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The orbit method of Kirillov is used to derive the p-mechanical brackets [26]. They generate
the quantum (Moyal) and classic (Poisson) brackets on respective orbits corresponding to
representations of the Heisenberg group. The extension of p-mechanics to field theory is
made through the De Donder–Weyl Hamiltonian formulation. The principal step is the
substitution of the Heisenberg group with Galilean.

1 Introduction

The purpose of this paper is to extended the p-mechanical approach [23,26,25,4,5] from particle
mechanics to the field theory. We start in Section 2.1 from the Heisenberg group and its repre-
sentations derived through the orbit method of Kirillov. In Section 2.2 we define p-mechanical
observables as convolutions on the Heisenberg group H

n and study their commutators. We mo-
dify the commutator of two p-observables by the antiderivative to the central vector field in the
Heisenberg Lie algebra in Section 2.3, this produces p-mechanical brackets and corresponding
dynamic equation. Then the p-mechanical construction is extended to the De Donder–Weyl
Hamiltonian formulation of the field theory [12–20] in Section 3.1. To this end we replace the
Heisenberg group by the Galilean group in Section 3.2. Expanded presentation of Section 2
could be found in [25]. Development of material from Section 3 will follow in subsequent papers.

2 Elements of p-mechanics

2.1 The Heisenberg group and its representations

Let (s, x, y), where x, y ∈ R
n and s ∈ R, be an element of the Heisenberg group H

n [9,11]. The
group law on H

n is given as follows:

(s, x, y) ∗ (s′, x′, y′) =
(

s + s′ +
1
2
ω(x, y; x′, y′), x + x′, y + y′

)
, (1)

where the non-commutativity is made by ω – the symplectic form [1, § 37] on R
2n:

ω(x, y; x′, y′) = xy′ − x′y. (2)

The Lie algebra hn of H
n is spanned by left-invariant vector fields

S = ∂s, Xj = ∂xj − yj/2∂s, Yj = ∂yj + xj/2∂s (3)

on H
n with the Heisenberg commutator relations

[Xi, Yj ] = δi,jS (4)
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and all other commutators vanishing. The exponential map exp : hn → H
n respecting the

multiplication (1) and Heisenberg commutators is

exp : sS +
n∑

k=1

(xkXk + ykYk) �→ (s, x1, . . . , xn, y1, . . . , yn).

As any group H
n acts on itself by the conjugation automorphisms A (g)h = g−1hg, which

fix the unit e ∈ H
n. The differential Ad : hn → hn of A at e is a linear map which could

be differentiated again to the representation ad of the Lie algebra hn by the commutator:
ad (A) : B �→ [B, A]. The dual space h∗n to the Lie algebra hn is realised by the left invariant
first order differential forms on H

n. By the duality between hn and h∗n the map Ad generates
the co-adjoint representation [22, § 15.1] Ad ∗ : h∗n → h∗n:

ad ∗(s, x, y) : (h, q, p) �→ (h, q + hy, p − hx), where (s, x, y) ∈ H
n (5)

and (h, q, p) ∈ h∗n in bi-orthonormal coordinates to the exponential ones on hn. There are two
types of orbits in (5) for Ad ∗ – Euclidean spaces R

2n and single points:

Oh = {(h, q, p) : for a fixed h �= 0 and all (q, p) ∈ R
2n}, (6)

O(q,p) = {(0, q, p) : for a fixed (q, p) ∈ R
2n}. (7)

The orbit method of Kirillov [22, § 15] starts from the observation that the above orbits para-
metrise irreducible unitary representations of H

n. All representations are induced [22, § 13] by
a character χh(s, 0, 0) = e2πihs of the centre of H

n generated by (h, 0, 0) ∈ h∗n and shifts (5) from
the left on orbits. Using [22, § 13.2, Prob. 5] we get a neat formula, which (unlike many other
in literature) respects all physical units [25]:

ρh(s, x, y) : fh(q, p) �→ e−2πi(hs+qx+py)fh

(
q − h

2
y, p +

h

2
x

)
. (8)

The derived representation dρh of the Lie algebra hn defined on the vector fields (3) is:

dρh(S) = −2πihI, dρh(Xj) = h∂pj +
i
2
qjI, dρh(Yj) = −h∂qj +

i
2
pjI. (9)

Operators Dj
h, 1 ≤ j ≤ n representing vectors from the complexification of hn:

Dj
h = dρh(−Xj + iYj) =

h

2
(∂pj + i∂qj ) + 2π(pj + iqj)I = h∂z̄j + 2πzjI, (10)

where zj = pj + iqj are used to give the following classic result in terms of orbits:

