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The symmetry reduction of some classes of the first-order differential equations (in the
space M(1, 4)×R(u)), invariant under splitting subgroups of the generalized Poincaré group
P (1, 4), to differential equations with fewer independent variables are done.

1 Introduction

It is well known that among equations, important for theoretical and mathematical physics, there
are also ones which have nontrivial symmetry groups. In the space M(1, 4)×R(u) we have the
linear and nonlinear wave equations and the Dirac equation. Here, and in what follows, R(u) is
the number axis of the dependent variable u. These equations are invariant under the generalized
Poincaré group P (1, 4) (see, for example, [1–3]). The group P (1, 4) is a group of rotations and
translations of the five-dimensional Minkowski space M(1, 4). This group has many applications
in the theoretical and mathematical physics [1–3]. The group P (1, 4) has many subgroups used
in the theoretical physics [4–6]. Among these subgroups there are the Poincaré group P (1, 3)
and the extended Galilei group G̃(1, 3) (see also [7]). Thus, the results obtained with the use of
the subgroup structure of the group P (1, 4) will be useful in the relativistic and non-relativistic
physics. Therefore, it is important from the physical and mathematical points of view, that we
are able to construct, in the space M(1, 4) × R(u), new differential equations invariant under
continuous subgroups of the generalized Poincaré group P (1, 4). The paper [8] is devoted to the
construction of the first-order differential equations invariant under splitting subgroups of the
group P (1, 4), defined in the space M(1, 4) × R(u).

In the present paper we continue to study this type of equations. We concentrate our attention
on the symmetry reduction of the first-order differential equations, invariant under splitting
subgroups of the group P (1, 4), to differential equations with fewer independent variables.

Our paper is organized as follows: in Section 2 we introduce some notations and results
concerning the Lie algebra of the group P (1, 4), which are used in the next chapter. Section 3
presents our main results.

2 The Lie algebra of the group P (1, 4)
and its subalgebras

The Lie algebra of the group P (1, 4) is given by the 15 basis elements Mµν = −Mνµ (µ, ν =
0, 1, 2, 3, 4) and P ′

µ (µ = 0, 1, 2, 3, 4), which satisfy the commutation relations

[
P ′

µ, P ′
ν

]
= 0,

[
M ′

µν , P
′
σ

]
= gµσP ′

ν − gνσP ′
µ,[

M ′
µν , M

′
ρσ

]
= gµρM

′
νσ + gνσM ′

µρ − gνρM
′
µσ − gµσM ′

νρ,
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where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ �= ν. Here, and in what follows,
M ′

µν = iMµν .
We consider the following representation of the Lie algebra of the group P (1, 4):

P ′
0 =

∂

∂x0
, P ′

1 = − ∂

∂x1
, P ′

2 = − ∂

∂x2
, P ′

3 = − ∂

∂x3
,

P ′
4 = − ∂

∂x4
, M ′

µν = − (
xµP ′

ν − xνP
′
µ

)
.

Below, we will use the following basis elements:

G = M ′
40, L1 = M ′

32, L2 = −M ′
31, L3 = M ′

21,

Pa = M ′
4a − M ′

a0, Ca = M ′
4a + M ′

a0 (a = 1, 2, 3),

X0 =
1
2

(
P ′

0 − P ′
4

)
, Xk = P ′

k (k = 1, 2, 3), X4 =
1
2

(
P ′

0 + P ′
4

)
.

For the study of the subgroup structure of the group P (1, 4) we used the method proposed
in [9]. Continuous subgroups of the group P (1, 4) have been described in [4–6].

3 The first-order differential equations
in the space M(1, 4) × R(u)

In this section we present some of the new results concerning the first-order differential equations
in the space M(1, 4) × R(u).

The equations in the space M(1, 4)×R(u), which are invariant under splitting subgroups of
the group P (1, 4), can be written in the following form (see, for example [10–12]):

F (J1, J2, . . . , Jt) = 0,

where F is an arbitrary smooth function of its arguments, {J1, J2, . . . , Jt} is a functional basis
of the first-order differential invariants of splitting subgroups of the group P (1, 4).

The classes of the first-order differential equations in the space M(1, 4) × R(u), which are
invariant under splitting subgroups of the group P (1, 4), are constructed. Some of the results
obtained have been presented in [8]. To study these classes of the differential equations, we used
only their symmetry properties.

Taking into account the functional bases of the invariants of some splitting subgroups of
the group P (1, 4), we have constructed the ansatzes, which reduce majority of the equations
obtained to differential equations with fewer independent variables. The corresponding sym-
metry reduction has been done. Among the reduced equations there are one-, two-, three- and
four-dimensional ones.

