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On Construction of Zero-Curvature Representations
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The problem of construction of matrix zero-curvature representations for some chiral-type
three field systems is considered. The systems belong to the class described by the Lag-
rangian L = 1

2gij(u)ui
xu

j
t + f(u), where gij is the metric of three-dimensional reducible Rie-

mannian space. The investigation is based on the analysis of evolutionary system ut = S(u),
where S is a higher symmetry.

1 Introduction

We consider here the systems belonging to the following class of two-dimensional fields

ui
tx + Γi

jk(u)u
j
xu

k
t = f i(u), f i = gij ∂f

∂uj
, (1)

where gij is the metric tensor and Γi
jk are the Christoffel symbols of the configurational space

with the coordinates ui, the low indices x and t denote the partial derivatives, also we assume
summation over repeating indices. The system (1) possesses the following Lagrangian

L =
1
2
gij(u)ui

xu
j
t + f(u).

In the article [2] the systems with the Lagrangian

L =
1
2

(utux + ψ(v, w)(vtwx + vxwt)) + f(u, v, w), (2)

were studied. There we found the systems possessing the nontrivial higher polynomial (with
respect to derivatives ui

n = ∂ui/∂xn) symmetries of the 2nd, 3rd, 4th or 5th order. It was proved
that the non-degenerate symmetries exist if and only if ψ = (vw + c)−1, c = const, and f takes
one of the following forms

f = ave
√

2u + bwe−
√

2u, (3a)

f = av2e2u + bw2e−2u, (3b)

f = av2e2u + bwe−u, (3c)
f = aveu + bwe−u, (3d)

f = (vw + c/2)
[
ae

√
2u + be−

√
2u
]
, (3e)

f = a (vw + c/2) e
√

2u + be−
√

2u, (3f)

f = a (vw + c/2) e
√

2u + be−2
√

2u, (3g)

f =
(
v2w + 2/3 vc

)
e
√

2u, (3h)

f = ve
√

2/3u, (3i)

where a and b are arbitrary constants. We assume that c �= 0, so the connection Γi
jk is nontrivial.
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Evidently the simplest case for investigation is when function f is linear with respect to v
and w. Among the two-exponential functions (3a)–(3g) there are only two functions of that
kind, they are given by (3a), (3d). Hyperbolic systems (1) corresponding to these functions
have the following forms

utx =
√

2
[
ave

√
2u − bwe−

√
2u
]
, vtx = bψ−1e−

√
2u + ψwvxvt,

wtx = aψ−1e
√

2u + ψvwxwt, (4)

and

utx = aveu − bwe−u, vtx = bψ−1e−u + ψwvtvx, wtx = aψ−1eu + ψvwtwx. (5)

It was shown in [3] that each system posessing Lagrangian (2) can be represented in an explicit
Hamiltonian form

ut = D−1
x

δH

δu
, vt = eϕD−1

x e−ϕψ−1 δH

δw
, wt = ψ−1e−ϕD−1

x eϕ
δH

δv
,

which is possibly nonlocal. Existence of the Hamiltonian form gives us a hope that both sys-
tems (4) and (5) are the first nonlocal members of the corresponding sequences of integrable
Hamiltonian evolution systems

utn = Sn(u) = J−1 δHn

δu
, (6)

where J−1 is Hamiltonian operator, S0 is a corresponding nonlocal vector field, S1(u) = ux

and Sn, n > 1 are higher order vector fields; Hn are the corresponding Hamiltonians.

2 Zero-curvature representations

If a nonlinear system can be represented as the compatibility condition of a linear system
Ψx = UΨ, Ψt = VΨ, i.e. as

Ut − Vx + [U, V ] = 0, (7)

then the system is said to possess zero-curvature representation. In the equation (7) [U, V ] is the
commutator of matrices. The matrices U , V depend on field functions, and finite set of theirs
derivatives, and on a parameter λ, usually called the spectral parameter.

