. It has been proven also that the strange
attractors that are related to the simulated dynamical systems share the above properties.

The present task is to reveal the influence of the increment statistics onto the properties of
the bounded irregular sequences after coarse-graining. The coarse-graining is an inevitable part
of recording data at every experiment. Therefore, it is important to elucidate how it impacts
the experimentally recorded time series. Taking into account that a long-term boundedness
is possible if and only if the size of correlations among increments does not exceed a certain
finite value, it is to be anticipated that the coarse-grained structure of any BIS is universal, i.e.
insensitive to the increment statistics. Indeed, an arbitrary increase of the increment correlation
size certainly makes the amplitude of fluctuations to exceed the thresholds of stability. To the
most surprise, it turns out that on the coarse-graining there are 3 types of non-asymptotic
behavior of every BIS: (i) the low level whose major property is that the structure of any
BIS matches the white noise behavior; (ii) the meso-level where the sequence of large-scaled
fluctuations matches telegraphic noise behavior. At the same time, the large-scaled fluctuations
retain a certain specific property related to the increment statistics; (iii) macro-level where
the properties of any BIS are hyperuniversal, namely insensitive to any detail of the increment
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statistics. It should be stressed that the hyperuniversal properties on that level of coarse-graining
are due to the fact that under coarse-graining the symmetric random walk with a constant step
appears as the global attractor for any fractal Brownian motion. This is the subject of § 3. On
the other hand, it should be stressed that the 1/fα-type noise properties listed above remain
unaffected by the coarse-graining. Thus, both white noise and telegraphic noise behavior are
rather alias effects: they are typical for sequences whose length does not exceed a certain one.
The asymptotic behavior of every BIS, regardless to the level of coarse-graining, is always covered
by the 1/fα-type noise properties established in [1].

The above separation is made on the grounds of certain Poissonian properties of the large-
scaled fluctuations appearance. The particularity of that behavior is imposed by the bound-
edness and the lack of long-range correlations among increments. More precisely, the lack of
long-range correlations among increments ensures a uniform convergence of the average to the
mean of any BIS. In turn, it provides the stationarity of the large-scaled fluctuations appear-
ance. The existence of mean and average for any BIS is guaranteed by the Lindeberg theorem
that states: each BIS has a finite mean and a finite variance regardless to the increment statis-
tics [2]. The interplay between all these properties renders that each large-scaled fluctuation
can be approximated by an excursion: a trajectory of a walk originating at the mean value of
a given sequence at time t and returning to it for the first time at time t + ∆. This interval is
called the next duration of an excursion. The distinctive property of each excursion is that the
random walk of the increment renders certain relation between the amplitude and the duration
of the excursion. In § 2 it is worked out that the boundedness provides each excursion to be
loaded in a specific “embedding interval”. The length of that interval is exerted as a random
choice from a certain range of almost equiprobable values. The presence of embedding time
intervals is the warrant of the “pulse”-like behavior of any BIS, namely: the BIS is a succession
of excursions separated by quiescent intervals whose lengths vary with the “time”. It should
be stressed that this behavior is robust to the coarse-graining and it is natural on the quantum
level [3]. The importance of the “pulse”-like behavior is twofold: (i) it provides that the fluctua-
tions remain bounded at any scale of averaging, respectively at any level of coarse-graining; (ii)
each BIS remains a BIS on coarse-graining and thus ensures the robustness to coarse-graining
of the 1/fα-type noise properties.

2 “Embedding” intervals

The target of the present and the next section are the properties of the pulse-like behavior of
the coarse-grained BIS’s. We start with the excursion embedding. Further it is proven that
this property is imposed by the boundedness and is insensitive to the increment statistics. The
presence of the embedding intervals renders that any successive excursions are separated by non-
zero quiescent intervals. This is the key property for the pulse-like performing of the excursion
sequences. The present task is to establish the relation between the duration of the embedding
intervals and the duration of the corresponding excursions. That relation is based on the notion
of an excursion: a trajectory of a walk originating at the mean value of a given sequence at
time t and returning to it for the first time at time t + ∆. Therefore, the probability for an
excursion of duration ∆ is determined by the degree of correlation between any two points of
a sequence. On the other hand, the probability that any two points of a sequence, separated
by a distance η, have the same value is given by the autocorrelation function G(η). A generic
property of the BIS’s [1] is that the autocorrelation function of any of them can be defined for
sequences of arbitrary but finite length T . Yet, its shape is universal, namely:

G(η, T ) ∝ 1 −
( η

T

)ν(η/T )
.
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where ν
( η

T

)
is an everywhere continuous function monotonically decreasing between the follo-

wing limits:

ν
( η

T

)
→ p − 1 as

η

T
→ 0,

ν
( η

T

)
→ 0 as

η

T
→ 1.