It is impossible to present here all the results obtained. Therefore, we will give a short
review of the results concerning the symmetry reduction of the considered classes of differential
equations to classes of ODEs.

Let us consider the classes of the first-order differential equations, which are constructed
with the use of the functional bases of the first-order differential invariants containing two usual
invariants. One of them always is u, since it is one of the invariants of the group P (1, 4). On
the base of these two invariants we have constructed the ansatzes, which reduce the classes
considered to classes of ODEs. The corresponding symmetry reduction is done. Among the
considered classes there are ones which are invariant under the splitting subgroups of the group
G̃(1, 3). The Lie algebra of the group G̃(1, 3) is generated by the following basis elements: L1,
L2, L3, P1, P2, P3, X0, X1, X2, X3, X4. We have 32 such classes of differential equations. From
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among them, 17 classes have been reduced to the classes of functional equations. From these
functional equations we can find solutions for the corresponding classes of differential equations.

Below, for some splitting subgroups of the group P (1, 4), we write the basis elements of
their respective Lie algebras, the corresponding arguments J1, J2, . . . , Jt of the function F , the
ansatzes obtained, as well as the reduced equation for each case.

1. 〈P1, P2, P3, X4〉,

J1 = x0 + x4, J2 = u, J3 = u1 + x1
u0 − u4

x0 + x4
, J4 = u2 + x2

u0 − u4

x0 + x4
,

J5 =
u0 − u4

x0 + x4
x3 + u3, J6 = u0 − u4, J7 = u2

0 − u2
1 − u2

2 − u2
3 − u2

4;

u = ϕ(ω), ω = x0 + x4; F (ω, ϕ, 0, 0, 0, 0, 0) = 0; uµ ≡ ∂u

∂xµ
, µ = 0, 1, 2, 3, 4;

2. 〈P1, P2, X3, X4〉,
J1 = x0 + x4, J2 = u, J3 = u1(x0 + x4) + x1(u0 − u4),
J4 = u2(x0 + x4) + x2(u0 − u4), J5 = u3, J6 = u0 − u4,

J7 = u2
0 − u2

1 − u2
2 − u2

4; u = ϕ(ω), ω = x0 + x4; F (ω, ϕ, 0, 0, 0, 0, 0) = 0;

3. 〈P3, X1, X2, X4〉,
J1 = x0 + x4, J2 = u, J3 = (x0 + x4)u3 + (u0 − u4)x3, J4 = u1,

J5 = u2, J6 = u0 − u4, J7 = u2
0 − u2

3 − u2
4; u = ϕ(ω), ω = x0 + x4;

F (ω, ϕ, 0, 0, 0, 0, 0) = 0;

4. 〈L3, P1, P2, P3, X4〉,

J1 = x0 + x4, J2 = u, J3 =
u0 − u4

x0 + x4
x3 + u3, J4 =

(
u1 + x1

u0 − u4

x0 + x4

)2

+

+
(

u2 + x2
u0 − u4

x0 + x4

)2

, J5 = u0 − u4, J6 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4;

u = ϕ(ω), ω = x0 + x4; F (ω, ϕ, 0, 0, 0, 0) = 0;

5. 〈L3, P1, P2, X3, X4〉,

J1 = x0 + x4, J2 = u, J3 =
(

u1 + x1
u0 − u4

x0 + x4

)2

+
(

u2 + x2
u0 − u4

x0 + x4

)2

,

J4 = u3, J5 = u0 − u4, J6 = u2
0 − u2

1 − u2
2 − u2

4; u = ϕ(ω), ω = x0 + x4;
F (ω, ϕ, 0, 0, 0, 0) = 0;

6. 〈L3, P3, X1, X2, X4〉,
J1 = x0 + x4, J2 = u, J3 = (x0 + x4)u3 + (u0 − u4)x3,

J4 = u0 − u4, J5 = u2
1 + u2

2, J6 = u2
0 − u2

3 − u2
4; u = ϕ(ω), ω = x0 + x4;

F (ω, ϕ, 0, 0, 0, 0) = 0;

7. 〈L3 − P3, P1, P2, X1, X2, X4〉,
J1 = x0 + x4, J2 = u, J3 = (x0 + x4)u3 + (u0 − u4)x3, J4 = u0 − u4,

J5 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4; u = ϕ(ω), ω = x0 + x4; F (ω, ϕ, 0, 0, 0) = 0.
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However, among the classes of the first-order differential equations, which are invariant under
the splitting subgroups of the group G̃(1, 3), there exist classes, which are reduced to classes of
ODEs. We obtained 15 such classes. Let us present some of them.