The zero-curvature representation can be constructed starting directly from equation (7). For
simplicity, one can choose the matrices U , V in the form

U = Ui(u)ui
x + U(u), V = Vi(u)ui

t + V (u) (8)

(this choice corresponds to the solutions given below). Substituting (8) to (7), and requiring
the system (1) to be obtained, one can obtain a matrix system for Ui, Vi, U, and V involving
covariant derivatives:

∇jUi −∇iVj + [Ui, Vj ] = 0, f i(Ui − Vi) + [U, V ] = 0,

∇iU + [U, Vi] = 0, ∇iV + [V ,Ui] = 0. (9)

The direct computation of the matrices U and V from the equations (9) is a fundamentally dif-
ficult problem, and we therefore use a different approach. Existence of the explicit Hamiltonian
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form allows expecting that the systems (4) and (5) are nonlocal terms of hierarchies of evolu-
tionary systems ut = Sn(u). Adopting this assumption we can try to find the zero curvature
representation for any system (6) in the following form

U,t − Vn,x + [U, Vn] = 0. (10)

The matrix U must be one and the same for all equations of the hierarchy, but the matrices Vn

are different. For the evolution systems such problems are usually solvable by the prolongation
method [4, 5]. We assume that the matrix U for systems (4) and (5) has form (8). Replacing
in (7) ut, vt, and wt according to (6), we obtain matrices U , V in the form

U =
∑

i

pi(u)ui
xAi +

∑
j

qj(u)Aj , Vn =
∑

i

gi(u, u1, . . . , uk)Ai, (11)

where k is the order of a higher symmetry Sn(u), Ai are some constant matrices which satisfy
commutation relations

[Ai, Aj ] = Ck
ijAk. (12)

Note, that table of commutators (12) is not closed. There are some ways to solve the systems
like (12). For example, one can choose one of the matrices in the Jordan normal form and try
to solve the equations directly. But this way leads to an excessive branching if the matrix size is
large. Therefore we applied a modification of the prolongation method by H.D. Wahlquist and
F.B. Estabrook [4,5] to close the table of commutators (12). There are two possibilities for any
unknown commutator [Ai, Aj ]:

(i) [Ai, Aj ] is a linear combination of the known elements of the Lie algebra or (ii) [Ai, Aj ] is
a new element linearly independent of the previous elements. In the first case we write [Ai, Aj ]
as a linear combination of all elements A1, . . . , An which we have for the current step and try
to find the coefficients with the help of the Jacobi identity. In the second case we introduce
the new element An+1 = [Ai, Aj ] of the algebra. Then using the Jacobi identity we try to find
the new commutational relations for An+1 and so on. After a number of such steps we obtain
a closed table of commutators. The obtained algebra can possess a centre. To obtain an algebra
with the lowest dimension we construct a factor algebra, setting the elements of the centre as
zeros. As a result, the matrices U and V were always embedded into simple classical algebras.
To construct a representation of resulting algebra we use the standard algorithm: find a Cartan
subalgebra, construct a Cartan–Weyl basis, and build all the matrices explicitly.

Zero-curvature representation for system (4). The simplest higher symmetry of this
system is

ut1 =
√

2ψvxwx, vt1 = vxx − 2vψvxwx +
√

2uxvx,

wt1 = −wxx + 2wψvxwx +
√

2uxwx. (13)

Using prolongation technique of Whalquist–Estabrook we obtain the following matrices of the
zero-curvature representation for system (13)

U =


0 −v−1(3vw + c)be−

√
2u 2c2

3 v
−1vxψ

0 c
3v

−1vxψ λvae
√

2u

1
3v

−1vxψ v−1be−
√

2u − c
3v

−1vxψ

 , (14)

V1 =

 −λab 3be−
√

2uwx 2c2g − λab(3vw + c)
λ
3ae

√
2uvxψ cg

(
1− 2

3cψ
)
λae

√
2uvx

g 0 −cg

, (15)
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here

g = v−1ψ(vxx +
√

2vxux)/3− ψ2vxwx/3.

Now we can obtain the matrix V0 for original hyperbolic system (4). Substituting matrix (14)
to equation (10), one can easily find that the matrix V0 has the following form

V0 = utB1 + v−1vtB2 + wtvψB3 +B4.