Then, the probability that an excursion of duration ∆ happens in an interval T reads:

P (∆, T ) =
1
T

∫ ∆

0
G(η, T ) dη =

∫ ∆/T

0

(
1 − εν(ε)

)
dε.

By using the standard calculus [3], the integration of any power function of non-constant expo-
nent α(x) (α(x) is an everywhere continuous function) reads:

J =
∫ b

a
x±α(x) dx =

b1±α(b)

1 ± α(b)
− a1±α(a)

1 ± α(a)
.

Thus,

P (∆, T ) =
∆
T

(
1 −

(
∆
T

)ν(∆/T )
)

.

The P (∆, T ) dependence only on the ratio ∆/T verifies that each excursion is “embedded” in
a certain interval so that no other excursion happens in that interval.

The next step is to work out the shape of P (∆, T ). Its role is crucial for the behavior of the
excursion sequence. To elucidate this point let us consider two extreme cases:

• P (∆, T ) is a sharp single-peaked function. Then, it ensures a single value of the most
probable ratio ∆

T . In other words, the duration of the most probable embedding interval
associated with an excursion of duration ∆0 has a single value T0 such that ∆0

T0
is the peak

value of P (∆, T ).

• P (∆, T ) has a gently sloping maximum. Then, the relation between ∆ and T behaves as
a multi-valued function: a range of nearly equiprobable values of T corresponds to each
most probable ∆. In the course of the time this produces a variability of the duration of
the “embedding” intervals even when the sequence comprises identical excursions. Then,
the excursion sequence always exhibits a non-periodic (“pulse”-like) behavior.

The establishing of the particular shape of P (∆, T ) requires the knowledge about the explicit
shape of ν

(
∆
T

)
. Next it is worked out on the grounds of the proof that neither BIS sustained to

an arbitrary length comprises any long-ranged increment correlations. The general restriction
on the increment correlation size requires a uniform contribution to the power spectrum of all
scales, i.e. there are no “special” frequencies at the power spectrum.

The only factor that can modify the power spectrum is the non-constant exponent α(f) of
its shape 1/fα(f). The boundedness requires the monotonic decay of α(f) in the limits (1, p] not
specifying its shape [1]. Our task now is to establish the shape(s) of α(f) that fits the lack of
long-range increment correlations. By virtue of the strict monotony of the power spectrum the
required criterion is that neither any of its components nor any of its derivatives of an arbitrary
order has a specific contribution. Simple calculations yield that it is achieved if and only if the
shape of α(f) is the linear dependence, namely:

α(f) = 1 + γf. (1)
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Equation (1) provides that the 1/fα(f) derivative of an arbitrary order has the same sign through-
out the entire frequency interval of the power spectrum. On the contrary, any non-linear α(f)
makes each order derivative of 1/fα(f) change its sign at certain frequencies. Thus, only the
linear dependence does not introduce any additional scale to those inherent for the increment
statistics.

Because of the diffeomorfism between α(f) and ν
(

∆
T

)
the shape of the latter reads:

ν

(
∆
T

)
= (p − 1)

(
1 − ∆

T

)
.

The plot of P (∆, T ) with the above shape of ν
(

∆
T

)
shows that it has a gently sloping maximum:

indeed, the values of P (∆, T ) in the range ∆
T ∈ [0.25, 0.4] vary by less than 7 %. Outside this

range P (∆, T ) decays sharply. Thus, though P (∆, T ) is a single-valued function, it provides
a multi-valued relation between the most probable values of ∆ and T , namely: a certain range
of nearly equiprobable values of T is associated with each ∆. In the course of the time the
multi-valued relation is exerted as a random choice of the duration of the “embedding” intervals
even when the sequence comprises identical excursions. Thus, the multi-valued relation between
∆ and T provides that any coarse-grained BIS is again a BIS. In turn, this proves that the
1/fα-type noise properties are robust to coarse-graining.

3 Symmetric random walk as the global attractor
for the fractal Brownian motion

Every BIS comprises fine-structure fluctuations superimposed on the large-scaled ones. The
former are created by the short-range increment walk and the latter appear as successive excur-
sions from the mean value of the BIS. It is to be expected that the fine structure fluctuations
strongly depend on the particularities of the increment statistics while the large scaled ones have
certain generic properties robust to that statistics. One such property is that there is a certain
relation between the amplitude A of each fluctuation and its duration ∆. Next it is worked out
for the case when the increment size is much smaller than the thresholds of stability. Then the
fluctuations can be approximated by excursions created by continuous fractal Brownian motion
of the increment walk in the course of the time. The latter renders certain relation between the
amplitude and the duration of the excursion, namely:

√〈A2〉 ∝ ∆β(∆), β is set by the particu-
larity of the increment statistics; the averaging is over the sample realizations. The dependence
of β on ∆ comes from the interplay between the finite radius of the increment correlations and
the amplitude of the excursion itself that is limited only by the thresholds of stability. Next it
is proven that each time when a � A the fractal Brownian motion uniformly approaches the
symmetric random walk with a constant step. Indeed, since the increment size is permanently
bounded, the mean square deviations (m.s.d.) of all the trajectories of the same number of
steps N is confined in a finite range. Therefore, these m.s.d. also form a BIS. Further, according
to the Lindeberg theorem [2] the latter has a finite mean and a finite variance and thus it is
a subject to the Central Limit Theorem. As a result, the m.s.d. are Gaussianly distributed.
In turn, the sizes of the successive trajectories of a given are predominantly equal to the cor-
responding mean. So, the increment correlations are to be associated with a single trajectory
whose number of steps m is related to the increment correlation size and the exponent β̃ is
specific to the increment statistics. In other words, the increment correlations create “blobs”
whose size is

√〈a2〉 ∝ mβ̃ . Then, the large excursions can be approximated by a symmetric
random walk with constant step equal to the size of the blobs. Thus the dependence of any
large scale excursions on its duration reads:√

〈A2〉 ∝ N0.5mβ̃ .
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It is obvious that when N � m the dependence tends to:√
〈A2〉 ∝ N0.5a,

where a is considered a constant independent of N . So, the symmetric random walk with
constant step appears as the global attractor for any fractal Brownian motion.

It is worth noting that the finite size of the “blobs” ensures the uniform convergence of the
average to the mean of the original BIS. Indeed, the distinctive property of any fractal Brownian
is that any power β �= 0.5 comes from certain correlation between the current increment µi and
the corresponding step τi. Then the average is:

A =
N∑

i=1

µi(τi)τi =
N∑

i=1

(−1)γiτβi
i (2)

and correspondingly the m.s.d.:

〈A2〉 ∝
〈

N∑
i=1

(µi(τi)τi)2
〉

=

〈
N∑

i=1

τ2βi
i

〉
,

where the averaging is over the different samples of the trajectory. The property of the above
relations is that whenever the probabilities for γi odd and even are not permanently equal there
is a correlation between the increment and the corresponding step. So A is certainly non-zero
which immediately makes the deviation from the mean non-zero. Moreover, equation (2) yields
that A can become arbitrarily large on increasing N . On the contrary, a permanent equal
probability for γi odd and even implies independence from one another of the increments and
the steps. It yields A = 0 which guarantees the uniform convergence of the average to the mean.

4 Statistics of the coarse-grained BIS’s

Our first task is to elucidate that the excursion appearance meets the three generic features
of a Poissonian process, namely: (i) the excursion appearance is a stationary process; (ii) the
successive excursions are independent of one another events; (iii) no more than one event can
be developed at any instant. The stationarity of the excursion sequences is guaranteed by
the following interplay between the boundedness and the lack of any long-ranged increment
statistics. Indeed, the Lindeberg theorem [2] states that any BIS has a finite mean and a finite
variance insensitively to the increment statistics. Obviously, the coarse-graining affects neither
the presence nor the value of the mean. Further, the lack of long-ranged increment correlations
guarantees the uniform convergence of the average to the mean. This, in turn, verifies the
stationarity of the excursion appearance. This along with the embedding of each excursion in
a larger interval is a warrant that the successive excursions are independent of one another
events.

On the other hand, both the boundedness and the lack of long-ranged increment correlations
render that every BIS is subject to the central limit theorem. So, the departure from the
mean obeys the Gaussian distribution. Our task now is to elucidate the interplay between the
Poissonian properties and the Gaussian ones under the coarse-graining. It is obvious that the
coarse-graining makes all the excursions of the amplitude less than the size of coarse-graining
Acgr contribute to the quiescent intervals. Then, the excursion of a given amplitude appears in
the time course with the probability that reads:

P (A) =
A1/β(A) exp

(−A2/A2
σ

)
(1 + η)A1/β(A) exp (−A2/A2

σ) +
∫ Acgr

0 A1/β(A) exp (−A2/A2
σ) dA

. (3)
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The required probability P (A) is given by the ratio between the weighted duration A1/β(A) ×
exp

(−A2/A2
σ

)
of an excursion of amplitude A and the weighted length of the corresponding

embedding interval. The latter comprises the weighted duration of the excursion itself, the
weighted duration of the natural embedding interval expressed through η and the weighted
duration of the quiescent interval due to the coarse-graining

∫ Acgr

0 A1/β(A) exp
(−A2/A2

σ

)
dA;

Aσ is the variance of the BIS and in the present consideration it is a parameter. The Poissonian
properties of the excursion appearance ensure that P (A) holds only for A ≥ Acgr. Otherwise
P (A) ≡ 0 since all the excursions of amplitude less than the size of coarse-graining Acgr are
“smoothed out” and contribute to the quiescent intervals.