Theorem 1 (Stone–von Neumann, cf. [22, § 18.4], [9, Chap. 1, § 5]). All unitary
irreducible representations of H

n are parametrised up to equivalence by two classes of orbits (6)
and (7) of co-adjoint representation (5) in h∗n:

1. The infinite dimensional representations by transformation ρh (8) for h �= 0 in Fock [9,11]
space F2(Oh) ⊂ L2(Oh) of null solutions to the operators Dj

h (10):

F2(Oh) = {fh(p, q) ∈ L2(Oh) | Dj
hfh = 0, 1 ≤ j ≤ n}. (11)

2. The one-dimensional representations as multiplication by a constant on C = L2(O(q,p))
which drops out from (8) for h = 0:

ρ(q,p)(s, x, y) : c �→ e−2πi(qx+py)c. (12)
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Note that fh(p, q) is in F2(Oh) if and only if the function fh(z)e−|z|2/h, z = p + iq is in the
classical Segal–Bargmann space [9, 11], particularly is analytical in z. Furthermore the space
F2(Oh) is spanned by the Gaussian vacuum vector e−2π(q2+p2)/h and all coherent states, which
are “shifts” of the vacuum vector by operators (8).

Commutative representations (12) correspond to the case h = 0 in the formula (8). They are
always neglected, however their union naturally (see the appearance of Poisson brackets in (21))
act as the classic phase space:

O0 =
⋃

(q,p)∈R2n

O(q,p). (13)

Furthermore the structure of orbits of h∗n echoes in equation (22) and its symplectic invari-
ance [25].

2.2 Convolution algebra of H
n and commutator

Using a left invariant measure dg on H
n the linear space L1(H

n, dg) can be upgraded to an
algebra with the convolution multiplication:

(k1 ∗ k2)(g) =
∫

Hn

k1(g1) k2(g−1
1 g) dg1 =

∫
Hn

k1(gg−1
1 ) k2(g1) dg1. (14)

Inner derivations Dk, k ∈ L1(H
n) of L1(H

n) are given by the commutator for f ∈ L1(H
n):

Dk : f �→ [k, f ] = k ∗ f − f ∗ k =
∫

Hn

k(g1)
(
f
(
g−1
1 g

)− f
(
gg−1

1

))
dg1. (15)

A unitary representation ρh of H
n extends to L1(H

n, dg) by the formula:

[ρh(k)f ](q, p) =
∫

Hn

k(g)ρh(g)f(q, p) dg

=
∫

R2n

(∫
R

k(s, x, y)e−2πihs ds

)
e−2πi(qx+py)f(q − hy, p + hx) dx dy, (16)

thus ρh(k) for a fixed h �= 0 depends only from k̂s(h, x, y) – the partial Fourier transform s → h
of k(s, x, y). Then the representation of the composition of two convolutions depends only from

(k′ ∗ k)ŝ(h, x, y) =
∫

R2n

eπih(xy′−yx′) k̂′
s(h, x′, y′) k̂s(h, x − x′, y − y′) dx′dy′.

The last expression for the full Fourier transforms of k′ and k turn to be the star product known in
deformation quantisation, cf. [30, (9)–(13)]. Consequently the representation of commutator (15)
depends only from [25]:

[k′, k]̂s = 2i
∫

R2n

sin(πh(xy′ − yx′)) k̂′
s(h, x′, y′)k̂s(h, x − x′, y − y′) dx′dy′, (17)

which turn to be exactly the “Moyal brackets” [30] for the full Fourier transforms of k′ and k.
Also the expression (17) vanishes for h = 0 as can be expected from the commutativity of
representations (12).
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2.3 p-mechanical brackets on H
n

A multiple A of a right inverse operator to the vector field S (3) on H
n is defined by:

SA = 4π2I, where Ae2πihs =

{
2π
ih e2πihs, if h �= 0,

4π2s, if h = 0.
(18)

It can be extended by the linearity to L1(H
n). We introduce [26] a modified convolution opera-

tion � on L1(H
n) and the associated modified commutator:

k1 � k2 = k1 ∗ (Ak2), {[k1, k2]} = k1 � k2 − k2 � k1. (19)

Then from (16) one gets ρh(Ak) = (ih)−1ρh(k) for h �= 0. Consequently the modification of (17)
for h �= 0 is only slightly different from the original one:

{[
k′, k

]}
ŝ =

∫
R2n

2π

h
sin(πh(xy′ − yx′)) k̂′

s(h, x′, y′) k̂s(h, x − x′, y − y′) dx′dy′, (20)