The constant matrices Bi are of the form

B1 =
√

2/3(e22 − e11 − e33), B4 = λ−1(2ce12 + e32)− (e21 + ce23)/3,

B2 = (e11 + e22 − 2e33)/3 + ce13, B3 = (2e11 − e22 − e33)/3− 2ce13,

here eij are the Weyl matrices. Thus the matrix V is given by

V0 =

 h1 2cλ−1 cv−1vt − 2cwtvψ

−1/3 h2 − h1 −c/3
0 λ−1 −h2

 , (16)

where h1 = 1
3(v−1vt + 2wtvψ −

√
2ut), h2 = 1

3(2v−1vt + wtvψ +
√

2ut).
Zero-curvature representation for system (5). The simplest higher symmetry of this

system is

ut = −1
2
uxxx +

3
2
ψ(vxxwx − vxwxx) +

1
4
u3

x +
9
2
ψuxvxwx +

3
2
ψ2vxwx(vxw − vwx),

vt = vxxx +
3
2
uxxvx + 3vxx(ux − ψvwx) +

9
4
u2

xvx − 6ψuxvvxwx + 3ψvxwx

(
ψv2wx − 1

2
vx

)
,

wt = wxxx − 3
2
uxxwx − 3wxx(ux + ψvxw) +

9
4
u2

xwx + 6ψuxvxwwx

+ 3ψvxwx

(
ψw2vx − 1

2
wx

)
. (17)

The matrices U and V1 of the zero-curvature representation for the system (17) is embedded
into sl(4,C). The matrix U is given by

U =


−1

2wψv1 −λeu 0 −we−u

−ψ−1e−u 1
2wψv1 we−u 0

0 −λveu 1
2wψv1 −ψ−1e−u

−λveu 0 λeu −1
2wψv1

 . (18)

The matrix V1 is too cumbersome, and we omit it. Let us consider now the zero-curvature
representation for the hyperbolic system (5). We take the matrix U in the form (18), and
moreover, we assume that the matrix V0 is linear with respect to ut, vt and wt

V0 = f1ut + f2vt + f3wt + f4.

If one substitutes V0 into the equation (10) and substitutes therein utx, vtx and wtx from (5),
then this equation must be an identity. This implies, in particular

f1 = C1, f2 = C2, f4 = C4, f3 = f3(v, w),
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where Ci are constant matrices. The matrix f3 satisfies the system

∂f3

∂v
= cA1ψ

2 + wψ[A1, f3],
∂f3

∂w
= −vψf3,

which has the following general solution f3 = ψ(C3 + vA1), and we obtain

V0 = C1ut + C2vt + ψ(C3 + vA1)wt + C4.

Now the equation (10) yields a considerable number of commutational relations for the constant
matrices Ci and Aj . We solved these relations using (18) and found

C1 = e44 − e22, C2 = e31, C3 = e13, C4 =
b

2
(e32 − e41)− a

2λ
(e14 + e23),

and

V0 =


−1

2ψwtv 0 ψwt −a/(2λ)
0 −ut + 1

2ψwtv −a/(2λ) 0
vt b/2 1

2ψwtv 0
−b/2 0 0 ut − 1

2ψwtv

 . (19)

3 Conserved currents

To construct the conserved currents of the systems (4) and (5) we use the algorithm presented
in [1]. Let the vector function Ψ satisfy the system

Ψx = UΨ, Ψt = VΨ. (20)

Introducing the function Φ = Ψ/(C,Ψ) where (C,Ψ) is the Euclidean scalar product and C is
a constant vector, one can easily check that

Φx = UΦ− Φ(C,UΦ), Φt = V Φ− Φ(C, V Φ), (C,Φ) = 1. (21)

Multiplying (20) by vector C/(C,Ψ) we obtain (log(C,Ψ))x = (C,UΦ), (log(C,Ψ))t = (C, V Φ).
This implies the following conservation law

Dt(C,UΦ) = Dx(C, V Φ). (22)

Expanding now Φ in a power series with respect to λ, one can obtain an infinite sequence of
local conserved currents. Hence we may call the functions

R = (C,UΦ) and T = (C, V0Φ) (23)

the generating functions for the conserved densities and the fluxes accordingly.
Conserved currents for system (4). Let us consider equations (21) with matrices (14)

and (16), where we set a = 1 and assume that b �= 0. In this case, we can choose c = (0, 1, 0).
Then identity (c, ϕ) = 1 implies that ϕ = (ϕ1, 1, ϕ3), and the first system in (21) takes the
following form

