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Recently calculated via ∂-dressing method new lumps of 2+1-dimensional integrable non-
linear Veselov–Novikov (VN) evolution equation and exact rational potentials of two-
dimensional stationary Schrödinger (2DSchr) equation with multiple pole of order two wave
functions are reviewed. Among the constructed rational solutions and rational potentials
are both nonsingular and singular.

1 Introduction

Exact solutions of differential equations of physics are very important for the understanding of
various physical phenomena. The generation and application of new methods of calculation of
exact solutions was and is actual task in all times for human scientific civilization. In the last two
decades the Inverse Spectral Transform (IST) method has been generalized and successfully ap-
plied to various two-dimensional nonlinear evolution equations such as Kadomtsev–Petvashvili,
Davey–Stewartson, Nizhnik–Veselov–Novikov, Zakharov–Manakov system, Ishimori, two-dimen-
sional integrable sine-Gordon and others (see books [1–4] and references therein). The nonlocal
Riemann–Hilbert problem [5], ∂-problem [6] and more general ∂-dressing method of Zakharov
and Manakov [7–10] are now basic tools for solving two-dimensional integrable nonlinear evolu-
tion equations. Great task for mathematicians and physicists now is the generalization of IST
method to multidimensional differential equations of mathematical physics.

In the present short note the results of recent calculations [19] of new exact rational so
called multiple pole solutions of the famous two-dimensional integrable Veselov–Novikov (VN)
nonlinear equation [11]
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via ∂-dressing method of Zakharov and Manakov are summarized. Here and in what follows
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κ is arbitrary complex constant; u(z, z, t) is scalar function of space-time variables. It is well
known that VN equation can be represented as compatibility condition for two linear auxiliary
problems

L1ψ =
(
∂2

zz + u(z, z, t)
)
ψ = 0,

L2ψ =
(
∂t + κ∂3

z + κ∂3
z + 3κ

(
∂−1

z uz

)
∂z + 3κ

(
∂−1

z uz

)
∂z

)
ψ = 0 (2)

in the form of Manakov’s triad representation
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The ∂-dressing method of Zakharov and Manakov [7–10] allows
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• To construct integrable nonlinear equations together with corresponding linear auxiliary
problems.

• Using the solution of linear auxiliary problems via reconstruction formula to calculate
broad classes of exact solutions and to solve Cauchy problem for integrable nonlinear
evolution equations.

• To construct explicitly broad classes of exactly solvable variable coefficients-fields and
corresponding wave functions of linear auxiliary problems.

In conclusion of this introduction let us mention that exact integration of VN equation has
remarkable history, more detailed information about all known cases of exact integration of (1)
one can found in [11–15] and in doctorate dissertation of Grinevich [16], see also the review [17]
and books [1–4]. The calculated in the paper [19] and reviewed in the present note multiple pole
of order two rational solutions of VN equation (1) are completely new.

2 General formulas for calculating
of exact multiple pole rational solutions

The basic equation of ∂-dressing method in our case is the following scalar non-local ∂-problem
[7–9]:

∂χ

∂λ
= (χ ∗R)(λ, λ) =

∫∫
dµ ∧ dµ χ(µ, µ)R(µ, µ;λ, λ) (4)

stated here in the auxiliary space of spectral variables µ, λ. Via “long” derivatives D1 = ∂ξ + iλ,

D2 = ∂η − i iελ , D3 = ∂t + i
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containing the “spectral” variable λ one can construct

the auxiliary linear problems for VN equation (1):
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explicitly containing the “spectral” parameter λ. In terms of the wave function
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the linear auxiliary problems (5) in potential case for the operator L1 (when V1 = V2 = 0)
coincide with the problems (2). In the ∂-dressing method the non-analytic wave functions χ
are explored. The detailed derivation of reconstruction formulas for the variable coefficients V1,
V2, u and W1, W2, W3, W4, W of auxiliary linear problems (5) and of the conditions of reality
and potentiality in the framework of ∂-dressing method in the paper [19] are presented (see
also [20]).

The multiple pole solutions u of VN equation (1) correspond to special analytic structure
of wave function χ (or ψ): the solution u is multiple pole solution of order m if the maximum
order of pole terms in Loran expansion of χ near some points λk is equal to m. The solution
of ∂-problem (4) in the case of canonical normalization, χ → ∞ as λ → 1, is equivalent to the
solution of singular integral equation:

χ(λ) = 1 +
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)
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where F (λ) is given by the formula (6). The kernel R0 of ∂-problem (4) in the following form
corresponds to the multiple pole rational solutions u of VN equation (1):

R0(µ, µ̄;λ, λ̄) =
π

2

∑
p

Np∑
k,m

r
(p)
k (µ)l(p)

m (λ)δ(k)(µ− λp)δ(m)(λ− λp). (8)

The insertion of (8) into (7) gives the Loran expansion of wave function χ near the points
λ = λp and this leads to multiple pole solutions u of VN equation. The scheme for calculating
of 2+1-dimensional integrable nonlinear evolution equations via ∂-dressing method of multiple
pole solutions was developed at first in the paper [18].

