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Group Foliation of Euler Equations

in Nonstationary Rotationally Symmetrical Case
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Euler equations for rotationally symmetrical motions of ideal fluid are considered. Basis
of differential invariants for infinite-dimensional part of admitted group is calculated. The
basis is used for construction of group foliation of Euler equations. Both automorphic and
resolving systems are completed to involution. The resolving part of group foliation inherits
finite-dimensional part of group, admitted by Euler equations. It allows us to construct
invariant and partially invariant solutions of resolving system. The original functions are
restored then by means of integration of automorphic system. Example of such construction
is provided.

1 Introduction

The present paper can be regarded as development of the author’s previous work published
in [1]. Objects of investigations are differential invariants of infinite-dimensional groups, which
appear as admissible groups of continuous transformations for various hydrodynamical systems.
The main goal is utilization of infinite-dimensional part of admitted groups for construction of
new exact solutions and obtaining new information about the observed systems. Here we use an
approach based on so-called group foliation (or group stratification) of the system of PDEs with
respect to admitted group. This approach proved to be useful in several examples [2,4–7]. Here
we construct a group foliation of Euler equations describing rotationally symmetrical motions
of ideal fluid. The base of group foliation is an infinite-dimensional group, which involves two
arbitrary functions of time. In comparison with cited articles we observe not a single equation
but a system of equations with 4 unknown functions. It causes the main complexity of present
work.

Description of classical theory of differential invariants one can find in the books [2,3]. All the
necessary information concerned automorphic system and algorithm for construction of group
foliation are presented there also. The problem of group foliation construction of given system of
equations was first set by Sophus Lie [8]. The group G, admitted by some system of equations E
transforms any solution U : u = u(x) into solution again. Thus, in the set of all solutions of
system E the equivalence relation appears: two solutions U and U ′ are equivalent if they are
connected by the group G transformation: U ′ = TU , T ∈ G. Each equivalence class is the orbit
of one of the solutions under all possible transformations of group G. The problem of group
foliation is formulated as follows: for a given system of equations E and a given group G, being
admitted by system E, it is required to form a system of equations, which would describe an
orbit of any solution (system AG) and a system, which would give an assemblage of all orbit of
different solutions (system RE). System AG is named as automorphic and has a property that
any its solution belongs to the orbit of one solution, i.e. any solution obtained from any other
by the action of group G. On the contrary, the resolving system RE does not admit the original
group and, thus, distinguishes the orbits of different solutions.

In present work we use Ovsiannikov’s algorithm [2] for construction of group foliation. This
algorithm sufficiently uses the basis of differential invariants for investigated group.
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2 Preliminary information

We consider the Euler equations, which describe rotationally symmetrical motions of ideal fluid.
Rotational symmetry means that in the cylindrical coordinate system (r, θ, z) all functions are
assumed to be independent of the polar angle θ. Thus the system under consideration is the
following:

ut + uur + wuz + pr =
v2

r
,

vt + uvr + wvz = −uv

r
,

wt + uwr + wwz + pz = 0,

ur +
1
r
u + wz = 0. (1)

Here u, v and w are velocity components which correspond to (r, θ, z) axes; p is a pressure. The
admitted group for system (1) is known [9]. Its finite-dimensional part L4 is generated by the
following operators

X1 = ∂t, X2 = − 1
r2v

∂v +
1
r2

∂p, X3 = t∂t + r∂r + z∂z,

X4 = 2t∂t + r∂r + z∂z − u∂u − v∂v − w∂w − 2p∂p. (2)

Operators of infinite-dimensional part L∞ of admitted group depend on two arbitrary functions
of time:

Zf = f(t)∂z + ḟ(t)∂w − f̈(t)z∂p, Hϕ = ϕ(t)∂p. (3)

Further we construct the group foliation of the system (1) with respect to an infinite-dimensional
group L∞ (3).

3 The representation of the solution

The first step is the calculation of the basis of differential invariants and operators of invariant
differentiation of the group L∞.

Lemma 1. A basis of differential invariants of the group L∞ can be chosen as follows:

t, r, u, v, W0 = wt + wwz + pz, W1 = wr, W2 = wz, P = pr. (4)

Operators of invariant differentiation are

δ0 = Dt + wDz, δ1 = Dr, δ2 = Dz. (5)

The commutative relations between δi are the following:

[δ0, δ1] = −W1δ2, [δ0, δ2] = −W2δ2, [δ1, δ2] = 0. (6)

Proof. The proof is the same as in [1]. �

As it follows from general theory the Euler equations (1) can be rewritten as a relation between
differential invariants only. Since action of operators of invariant differentiation on differential
invariant provides differential invariants of higher order we have the following system

δ0u + uδ1u + P =
v2

r
, δ0v + uδ1v = −uv

r
,

W0 + uW1 = 0, δ1u +
u

r
+ W2 = 0, (7)
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which is equivalent to the original equations (1). The system (7) provides the first part of
relations between differential invariants.