Φx = −cvx

v
ψΦ− 3b

e−
√

2u

vψ
− λve

√
2uΦϕ3, ϕ3,x =

vx

3v
ψΦ + b

e−
√

2u

v
− λve

√
2uϕ2

3, (24)

where Φ = ϕ1 − 2cϕ3. Generating functions (23) are then written as

ρ = λve
√

2uϕ3 +
cvx

3v
ψ, θ =

1
3

(
2
√

2ut +
vt

v
− vwtψ

)
− cϕ3 − 1

3
Φ. (25)



On Construction of Zero-Curvature Representations for Three-Field Systems 379

To obtain WKB-expansion for system (24), we set

λ = k2/b, Φ = gk−1v−1b exp(−
√

2u), ϕ3 = hk−1v−1b exp(−
√

2u),

then equations (24) take simpler form

hx =
(vx

v
+
√

2ux

)
h+

vx

3v
ψg + k(1− h2), gx = (vxwψ +

√
2ux)g − k(3ψ−1 + gh). (26)

It is now clear that the expansions for g, and h must be given by

h = 1 +
∞∑
i=1

hik
−i, g = −3ψ−1 +

∞∑
i=1

gik
−i. (27)

Substituting this expansions in (26), we get the recursion relations

hi+1 =
1
2

(√
2ux +

vx

v

)
hi − 1

2
Dxhi +

vx

6v
ψgi − 1

2

i∑
j=1

hjhi−j+1,

gi+1 = 3ψ−1hi+1 + (
√

2ux + vxwψ)gi −Dxgi −
i∑

j=1

hjgi−j+1,

h1 = ux/
√

2, g1 = 3vwx − 3/
√

2uxψ
−1, (28)

where i � 1. Applying all the substitutions to (25), we obtain the series

ρ = k +
∞∑
i=0

ρik
−i, θ =

∞∑
i=0

θik
−i,

which determine canonical conserved currents (ρi, θi) of the system (4):

ρ0 =
√

2
2
ux +

cvx

3v
ψ, ρi = hi+1, i ≥ 1,

θ0 =
1
3

(
2
√

2ut +
vt

v
− vwtψ

)
, θ1 = wb exp(−

√
2u),

θi+1 = −v−1b exp(−
√

2u) (chi + gi/3) , i ≥ 1. (29)

With the help of relations (28), and (29) one can easily obtain any number of conserved
currents. For example

ρ1 = −
√

2
4
ω1, ρ2 =

√
2

8
Dx(ω1)− 1

2
ω3,

ρ3 =
3
4
Dx(ω3)−

√
2

16
D2

x(ω1)− 1
16
ω2

1 −
1
2
ω2ω3, θ2 = −b exp(−

√
2u)

(
wx −

√
2

2
wux

)
,

θ3 = bw exp(−
√

2u)

(
−
√

2
4
ω1 + (vxwψ)−1ω3

)
,

where the functions ωi are given by

ω1 = (
√

2u2 − u2
1 − 2v1w1ψ)/6, ω2 = v2v

−1
1 + u1/

√
2− ψw1v,

ω3 = ψv1(w2 − v1w1ψw −
√

2u1w1). (30)
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Conserved currents for system (5). To construct the conserved currents for the sys-
tem (5), let us simplify the matrix U with the help of the gauge transformation Ũ = S−1(US −
Sx), Ṽ0 = S−1(V0S − St). We choose the matrix S in the following form

S = exp(−ϕ/2)


1 0 0 0
0 e−u 0 0
v 0 1 0
0 0 0 eu

 ,

where ϕ = D−1
x ψwv1 is the quasi-local variable: Dtϕ = ψvwt − ut. Then the transformed

matrices are

Ũ =


0 −λ 0 −w
−c ψwv1 + u1 w 0
−cψv1 0 ψwv1 −c

0 0 λ −u1

 , (31)

Ṽ0 =


ψvwt − 1

2ut 0 ψwt − a
2λe

u

−av
2λe

u ψvwt − 1
2ut − a

2λe
u 0

0 b
2e

−u −1
2ut

av
2λe

u

− b
2e

−u 0 0 −1
2ut

 . (32)

Let us set C = (0, 0, 0, 1), then the first of the systems (21) takes the following form