1. 〈L3, X0, X3, X4〉,

J1 =
(
x2

1 + x2
2

)1/2
, J2 = u, J3 = x1u2 − x2u1, J4 = u0, J5 = u3, J6 = u4,

J7 = u2
1 + u2

2; u = ϕ(ω), ω =
(
x2

1 + x2
2

)1/2 ; F
(
ω, ϕ, 0, 0, 0, 0,

(
ϕ′)2

)
= 0;

2. 〈X1, X2, X3, X4〉,

J1 = x0 + x4, J2 = u, J3 = u0, J4 = u1, J5 = u2, J6 = u3, J7 = u4;
u = ϕ(ω), ω = x0 + x4; F

(
ω, ϕ, ϕ′, 0, 0, 0, ϕ′) = 0;

3. 〈L1, L2, L3, X0, X4〉,

J1 =
(
x2

1 + x2
2 + x2

3

)1/2
, J2 = u, J3 = x1u1 + x2u2 + x3u3, J4 = u0, J5 = u4,

J6 = u2
1 + u2

2 + u2
3; u = ϕ(ω), ω =

(
x2

1 + x2
2 + x2

3

)1/2 ; F
(
ω, ϕ, ωϕ′, 0, 0,

(
ϕ′)2

)
= 0;

4. 〈L1, L2, L3, P1, P2, P3, X4〉,

J1 = x0 + x4, J2 = u, J3 = (u0 − u4)(x2
0 − x2

1 − x2
2 − x2

3 − x2
4) − 2(x0u0 + x1u1

+ x2u2 + x3u3 + x4u4)(x0 + x4), J4 = u0 − u4, J5 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4;

u = ϕ(ω), ω = x0 + x4; F
(
ω, ϕ,−2ω2ϕ′, 0, 0

)
= 0.

The remainder of the considered classes of the first-order differential equations are invariant
under the splitting subgroups of the group P (1, 4), which do not belong to the splitting subgroups
of the group G̃(1, 3). We have 43 such classes. All these classes are reduced to ODEs. Now, we
give some examples of this type of reduction.

1. 〈G, P1, P2, P3〉,

J1 = (x2
0 − x2

1 − x2
2 − x2

3 − x2
4)

1/2, J2 = u, J3 =
u0 − u4

x0 + x4
, J4 = x1 + u1

x0 + x4

u0 − u4
,

J5 = x2 + u2
x0 + x4

u0 − u4
, J6 = x3 +

x0 + x4

u0 − u4
u3, J7 = u2

0 − u2
1 − u2

2 − u2
3 − u2

4;

u = ϕ(ω), ω = (x2
0 − x2

1 − x2
2 − x2

3 − x2
4)

1/2; F

(
ω, ϕ,

ϕ′

ω
, 0, 0, 0,

(
ϕ′)2

)
= 0;

2. 〈G, P3, L3, X4〉,

J1 =
(
x2

1 + x2
2

)1/2
, J2 = u, J3 = x1u2 − x2u1, J4 =

u0 − u4

x0 + x4
, J5 =

u0 − u4

x0 + x4
x3 + u3,

J6 = u2
1 + u2

2, J7 = u2
0 − u2

3 − u2
4; u = ϕ(ω), ω =

(
x2

1 + x2
2

)1/2 ;

F
(
ω, ϕ, 0, 0, 0,

(
ϕ′)2

, 0
)

= 0;

3. 〈G, P1, P2, X3〉,

J1 =
(
x2

0 − x2
1 − x2

2 − x2
4

)1/2
, J2 = u, J3 =

u0 − u4

x0 + x4
, J4 = x1 + u1

x0 + x4

u0 − u4
,

J5 = x2 + u2
x0 + x4

u0 − u4
, J6 = u3, J7 = u2

0 − u2
1 − u2

2 − u2
4; u = ϕ(ω),
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ω =
(
x2

0 − x2
1 − x2

2 − x2
4

)1/2 ; F

(
ω, ϕ,

ϕ′

ω
, 0, 0, 0,

(
ϕ′)2

)
= 0;

4. 〈G, L3, X3, X4〉,

J1 =
(
x2

1 + x2
2

)1/2
, J2 = u, J3 = x1u2 − x2u1, J4 = (x0 + x4)(u0 + u4),

J5 = u3, J6 = u2
1 + u2

2, J7 = u2
0 − u2

4; u = ϕ(ω), ω =
(
x2

1 + x2
2

)1/2 ;

F
(
ω, ϕ, 0, 0, 0,

(
ϕ′)2

, 0
)

= 0;

5. 〈G, P3, X1, X2〉,

J1 =
(
x2

0 − x2
3 − x2

4

)1/2
, J2 = u, J3 =

u0 − u4

x0 + x4
, J4 =

u0 − u4

x0 + x4
x3 + u3,

J5 = u1, J6 = u2, J7 = u2
0 − u2

3 − u2
4; u = ϕ(ω), ω =

(
x2

0 − x2
3 − x2

4

)1/2 ;