According to the general algorithm [2] we have to choose 3 (the same number as the number
of original independent variables) of the differential invariants (4) to be the new independent
variables. The remaining 5 invariants from the basis further will be regarded as functions of the
3 chosen independent variables.

It is convenient to choose invariants t, r, u as the new independent variables. This choice is
valid for all solutions where uz �= 0. The case uz = 0 will be investigated separately. Due to
the third equation of (7) the representation of solution for the group foliation has the following
form:

wt + wwz + pz = −uW1(t, r, u), wr = W1(t, r, u), wz = W2(t, r, u),
pr = P (t, r, u), v = V (t, r, u). (8)

For given functions V , W1, W2 and P equations (7) and (8) provide an overdetermined system
of nonlinear PDEs. It is a part of automorphic system AS of group foliation. Compatibility
conditions of system (8) which are equations only for invariant functions V , W1, W2 and P give
a resolving system RS of the group foliation. For convenience we use further the terminology
of partially differential equations. Namely, we call functions V , W1, W2, P ‘invariant’ and
function u a ‘superfluous’.

4 Compatibility conditions

Here we investigate compatibility conditions of the overdetermined system (7), (8). Note that
first and fourth equations (7) give the expression for derivatives of the superfluous function u:

δ0u =
u2 + V 2

r
+ uW2 − P,

ur = −u

r
− W2. (9)

Substituting a representation of v from (8) into the second equation (7) by virtue of (9) we
obtain an equation only for invariant functions

Vt + uVr +
(

1
r
V 2 − P

)
Vu = −u

r
V. (10)

Cross-differentiating of the second and third equations of (8) allows us to eliminate function w
providing

W1uuz = W2r − W2u

(u

r
+ W2

)
. (11)

Then we differentiate the first equation of (8) with respect to r and subtract δ0(wr) and (pr)z,
obtained from the second and fourth equations (8). Using equations (9) and commutative
relations (6) we find

Puuz = −W1t +
u

r
W1 − uW1r − W1u

(
1
r
V 2 − P

)
. (12)

Elimination of the derivative uz from relations (11), (12) provides an additional equation for
invariant functions only

W2rPu − W2u

(u

r
+ W2

)
Pu + W1tW1u − u

r
W1W1u

+ W1
2
u

(
1
r
V 2 − P

)
+ uW1rW1u = 0. (13)
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Next we have to derive a compatibility conditions for the superfluous function u. Hereafter we
suppose that W1u �= 0. Case W1u = 0 by virtue of (8) corresponds to separation of variables
w = f(t, r) + g(t, z). This case is not considered here. Note only that analysis of the particular
case w = f(t, r) serves as a topic for paper [10].

According to the above propositions all derivatives of the superfluous function u are deter-
mined from relations (9) and (11). Its cross-differentiation taking into consideration commuta-
tive relations (6) gives three equations, which involve first-order derivatives of u. Elimination of
these derivatives gives three more equations for invariant functions only. Due to a big amount
of calculation we present only the result:

W1W1
−1
u

(
W2r −

(u

r
+ W2

)
W2u

)
= W2t + uW2r +

2
r
V Vr − Pr − 1

r
P (14)

+
(

1
r
V 2 − P

)
W2u − 2u

r
W2 + W2Pu − 2

r
W2V Vu − 2u

r2
V Vu +

u

r
Pu − W 2

2 − 2u2

r2
,

−W2tr +
(u

r
+ W2

)
W2tu −

(
u2 + V 2

r
+ uW2 − P

)
W2ru

+
(u

r
+ W2

)(
u2 + V 2

r
+ uW2 − P

)
W2uu

+
(

W2t + uW2r −
2
r
V

(u

r
+ W2

)
Vu −

(u

r
+ W2

) (u

r
− Pu

))
W2u

+
(

2u

r
+

2
r
V Vu − Pu

)
W2r +

(
1
r
V 2 − P

)(
W2

2
u +

1
r
W2u

)

= W1
−1
u

(
−W2r +

(u

r
+ W2

)
W2u

) (
W1tu +

(
u2 + V 2

r
+ uW2 − P

)
W1uu

)
, (15)

W2rr − 2
(u

r
+ W2

)
W2ru +

(u

r
+ W2

)2
W2uu +

1
r
W2r +

u

r2
W2u

= W1
−1
u

(
−W2r +

(u

r
+ W2

)
W2u

) (
−W1ru +

(u

r
+ W2

)
W1uu

)
. (16)

Note that equation (16) involves only functions Wi and their derivatives. System of equations
(10), (13), (14)–(16) forms an overdetermined resolving system of 5 equations for 4 functions V ,
W1, W2, P . It is necessary to investigate its compatibility.