However the last expression for h = 0 is significantly distinct from the vanishing (17). From the
natural assignment 4π

h sin(πh(xy′− yx′)) = 4π2(xy′− yx′) for h = 0 we get the Poisson brackets
for the Fourier transforms of k′ and k defined on O0 (13):

ρ(q,p)

{[
k′, k

]}
=

∂k̂′

∂q

∂k̂

∂p
− ∂k̂′

∂p

∂k̂

∂q
. (21)

Furthermore the dynamical equation based on the modified commutator (19) with a suitable
Hamilton type function H(s, x, y) for an observable f(s, x, y) on H

n

ḟ = {[H, f ]} is reduced

{
by ρh, h �= 0 on Oh (6) to Moyal’s equation [30, (8)];
by ρ(q,p) on O0 (13) to Poisson’s equation [1, § 39].

(22)

The same connections are true for the solutions of these three equations, see [26] for the harmonic
oscillator and [4, 5] for forced oscillator examples.

3 De Donder–Weyl field theory

We extend p-mechanics to the De Donder–Weyl field theory, see [12–20] for detailed exposition
and further references. We will be limited here to the preliminary discussion which extends the
comment 5.2.(1) from the earlier paper [25]. Our notations will slightly different from the used
in the papers [12–20] to make it consistent with the used above and avoid clashes.

3.1 Hamiltonian form of field equation

Let the underlying space-time have dimension and n + 1 parametrised by coordinates uµ, µ =
0, 1, . . . , n (with u0 parameter traditionally associated with a time-like direction). Let a field
be described by m component tensor qa, a = 1, . . . , m. For a system defined by a Lagrangian
density L(qa, ∂µqa, uµ) De Donder–Weyl theory suggests new set of polymomenta pµ

a and DW
Hamiltonian function H(qa, pµ

a , uµ) defined as follows:

pµ
a :=

∂L(qa, ∂µqa, uµ)
∂(∂µya)

and H(qa, pµ
a , uµ) = pµ

a ∂µqa − L(qa, ∂µqa, uµ). (23)
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Consequently the Euler–Lagrange field equations could be transformed to the Hamilton form:

∂qa

∂uµ
=

∂H

∂pµ
a
,

∂pµ
a

∂uµ
= −∂H

∂qa
, (24)

with the standard summation (over repeating indexes) agreement. The main distinction from
a particle mechanics is the existence of n + 1 different polymomenta pµ

a associated to each field
variable qa. Correspondingly particle mechanics could be considered as a particular case when
n + 1 dimensional space-time degenerates for n = 0 to “time only”.

The next two natural steps [12–20] inspired by particle mechanics are:

1. Introduce an appropriate Poisson structure, such that the Hamilton equations (24) will
represent the Poisson brackets.

2. Quantise the above Poisson structure by some means, e.g. Dirac–Heisenberg–Shrödinger–
Weyl technique or geometric quantisation.

We use here another path: first to construct a p-mechanical model for equations (24) and
then deduce its quantum and classical derivatives as was done for the particle mechanics above.
To simplify presentation we will start from the scalar field, i.e. m = 1. Thus we drop index a
in qa and pµ

a and simply write q and pµ instead.
We also assume that underlying space-time is flat with a constant metric tensor ηµν . This

metric define a related Clifford algebra [3, 6, 8] with generators eµ satisfying the relations

eµeν + eνeµ = ηµν . (25)

Remark 1. For the Minkowski space-time (i.e. in the context of special relativity) a preferable
choice is quaternions [29] with generators i, j, k instead the general Clifford algebra.

Since q and pµ look like conjugated variables p-mechanics suggests that they should generate a
Lie algebra with relations similar to (4). The first natural assumption is the n+3(= 1+(n+1)+1)-
dimensional Lie algebra spanned by X, Yµ, and S with the only non-trivial commutators
[X, Yµ] = S. However as follows from the Kirillov theory [21] any its unitary irreducible rep-
resentation is limited to a representation of H

1 listed by the Stone–von Neumann Theorem 1.
Consequently there is little chances that we could obtain the field equations (24) in this way.

3.2 p-mechanical approach to the field theory

The next natural candidate is the Galilean group G
n+1, i.e. a nilpotent step 2 Lie group with

the 2n + 3(= 1 + (n + 1) + (n + 1))-dimensional Lie algebra. It has a basis X, Yµ, and Sµ with
n + 1-dimensional centre spanned by Sµ. The only non-trivial commutators are

[X, Yµ] = Sµ, where µ = 0, 1, . . . , n. (26)

Again the Kirillov theory [21] assures that any its complex valued irreducible representation is
a representation of H

1, but multidimensionality of the centre offers an option [7,24] to consider
Clifford valued representations of G

n+1. Thus we proceed with this group.

