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A discussion is presented, within a simple unifying scheme, about different types of symmetry
of PDE’s, with the introduction and a precise characterization of the notions of “standard”
and “weak” conditional symmetries, together with their relationship with exact and partial
symmetries. An extensive use of “symmetry-adapted” variables is made; some clarifying
examples are also provided.

1 Introduction

This paper is essentially a presentation of a unifying and comprehensive scheme, where several
different notions of symmetry for differential problems may be considered and compared. In
particular, this approach will permit the introduction of “subtler” notions of conditional sym-
metries (or “nonclassical symmetries ”) [1–5], with a clear distinction and characterization of
these symmetries and of other related concepts, including the more recently introduced notions
of “partial symmetries” [6] (see also [7, 8]), and of “hidden symmetries” (see e.g. [9, 10]).

For simplicity, we will consider here only the case of partial differential equations (PDE)

∆ ≡ ∆a

(
x, u(m)

)
= 0 (a = 1, . . . , ν) (1)

for the q functions uα = uα(x) of the p variables xi (as usual, u(m) denotes the functions uα

together with their x derivatives up to the order m), and only “geometrical” or Lie-point sym-
metries, i.e. symmetries generated by vector fields of the form (sum over repeated indices)

X = ξi(x, u)
∂

∂xi
+ φα(x, u)

∂

∂uα
(2)

although the relevant results could be suitably extended also to other types of symmetries, as
generalized or Bäcklund, potential or nonlocal symmetries, whose importance is well known and
also recently further emphasized (cf. e.g. [11–14]).

2 Exact symmetries

Let us start with the basic and standard definition, with the usual nondegeneracy and regularity
assumptions tacitly understood (see [15–19]):

Definition 1. A system of PDE ∆a

(
x, u(m)

)
= 0 is said to admit the Lie-point symmetry

generated by the vector field X (or to be symmetric under X) if the following condition

X∗(∆)|∆=0 = 0 (3)

is satisfied, or – equivalently (at least under mild hypotheses) – if there are functions G =
Gab(x, u(m)) such that

(X∗(∆))a = Gab ∆b. (4)
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We simply denote by X∗ the “appropriate” prolongation of X for the equation at hand, or –
alternatively – its infinite prolongation (indeed, only a finite number of terms will appear in
calculations).

Let us also give this other definition:

Definition 2. A system of PDE as before is said to be invariant under X if

X∗(∆) = 0. (5)

For instance, the Laplace equation uxx + uyy = 0 is invariant under the rotation symmetry
X = y∂/∂x − x∂/∂y; the heat equation ut = uxx is symmetric but not invariant under

X = 2t
∂

∂x
− xu

∂

∂u

indeed one has X∗(ut − uxx) = −x(ut − uxx).
We then have:

Theorem 1. Let ∆ = 0 be a nondegenerate system of PDE’s, symmetric under a projectable
vector field X, according to Definition 1. Then, there are new p + q variables s, z and v, with
s ∈ R, z ∈ R

p−1 and v ≡ (v1(s, z), . . . , vq(s, z)), and a new system of PDE’s, say K = 0, with
Ka = Sab(s, z, v(m)) ∆̃b(s, z, v(m)) (where v(m) stands for v(s, z) and its derivatives with respect
to s and z, and ∆̃ = ∆̃(s, z, v(m)) is ∆ when expressed in terms of the new variables s, z, v),
which is locally equivalent to the initial system and is invariant (as in Definition 2) under the
symmetry X = ∂/∂s, i.e. Ka = Ka(z, v(m)).

Proof. (a sketch) Given the symmetry X, one has to introduce “canonical variables” (or
symmetry-adapted variables) s, z ≡ (z1, . . . , zp−1), which are defined by

Xs ≡ ξi
∂s

∂xi
+ φα

∂s

∂uα
= 1, Xzk = 0 (k = 1, . . . , p − 1).