Lemma 2. System of equations (10), (13), (14)–(16) is consistent and in involution. Arbitrari-
ness of its general solution is 4 functions of 2 arguments and 9 functions of 1 argument.

Proof. To proof the lemma we check the Cartan criterion [11]. Having the goal to obtain
second-order system of equations we differentiate all first-order equations (10), (13), (14) with
respect to t, r, u. The complete second-order system (together with equations (15), (16))
consists of 11 equations including 4C2

4 = 24 second-order derivatives of invariant functions. Let
us denote that system as E1. The matrix of coefficients of the second derivatives in E1 happens
to be non-degenerate. We calculate the auxiliary constant τ0 = 24 − 11 = 13. Next we add the
following relations to E1

Vti = 0, W1ti = 0, W2ti = 0, Pti = 0, i = t, r, u (17)

(all second derivatives involving t-differentiation vanish). An extended system E2 included 23
equations. Rank of matrix constructed from coefficients of second derivatives equals 20. Thus
τ1 = 24 − 20 = 4. Further we add to E2 the relations

Vri = 0, W1ri = 0, W2ri = 0, Pri = 0, i = t, r, u (18)
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(all second derivatives containing r derivatives vanish). The obtained system contains 31 equa-
tions. Rank of matrix of coefficients of the second derivatives equals 24. Thus τ2 = 24− 24 = 0.

The data obtained allows to calculate Cartan characters σ1 = τ0 − τ1 = 9, σ2 = τ1 − τ2 = 4,
σ3 = τ2 = 0. The Cartan number is Q = τ0+τ1+τ2 = 17. To check the Cartan criterion the third
prolongation of the initial second-order system E1 is required. Cartan criterion is satisfied if the
number of ‘free’ third-order derivatives in prolonged system coincides with Cartan number Q.
Actually, the number of all third derivatives of invariant functions is 4C3

5 = 40. Prolongation
of E1 allows to calculate the rank of matrix of coefficients of third derivatives. It is equal to 23.
Hence 40 − 23 = 17 = Q, i.e. the Cartan criterion for system (10), (13), (14)–(16) is satisfied.
General solution of that system is determined with arbitrariness in σi functions of i variables. �

Summarizing all obtained above we can formulate the following theorem.

Theorem 1. The group foliation of equations (1) with respect to infinite-dimensional group (3)
in the regular case uz �= 0, wrz �= 0 consists of resolving system (10), (13), (14)–(16) for invariant
functions V , W1, W2, P and automorphic system (8), (9), (11).

5 Special case uz = 0

Here we observe the special case specified in the title of the paragraph. In this case variables
t, r, u cannot be chosen as new independent variables for group foliation as it was done above.
However it is possible to describe all ‘lost’ solutions. Actually, the consequence of stated condi-
tion is u = u(t, r). From the last equation (1) by integration we obtain that function w linearly
depends on z

w = −
(
ur +

u

r

)
z + w0(t, r). (19)

We substitute representation (19) into the third equation (1). After integration with respect
to z we obtain pressure p to be a quadratic polynomial of variable z:

p = a(t, r)z2 − 2b(t, r)z + p0(t, r),

a(t, r) = utr + uurr +
1
r
ut − u2

r −
1
r
uur − 2

r2
u2,

b(t, r) = w0t + uw0r −
(

ur +
1
r
u

)
w0. (20)

Substitution of (20) into the first equation (1) allows us to express v2 as a quadratic polynomial
of variable z:

v2 = r
(
ut + uur + arz

2 − 2brz + p0r

)
. (21)

Finally, we rewrite the second equation of (1) in the form

(
v2

)
t
+ u

(
v2

)
r
+ w

(
v2

)
z

= −2uv2

r
. (22)

Substituting (19), (21) into (22) we obtain the equation which has a special form: quadratic
polynomial of z equals zero. Splitting with respect to z provides a system of 3 equations for 3
unknown functions: u, w0 and p0. Solutions of that well-defined system completely determine
an investigated class of solutions of Euler equations. It should be noted that these solutions
with uz = 0 were retrieved in Pukhnachov’s work [12] on the base of the so-called ‘heuristic’
method.