Φ1,x = u1Φ1 − λΦ2 − w − λΦ1Φ3, Φ2,x = −cΦ1 + (2u1 + ψwv1)Φ2 + wΦ3 − λΦ2Φ3,

Φ3,x = −cψv1Φ1 + (u1 + ψwv1)Φ3 − c− λΦ2
3. (33)

The generating functions (23) take now the simplest form

R = λΦ3 − ux, T = −(be−uΦ1 + ut)/2. (34)

To obtain the local conserved densities we set λ = −k2/c and adopted the following formal series
for Φi:

Φ1 =
1
k

(
w +

∞∑
i=1

hik
−i

)
, Φ2 =

1
k3

(
cw1

2
+

∞∑
i=1

gik
−i

)
, Φ3 =

c

k

(
1 +

∞∑
i=1

ρik
−i

)
. (35)

Substituting these series into the equations (33) we found that ρ1 = −ux/2 and the first conser-
vation law is trivial Dtux = Dxut. The next conservation laws are given by

Dtρi = Dx
b

2
e−uhi−2, i ≥ 2, (36)

where ρi and hi satisfy the following relations

ρi+1 =
1
2
ψv1hi − 1

2
(u1 + ψwv1)ρi +

1
2
Dxρi − 1

2

i−1∑
j=0

ρj+1ρi−j , i ≥ 1,

hi+1 = Dxhi − wρi+1 − u1hi − 1
c
gi −

i−1∑
j=0

ρj+1hi−j , i ≥ 1,

gi+1 =
c

4
δi0(w2 − 2u1w1 − ψv1ww1) +

1
2
Dxgi − cwρi+2 −

(
u1 +

1
2
ψwv1

)
gi − c

4
w1ρi+1
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− 1
2

i−1∑
j=0

ρj+1gi−j +
c

2
Dxhi+1 − c

2
u1hi+1 − c

2

i∑
j=0

ρj+1hi+1−j , i ≥ 0,

ρ1 = −u1/2, g0 = 0, h0 ≡ w, h1 = (w1 − u1w)/2. (37)

Using relations (37) we found in particular

ρ2 = ω1/4, ρ3 = Dx(ρ2)/2, ρ4 = (4ω2 − ω2
1 + 2D2

x(ω1))/32,

ω1 = u2
1/2 + ψv1w1 − u2,

ω2 = −ψv1w3 + ψu2v1w1 + ψ2v1v2ww1 + 3ψu1v1w2 + 2ψ2v2
1ww2

− 3ψ2u1v
2
1ww1 − 2ψu2

1v1w1 + cψ3v2
1w

2
1 + ψ2v2

1w
2
1/2− 2ψ3v3

1w
2w1. (38)

It can be seen that ω2/8 − ω2
1/32 is not a total derivative, hence the densities ρ1 and ρ3 are

trivial, and ρ2, ρ4 are non-trivial.
It is easy to see from (29), and (36) that if we set b = 0, then all conserved densities of the

systems (4), and (5) become pseudo-constants and the systems become Liouvillian ones. To prove
this statement we must present three independent pseudo-constants along each characteristic
(see for instance [6]).

Obviously, functions (30) constitute complete set of pseudo-constants for system (4) along the
characteristic Dtω = 0. Lorentz invariance x←→ t of the system allows us to obtain the pseudo-
constants along the characteristic Dxω = 0 simply by the substitutions ux → ut, uxx → utt, . . .
from ω1, ω2 and ω3.

The two obvious independent pseudo-constants of the system (5) are ω1 and ω2 given by (38).
To find the third pseudo-constant let us rewrite the second equation of (5) under the condition
b = 0 in the following form

Dt log vx = ψvtw.

This implies Dx(Dt log vx + ut) = Dx(ψvtw + ut). Using the conservation law Dtψvwx =
Dx(ψvtw + ut) we find Dt(Dx log vx + ux − ψvwx) = 0. Thus, the function

ω3 = Dx log vx + ux − ψvwx (39)

is the third independent pseudo-constant along the characteristic Dtω = 0 for system (5).
In the case when a = 0 (and b �= 0), the complete set of the pseudo-constants can be obtained

with the help of the discrete symmetry of the system (5) v ←→ w, u −→ −u.

4 Conclusion

We believe that the modification of the Wahlquist and Estabrook method applied here may be
used for construction of the zero curvature representations for other hyperbolic systems too.
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