Using the method of characteristics, one also finds the q dependent variables v = vα(s, z); once
written in these coordinates, the symmetry field and all its prolongations are simply given by

X̃ = X̃∗ =
∂

∂s
(6)

whereas the symmetry condition (Definition 1) becomes ∂∆̃
∂s

∣∣∣
∆̃=0

= 0, or

∂

∂s
∆̃a = Gab∆̃b. (7)

It is not difficult to show (cf. [20]) that for any ∆̃a satisfying the system (7) there are smooth
locally invertible functions Sab such that the combinations Ka := Sab∆̃b are independent of s,
as claimed. We have assumed here for convenience that the vector fields X are “projectable”,
or – more explicitly – that the functions ξ in (2) do not depend on u (as happens in most cases
in the study of PDE’s) in order to simplify calculations in the introduction of the canonical
coordinates, and to get a more direct relationship between symmetries and symmetry-invariant
solutions (for a discussion on this point, cf. [21]). �

See [22] for a result in an analogous problem, although with different aim (i.e., constructing
equations invariant under a given Lie algebra). It should be also emphasized that the result
in Theorem 1 is not the same as (but is related to and includes in particular) the well known
result concerning the reduction of the given equations to X-invariant equations for the invariant
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variables w(z): indeed, introducing the new “symmetry-adapted” variables s, z and v(s, z),
we have transformed the equations into equivalent equations for v(s, z). If one now further
assumes that ∂v/∂s = 0, i.e. if one looks for the X−invariant solutions where v = w(z), then
the equations Ka = 0 become a system of equations

K(0)
a

(
z, w(m)

)
= 0 (8)

involving only the variables z and functions depending only on z (see [23] for a general discussion
on the reduction procedure).

3 “Standard” and “weak” conditional symmetries,
and related notions

Let us now consider the case of non-exact symmetries. A fundamental and largely comprehensive
notion has been introduced by Fushchych [24]: let us say that X is a conditional symmetry of
the equation ∆ = 0 in the sense of Fushchych if there is a supplementary equation E = 0 such
that X is an exact symmetry of the system ∆ = E = 0.

The simplest and more common case is obtained choosing as supplementary equation the
“side condition” or “invariant surface condition”

XQu ≡ ξi
∂u

∂xi
− φ = 0, (9)

where XQ is the symmetry written in “evolutionary form” [16]: this corresponds to the usual
(properly called) conditional symmetry (CS) (also called Q-conditional symmetry), and the
above condition indicates that we are looking precisely for solutions which are invariant under X.

To avoid unessential complications with notations, we will consider from now on only the
case of a single PDE ∆ = 0 for a single unknown function u(x). The extension to more general
cases is in principle completely straightforward.

It is known that the above definition of CS suffers from some intrinsic difficulties, essentially
due to the necessity of introducing and dealing with the differential consequences of (9) (for
a discussion of this point, see e.g. [16, 25, 26], and [27–29] for a more complete definition).
Related to these difficulties is the quite embarrassing sentence by Olver and Rosenau [25] (see
also [26]), which says – essentially – that, given any differential equation, any vector field X is
a CS, and any solution of the equation is an invariant solution under some X.

To clarify this point, we will introduce a subtler definition of CS. This will be made resorting
once again to the canonical coordinates s, z, v = v(s, z), introduced in the proof of Theorem 1.
First of all, in these coordinates the invariance condition XQv = 0 becomes

∂v

∂s
= 0 (10)

and the condition of CS takes the simple form (let us now retain for simplicity the same nota-
tion ∆, instead of ∆̃, also in the new coordinates)

∂∆
∂s

∣∣∣
Σ

= 0 (11)

here Σ stands for the set of the simultaneous solutions of ∆ = 0 and vs = ∂v/∂s = 0, together
with the derivatives of vs with respect to all the variables s and zk. Introducing the global
notation v

(�)
s to indicate vs, vss, vszk

etc., we shall say that X = ∂/∂s is a CS in standard sense
if the equation takes the form

∆ = R
(
s, z, v(m)

)
K

(
z, v(m)

)
+

∑
�

Θ�

(
s, z, v(m)

)
v(�)
s = 0, (12)
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where the point to be emphasized is that K does not depend explicitly on s, and R, K do not
contain v