F

(
ω, ϕ,

ϕ′

ω
, 0, 0, 0,

(
ϕ′)2

)
= 0;

6. 〈G, X1, X2, X3〉,

J1 =
(
x2

0 − x2
4

)1/2
, J2 = u, J3 = (x0 + x4)(u0 + u4), J4 = u1, J5 = u2,

J6 = u3, J7 = u2
0 − u2

4; u = ϕ(ω), ω =
(
x2

0 − x2
4

)1/2 ;

F
(
ω, ϕ, ωϕ′, 0, 0, 0,

(
ϕ′)2

)
= 0;

7. 〈P3 + C3 + 2L3, X1, X2, X0 + X4〉,

J1 =
(
x2

3 + x2
4

)1/2
, J2 = u, J3 = x3u4 − x4u3, J4 = x3u2 − x4u1, J5 = u0,

J6 = u2
1 + u2

2, J7 = u2
3 + u2

4; u = ϕ(ω), ω =
(
x2

3 + x2
4

)1/2 ;

F
(
ω, ϕ, 0, 0, 0, 0,

(
ϕ′)2

)
= 0;

8. 〈L1 +
1
2

(P1 + C1) , L2 +
1
2

(P2 + C2) , L3 +
1
2

(P3 + C3) , X0 + X4〉,

J1 =
(
x2

1 + x2
2 + x2

3 + x2
4

)1/2
, J2 = u, J3 = x1u1 + x2u2 + x3u3 + x4u4,

J4 = x1u2 − x2u1 + x4u3 − x3u4, J5 = x2u3 + x4u1 − x1u4 − x3u2, J6 = u0,

J7 = u2
1 + u2

2 + u2
3 + u2

4; u = ϕ(ω), ω =
(
x2

1 + x2
2 + x2

3 + x2
4

)1/2 ;

F
(
ω, ϕ, ωϕ′, 0, 0, 0,

(
ϕ′)2

)
= 0;

9. 〈G, L1, L2, L3, X4〉,

J1 =
(
x2

1 + x2
2 + x2

3

)1/2
, J2 = u, J3 = (x0 + x4)(u0 + u4), J4 = x1u1 + x2u2 + x3u3,

J5 = u2
0 − u2

4, J6 = u2
1 + u2

2 + u2
3; u = ϕ(ω), ω =

(
x2

1 + x2
2 + x2

3

)1/2 ;

F
(
ω, ϕ, 0, ωϕ′, 0,

(
ϕ′)2

)
= 0;

10. 〈G, P3, C3, X1, X2〉,

J1 =
(
x2

0 − x2
3 − x2

4

)1/2
, J2 = u, J3 = x0u0 + x3u3 + x4u4, J4 = u1, J5 = u2,
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J6 = u2
0 − u2

3 − u2
4; u = ϕ(ω), ω =

(
x2

0 − x2
3 − x2

4

)1/2 ; F
(
ω, ϕ, ωϕ′, 0, 0,

(
ϕ′)2

)
= 0;

11. 〈L1, L2, L3, P1 + C1, P2 + C2, P3 + C3, X0 + X4〉,

J1 =
(
x2

1 + x2
2 + x2

3 + x2
4

)1/2
, J2 = u, J3 = x1u1 + x2u2 + x3u3 + x4u4, J4 = u0,

J5 = u2
1 + u2

2 + u2
3 + u2

4; u = ϕ(ω), ω =
(
x2

1 + x2
2 + x2

3 + x2
4

)1/2 ;

F
(
ω, ϕ, ωϕ′, 0,

(
ϕ′)2

)
= 0;

12. 〈G, P3, C3, L3, X1, X2〉,

J1 =
(
x2

0 − x2
3 − x2

4

)1/2
, J2 = u, J3 = x0u0 + x3u3 + x4u4, J4 = u2

1 + u2
2,

J5 = u2
0 − u2

3 − u2
4 ; u = ϕ(ω), ω =

(
x2

0 − x2
3 − x2

4

)1/2 ; F
(
ω, ϕ, ωϕ′, 0,

(
ϕ′)2

)
= 0;

13. 〈G, L1, L2, L3, P1, P2, P3〉,

J1 = (x2
0 − x2

1 − x2
2 − x2

3 − x2
4)

1/2, J2 = u, J3 =
u0 − u4

x0 + x4
,

J4 = x0u0 + x1u1 + x2u2 + x3u3 + x4u4, J5 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4;

u = ϕ(ω), ω = (x2
0 − x2

1 − x2
2 − x2

3 − x2
4)

1/2; F

(
ω, ϕ,

ϕ′

ω
, ωϕ′,

(
ϕ′)2

)
= 0.
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