Remark 1. The only unexamined case left is wrz = 0. Its investigation is complicated by
the fact that equations (1) do not split after substitution of function w. The higher-order
prolongation of the obtained system is required for its completion to involution.
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6 Admitted group

The resolving system RS inherits finite-dimensional part of L4 of the group, admitted by equa-
tions (1). Action of L4 in the space of differential invariants (4) is generated by the following
operators:

Y1 = ∂t, Y2 = − 1
r2V

∂V − 2
r3

∂P , Y3 = t∂t + r∂r − W1∂W1 − W2∂W2 − P∂P ,

Y4 = 2t∂t + r∂r − u∂u − v∂v − 2W1∂W1 − 2W2∂W2 − 3P∂P . (23)

Group (23) can be used for construction of invariant and partially invariant solutions of the
resolving system RS. The velocity components u, v, w and pressure p are restored then by
means of integration of automorphic system AS. The optimal system of subalgebras [13, 14]
ΘL4 can be easily constructed. Its representatives are written below.

dim = 4

1. {Y1, Y2, Y3, Y4}.

dim = 3

1. {Y1, Y3, Y4}, 2. {Y2, Y3, Y4}, 3. {Y1, Y2, αY3 + βY4; α2 + β2 = 1}.

dim = 2

1. {Y1, Y2}, 2. {Y3, Y4}, 3. {Y1, Y3 + αY4}, 4. {Y1 + αY2, 2Y3 + Y4},
5. {Y2, Y3 + αY4}, 6. {Y1, αY2 + Y4}, 7. {Y2, Y4}.

dim = 1

1. {Y1 + αY2}, 2. {Y2}, 3. {Y3 + αY4}, 4. {Y1 + 2Y3 − Y4}, 5. {αY2 + Y4}.

Here {Y1, . . . , Yk} denotes a Lie algebra generated by basic operators Y1, . . . , Yk; α, β are arbit-
rary constants.

7 Example of a partially invariant solution

Here we provide an example of a partially invariant solution for resolving system RS. We
use the whole 4-dimensional group with generators (23) admitted by the resolving system RS.
Invariants of L4 in the space R

7(t, r, u, V, W1, W2, P ) are

rW1

u
,

rW2

u
,

r

u2

(
P − V 2

r

)
. (24)

All the invariant functions except for V could be expressed from invariants (24). One can
construct partially invariant solution of rank 0 and defect 1. The representation of solution of
resolving system RS is

W1 =
au

r
, W2 =

bu

r
, P =

V 2

r
+

p0u
2

r
, a, b, p0 = const. (25)

The non-invariant superfluous function V supposed to depend on all the variables

V = V (t, r, u). (26)
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The representation of solution (25), (26) is to be substituted into resolving system RS. In
accordance with general theory an overdetermined system for function V (t, r, u) and constants
a, b, p0 will appear. This system of 5 nonlinear equations should be completed to involution. It
is consistent since it has a trivial solution. However the careful investigation of all cases, which
arise during this system’s compatibility analysis, is quite complicated.

To avoid this intricate process we start directly from the automorphic system AS given by
formulas (8), (9), (11). We substitute the representation of solution (25), (26) into automorphic
system AS and repeat all steps which were previously done to obtain the resolving system RS.
Now it is simpler since invariant functions have a specific form.

Remark 2. The described algorithm provides a so-called differentially invariant solution. It can
be used without any prior information about group foliation of the system (1) starting directly
from optimal system of subgroups for admitted group.

Implementation of the algorithm gives the following. The solution is reduced to

u = ru(t, z), v2 =
k

r2
− r2u2(t, z),

w = w(t, z), p = − k

2r2
+ p(t, z), k = const. (27)

Note that k = 0 modulo to Y2 transformation. Functions u(t, z), w(t, z), p(t, z) satisfy the
system

ut + wuz = −2u2, wz = −2u, wt + wwz + pz = 0. (28)

Equations (28) are reduced to one key equation for function w(t, z) only

wtz + wwzz = w2
z . (29)

Equation (29) can be an object of separate investigation. It admits infinite-dimensional group
of contact transformation with the following generators:

∂t, t∂t + z∂z, z∂z + w∂w, t2∂t − tz∂z − (z + 3tw)∂w,

hwz∂z + (wzhwz − h)∂w − ht∂wt . (30)

Here h = h(t, wz) is an arbitrary function, which satisfies the linear equation

htwz + (wz)2hwzwz − wzhwz + h = 0. (31)

Apparently it indicates that equation (29) is linearizable.

8 Conclusion

We constructed a group foliation of Euler ideal liquid equations in the rotationally symmetrical
case. For group foliation we used an infinite-dimensional part of the admitted group. The
resolving system RS of group foliation consists of 5 equations (two of them are second-order)
for 4 sought functions of 3 variables. This system is in involution. The arbitrariness of its general
solution is determined. For any solution of resolving system one can restore original functions
by solving a consistent automorphic system AS.

The resolving system inherits finite-dimensional part of initial admitted group. We construct
a partially invariant solution for resolving system constructed on the base of inherited trans-
formations. This solution can be observed as a differentially invariant solution for the original
Euler equations.
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