Let us review here some recent results [19] of calculation of exact order two multiple pole
rational solutions of VN equation (1) with constant asymptotic values −ε at infinity:

u = ũ(x, y, t) − ε, ũ(x, y, t) −→
|z|→∞

0. (9)

In this case the first linear auxiliary problem (5) (expressed in terms of wave function ψ (6))
in potential case (V1 = V2 = 0) coincides with problem (2a) or with two-dimensional stationary
Schrödinger equation

(∂2
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So the construction of exact rational multiple pole solutions u with constant asymptotic values
at infinity u −→
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pole rational potentials ũ := u + ε of two-dimensional stationary Schrödinger equation (10).
Recently the calculations of exact rational multiple pole of order two solutions of VN equations
for the kernel R0 of the form
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containing the terms with first derivatives of delta-functions and satisfying to the reality condi-
tion u = u for the solutions have been performed by us (D.V.G. and F.I.B.) [19]. The obtained
results for nonsingular and singular rational multiple pole of order two solutions u in the follo-
wing two sections are stated.

3 Rational nonsingular solutions of VN equation
corresponding to double pole wave functions

Let us consider at first the case of negative energies E = −ε = −|λk|2 < 0 in the standard
representation (−1

4∆− ũ)ψ = Eψ) of stationary Schrödinger equation. Some difficulties (really
this is the main problem in calculations of exact solutions of VN equation) presents the fulfillment
of the potentiality condition V2 = 0 for the operators L1 of the first linear auxiliary problem (5).
Long calculations [19] lead in the considered case ε = |λk|2 > 0 to the following restrictions from
potentiality on the constants Ak, Bk of the kernel R0 (11):
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Figure 1. Nonsingular multiple order two pole rational (lump) solution of VN equation.

For the case N = 1 in the sum (11) under the additional condition on κ and λ1 of the form κλ3
1 =

−κλ3
1 one obtains the following exact rational nonsingular order two multiple pole solution [19]

with constant asymptotic value −ε at infinity of VN equation (1):

u = −ε− 32ε
(λRx̂− λI ŷ)2[4(λRx̂− λI ŷ)4 − 9(λI x̂+ λRŷ)2]

[4(λRx̂− λI ŷ)4 + 3 |λ1|2 (x̂2 + ŷ2)]2
. (13)

Here λ1 = λR+iλI and the wave variables x̂ and ŷ are introduced: x̂ = x−V1t−x0, ŷ = y−V2t−y0

with real V1 = 18i λI
|λ1|2kλ

3
1, V2 = 18i λR

|λ1|2kλ
3
1. This solution represents a new rational nonsingular

lump, with behavior at infinity as u −→
|z|→∞

−ε + O
(

1
|z|2

)
, of VN equation propagating on the

plane x, y with the velocity
−→
V = (V1, V2). One can see an illustration for this new lump solution

of VN equation on the Fig. 11.
Corresponding new exact rational nonsingular potential of two-dimensional stationary Schrö-

dinger equation (10) with multiple pole of order two wave function ψ (6) gives the formula
ũ = u+ ε with u from (13).

4 Rational singular solutions of VN equation
corresponding to double pole wave functions

Let us consider now the case of positive energies E = −ε = |λk|2 > 0 in the standard repre-
sentation

(−1
4∆ − ũ

)
ψ = Eψ of stationary Schrödinger equation. Some difficulties (as in the

previous case ε > 0 of Section 3) presents fulfillment of the potentiality condition V2 = 0 for the
operators L1 of the first linear auxiliary problem (5). Long calculations [19] in the considered
case ε = −|λk|2 < 0 lead to the following restriction from potentiality on the constants Ak, Bk

of the kernel R0 (11):
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1Figures in colour will be available only in electronic version.
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Figure 2. Singular multiple order two pole rational solution of VN equation.

For the case N = 1 in the sum (11) under the additional condition on κ and λ1 of the form
κλ3

1 = κλ
3
1 one obtains the following exact rational singular multiple pole of order two solution

with constant asymptotic value −ε at infinity of VN equation (1):

u = −ε− 32ε
(λI x̂+ λRŷ)2[4(λI x̂+ λRŷ)4 + 9(λRx̂− λI ŷ)2]

[4(λI x̂+ λRŷ)4 − 3 |λ1|2 (x̂2 + ŷ2)]2
. (15)

Here λ1 = λR + iλI and the wave variables x̂ = x − V1t − x0, ŷ = y − V2t − y0 with real
V1 = 9 λR

|λ1|2kλ
3
1, V2 = −9 λI

|λ1|2kλ
3
1 are introduced. The singular rational solution (15) propagates

on the plane x, y with the velocity
−→
V = (V1, V2) One can see an illustration for this new singular

rational solution of VN equation on the Fig. 2.
The corresponding new exact rational singular potential of two-dimensional stationary Schrö-

dinger equation (10) gives the formula ũ = u+ ε with u from (15).
In conclusion of this note let us mention that for VN nonlinear integrable equation (1) the

first auxiliary linear problem (2), i.e. two-dimensional stationary Schrödinger equation (5), is
self-adjoint, but multiple pole solutions exist as the present calculations show [19]. For the
KP or mKP equations the first auxiliary linear problems are non-self-adjoint, and with the
non-self-adjoint character of these problems the existence of multiple pole solutions has been
connected [18]. By VN equation we have the first explicit example which shows that multiple
pole solutions may exist even for cases with self-adjoint first auxiliary linear problems. Our
work on multiple pole rational solutions of VN equation and multiple pole rational potentials of
2DSchr equation for more general choices of kernel R0 (8) and its parameters in general position
is in progress and the results will be published elsewhere.
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