(�)
s . It is then clear that, if one now looks for solutions of ∆ = 0 which are independent

on s, i.e. such that v
(�)
s = 0, or of the form v = w(z), then equation (12) becomes a “reduced”

equation K(0)(z, w(m)) = 0, just as in the exact symmetry case.
But this is clearly only a special case. Indeed, the equation ∆ = 0 may also take the form

∆ =
σ∑

r=1

sr−1Kr

(
z, v(m)

)
+

∑
�

Θ�

(
s, z, v(m)

)
v(�)
s = 0, (13)

where the part not containing v
(�)
s is a polynomial in the variable s, with coefficients Kr not

depending explicitly on s, or also – more in general (with some different regrouping of the terms
containing s into linearly and functionally independent terms Rr)

∆ =
σ∑

r=1

Rr

(
s, z, v(m)

)
Kr

(
z, v(m)

)
+

∑
�

Θ�

(
s, z, v(m)

)
v(�)
s = 0. (14)

In this case, if one looks for X-invariant solutions w(z) of ∆ = 0, one is faced with the system
of reduced equations (not containing s nor functions of s)

K(0)
r

(
z, w(m)

)
= 0, r = 1, . . . , σ. (15)

Assume that this system admits some solution (it is known that the existence of invariant
solutions is by no means guaranteed in general, neither for “standard” CS, nor for “exact” Lie
symmetries), we will say that X is weak CS of order σ.

We now see that the set of the solutions of the above system can be characterized equivalently
as the set of the solutions of the system

∆ = 0,
∂∆
∂s

= 0, . . . ,
∂σ−1∆
∂sσ−1

= 0, v(�)
s = 0. (16)

Coming back to the original coordinates x, u, the set of conditions (16) becomes

∆ = ∆(1) = · · · = ∆(σ−1) = 0, XQu = 0, (17)

where

∆(1) := X∗(∆), ∆(2) := X∗(∆(1)
)
, . . . (18)

(as already pointed out, also the differential consequences of XQu = 0 must be taken into
account), and a CS of order σ can be characterized by the condition

X∗(∆)|Σσ = 0, (19)

where Σσ is the set (if not empty, of course) of the solutions of the system (17).
We can summarize our discussion in the following form.

Proposition 1. Given a PDE ∆ = 0, a projectable vector field X is a “standard” conditional
symmetry for the equation if it is a symmetry for the system

∆ = 0, XQu = 0

and this corresponds to the existence of a reduced equation in p−1 independent variables, which –
if admits solutions – gives X-invariant solutions of ∆ = 0. A vector field X is a “weak” CS (of
order σ) if it is a symmetry of the system

∆ = 0, ∆(1) := X∗(∆) = 0, ∆(2) := X∗(∆(1)
)

= 0, . . . , ∆(σ−1) = 0, XQu = 0
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and this corresponds to the existence of a system of σ reduced equations, which – if admits
solutions – gives X−invariant solutions of ∆ = 0. Introducing X−adapted variables s, z, such
that Xs = 1, Xz = 0, the PDE has the form (12) in the case of standard CS, or (14) in the
case of weak CS.

If one neglects the invariance condition XQu = 0, one is actually dealing with the case of
partial symmetries. Indeed (see [6–8]), X is precisely a partial symmetry of order σ if X is
a symmetry of the system

∆ = ∆(1) = · · · = ∆(σ−1) = 0. (20)

If this is the case, X maps one into another the solutions of the system (20), which is then
a “symmetric set of solutions of ∆ = 0” [7]. In particular, if in this set there are some solutions
which are left fixed by X, then X is also a CS (either standard or weak) of ∆ = 0.

We can then rephrase the Olver–Rosenau statement [25] in the form:

Proposition 2. Any vector field X is either an exact, or a standard CS, or a weak CS. Similarly,
any X is either an exact or a partial symmetry.

It is well known that the set of the solutions which can be obtained in this way may be empty
or contain only trivial solutions (e.g., u = const): it is clear that the choice of good candidates
for these “non-exact” symmetry generators should be guided by some reasonable criterion and
motivated guess. It is also clear that all the notions of non-exact symmetries considered above
can be viewed as special cases of CS in the sense of Fushchych.