Remark 2. The appearance of Clifford algebra in connection with field theory and space-
time geometry is natural. For example, the conformal invariance of space-time has profound
consequences in astrophysics [28] and, in their turn, conformal (Möbius) transformations are
most naturally represented by linear-fractional transformations in Clifford algebras [6]. Some
other links between nilpotent Lie groups and Clifford algebras are listed in [24].
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The Lie group G
n+1 as manifold homeomorphic to R

2n+3 with coordinates (s, x, y), where
x ∈ R and s, y ∈ R

n+1. The group multiplication in this coordinates defined by, cf. (1):

(s, x, y) ∗ (s′, x′, y′) (27)

=
(

s0 + s′0 +
1
2
ω(x, y0; x′, y′0), . . . , sn + s′n +

1
2
ω(x, yn; x′, y′n), x + x′, y + y′

)
.

Observables are again defined as convolution operators on L2(G
n+1). To define an appropriate

brackets of two observables k1 and k2 we will again modify their commutator [k1, k2] by an-
tiderivative operators A0, A1, . . . , An which are multiples of right inverse to the vector fields
S0, S1, . . . , Sn, cf. (18):

SµAµ = 4π2I, where Aµe2πihsµ =

{
2π
ih e2πihsµ , if h �= 0,

4π2sµ, if h = 0,
and µ = 0, 1, . . . , n. (28)

The definition of the brackets follows the ideas of [7, § 3.3]: to each vector field Sµ should be
associated a generator eµ of Clifford algebra (25). Thus our brackets are as follows, cf. (19):

{[B1, B2]} = B1 ∗ AB2 − B2 ∗ AB1, where A = eµAµ. (29)

These brackets will be used in the right-hand side of the p-dynamic equation. Its left-hand side
should contain a replacement for the time derivative. As was already mentioned in [12–20] the
space-time play a rôle of multidimensional time in the De Donder–Weyl construction. Thus we
replace time derivative by the symmetric pairing D◦ with the Dirac operator [3, 6, 8] D = eµ∂µ

as follows:

D ◦ f = −1
2

(
eµ ∂f

∂uµ
+

∂f

∂uµ
eµ

)
, where D = eµ∂µ. (30)

Finally the p-mechanical dynamic equation, cf. (22):

D ◦ f = {[H, f ]} , (31)

is defined through the brackets (29) and the Dirac operator (30).
To “verify” the equation (31) we will find its classical representation and compare it with (24).

Similarly to calculations in section 2.2 we find, cf. (21):

ρ(q,pµ)

{[
k′, k

]}
=

∂k̂′

∂q
eµ ∂k̂

∂pµ
− ∂k̂′

∂pµ
eµ ∂k̂

∂q
. (32)

Consequently the dynamic of field observable q from the equation (31) with a scalar-valued
Hamiltonian H is given by:

D ◦ q =
(

∂H

∂q
eµ ∂

∂pµ
− ∂H

∂pµ
eµ ∂

∂q

)
q ⇐⇒ ∂q

∂uµ
eµ =

∂H

∂pµ
eµ, (33)

i.e. after separation of components with different generators eµ we get first n + 1 equations
from (24).

To get the last equation for polymomenta (24) we again use the Clifford algebra generators
to construct the combined polymomenta p = eνp

ν . For them:

D ◦ p = −1
2

(
eµ ∂eνp

ν

∂uµ
+

∂eνp
ν

∂uµ
eµ

)
= −∂pµ

∂uµ
eµeµ,

{[H, f ]} =
∂H

∂q
eµ ∂eνp

ν

∂pµ
− ∂H

∂pµ
eµ ∂eνp

ν

∂q
=

∂H

∂q
eµeµ.
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Thus the equation (31) for the combined polymomenta p = eνp
ν becomes:

∂pµ

∂uµ
eµeµ = −∂H

∂q
eµeµ, (34)

i.e. coincides with the last equation in (24) up to a constant factor eµeµ.
Consequently images of the equation (31) under the infinite dimensional representation of the

group G
n+1 could stand for quantisations of its classical images in (24), (32). A further study

of quantum images of the equation (31) as well as extension to vector or spinor fields should
follow in subsequent papers [27].

Remark 3. To consider vector or spinor fields with components qa, a = 1, . . . , m it worths to
introduce another Clifford algebra with generators ca and consider a composite field q = caqa.
There are different ways to link Clifford and Grassmann algebras, see e.g. [2,10]. Through such
a link the Clifford algebra with generators eµ corresponds to horizontal differential forms in the
sense of [12–20] and the Clifford algebra generated by ca – to the vertical.
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