P (A) exhibits 3 different types of behavior with respect to the ratio A/Aσ. In the case
A � Aσ the following approximation holds:

J(Acgr) =
∫ Acgr

0
A1/β(A) exp(−A2/A2

σ) dA ∝ A
1+1/β(Acgr)
cgr .

In the case when Acgr ≤ A � Aσ it yields:

P (A) ≈ 1
1 + A/Aσ

.

So, in this case the fluctuations of different amplitudes are equiprobable which is a distinctive
property of the white noise. Therefore, the BIS behaves as a white noise sequence. Yet, a warning
is necessary: this behavior is available up to a certain finite length of the sequence. That length
is proportional to the inverse of the probability for appearance of an excursion of amplitude A.
So, it is of the order of exp

(
−A2

A2
σ

)
. The asymptotic behavior of the sequence is covered by the

1/fα-type noise properties listed in the Introduction.
The other extreme case is Aσ � Acgr. The corresponding approximation of J(A) reads:

J(A) ≈ const.

Then for Acgr ≤ A � Aσ P (A) becomes:

P (A) ∝ A1/β(A) exp
(
−A2

A2
σ

)
. (4)

In this case the excursion sequence behavior matches telegraphic noise, namely the excursions
are almost identical separated by large quiescent intervals. An immediate result of (4) is that the
amplitude of these excursions is set by the most probable one, namely A = Acgr. Thus, the length

of the sequence that matches the telegraphic noise behavior is proportional to exp
(
−A2

cgr

A2
σ

)
. The

asymptotic behavior of the sequence is again covered by the 1/fα-type noise properties listed in
the Introduction. It is worth noting that this type of telegraphic noise differs from the dichotomic
one at the power spectrum shape. The dichotomic noise has an exponential power spectrum
while the telegraphic noise that comes from a BIS has the power spectrum of the shape 1/fα(f).
The exponential dependence in the former case comes from the second kind discontinuities while
only first kind discontinuities are available for the bounded sequences.

The behavior of any coarse-grained BIS is inherently related to the incremental statistics
trough the explicit dependence of P (A) on β(A) in (3). However, when the size of coarse-graining
is much larger than the size of the symmetric random walk β(A) turns constant equal to 0.5.
Then, P (A) gets insensitive to the details of the increment statistics and all the characteristics
of the coarse-grained BIS become hyperuniversal, i.e. insensitive to any particularity of the
increment statistics. The hyperuniversal behavior of any BIS appears whenever a � Acgr.
Since a is finite, there is always a large enough size of coarse-graining such that a � Acgr.
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So, at large enough sizes of coarse-graining the behavior of the BIS is to be hyperuniversal. It
is worth noting, however, that since a and Aσ are independent parameters, it is possible that
a � Aσ. Then the behavior of the corresponding BIS is hyperuniversal at almost every level of
coarse-graining.

These considerations yield an apparent distinction between the physical attractors and the
strange attractors that originate from the simulated dynamical systems. The strange attractors
arise at unstable solutions where the inevitable round-off at simulation is amplified due to
a positive Lyapunov coefficient [1]. Since the round-off to the higher and the lower value is
permanently equiprobable, the power β at the corresponding fractal Brownian motion is 0.5 for
the excursions of all sizes. Hence, the strange attractors have a hyperuniversal structure at every
level of coarse-graining. On the contrary, the physical attractors exhibit a variety of behavior
under the coarse-graining.

5 Conclusion

The major physical result of the present work is that the boundedness is incompatible with
long-range increment correlations. This result gives rise to several very important consequences:

(i) 1/fα-type noise properties of each BIS are scale-free and robust to coarse-graining;

(ii) pulse-like behavior is also typical for every BIS and is robust to coarse-graining. Being
natural on the quantum level [3], it is self-reproduced on every level of coarse-graining
through the existence of embedding intervals introduced by the boundedness and the
coarse-graining. The major feature of the embedding introduced by the boundedness is
that its length is a random choice from a certain range at any point of the sequence.
In turn, the variability of that length ensures the irregularity of every BIS, even of that
comprising identical excursions. This lays a base to the insensitivity of the 1/fα-type noise
properties to the coarse-graining;

(iii) the symmetric random walk with a constant step appears as the global attractor for any
fractal Brownian motion. In turn, the size of that step provides the scale beyond which
both the structure and the succession of the excursions are insensitive to the incremental
statistics. Below that scale these properties are affected by the incremental statistics
through the power exponent β of the fractal Brownian motion that approximates the
excursions.
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