In all the above discussion, we have considered the case of a single vector field X; clearly,
the situation becomes richer and richer if more than one vector field is taken into consideration.
First of all, the reduction procedure itself must be adapted and refined when the given equation
admits an algebra of symmetries of dimension larger than 1 (possibly infinite): for a recent
discussion see [30]. Secondly, for instance, it can happen that the reduced equations (8) or (15)
may admit some new symmetry Y not shared by the original equation ∆ = 0: this is (essentially)
the case of “hidden symmetries” [9,10]. Different reduction procedures have been also proposed,
based on the introduction of multiple suitable differential constraints: see, e.g., [11, 31–33], and
also [17].

4 Examples

We will give here some simple examples, to illustrate the properties of the different types of
symmetries introduced above, and the different solutions that can be obtained accordingly.

Example 1. Consider the equation, proposed by Popovych [29]

ut + uxx − u + t(ux − u) = 0, u = u(x, t).

The vector field X = ∂/∂t is not an exact nor a standard CS, but is a weak CS, indeed the
system of equations (15) (here s = t) becomes uxx = u, ux = u, with solution u = c exp(x). The
same vector field X = ∂/∂t is a weak CS also for this variation of the above equation:

ut − utt + uxx − u + t(ux − u) = 0

with the same solution as above. But X is now also a partial symmetry: indeed, the equation
∆(1) = 0 is now ux − u = 0, and combining it with ∆ = 0 we find the more general solution
u = c exp(x) + c1 exp(x + t). Considering this other variation of the Popovych example

t2(ut − u) + uxx − u + t(ux − u) = 0

here X = ∂/∂t is only a partial symmetry, leading to the solution u = c exp(x + t) (strictly
speaking, it is also a weak CS, but producing only the trivial solution u = 0!).
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Example 2. It is well known that the Korteweg-de Vries equation

ut + uxxx + uux = 0, u = u(x, t)

does not admit (standard) CS, apart from its exact symmetries. There are however weak CS;
e.g. the scaling

X = 2x
∂

∂x
+ t

∂

∂t
+ u

∂

∂u

is an exact symmetry for the system ∆ = 0, ∆(1) := X∗(∆) = 0, XQu = 0, which means
that this is a weak CS, giving the scaling-invariant solution u = x/t. But also, if we neglect
the invariance condition XQu = 0, we obtain the (clearly larger) symmetric set of solutions
u = (x + c1)/(t + c2), showing that the above X is also a partial symmetry.

Example 3. The symmetry properties of the Boussinesq equation

utt + uxxxx + uuxx + u2
x = 0, u = u(x, t) (21)

have been the object of several papers (see e.g. [11, 34, 35]). For what concerns standard CS,
writing the general vector field in the form

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
(22)

a complete list of CS has been given both for the case τ �= 0 (and therefore, without any
restriction, τ = 1) [34] and for the case τ = 0 [35,36]; it has been also shown that the invariant
solutions under these CS are precisely those found by means of the “direct method”, which is
not based on (but clearly related to) symmetry properties [34, 35,37].

To complete the analysis, one can also look for symmetries with ξ = 0. It is not difficult to
verify that no standard CS of this form is admitted. There are however weak CS: an example is

X =
∂

∂t
+

(
1
t2

− 2u

t

)
∂

∂u
(23)

one obtains from this: s = t, z = x and u(x, t) = t−1 + t−2v(x, t), giving

vvxx + v2
x + 6v + t(vxx + 2) + t2vxxxx − 4tvt + t2vtt = 0 (24)

which is precisely of the form (14) (the role of s is played here by t). Looking indeed for solutions
with v = w(x), one gets a system of three ODE’s

wwxx + w2
x + 6w = 0, wxx + 2 = 0, wxxxx = 0

(cf. (16)), admitting the common solution w = −x2 and giving the (quite elementary) solution
u = 1/t − x2/t2 of the Boussinesq equation.

Another example of weak CS for the Boussinesq equation is the following

X = t2
∂

∂x
+

∂

∂t
−

(
2x +

10
3

t3
)

∂

∂u
(25)

now s = t, z = x−t3/3 and u = −2sz−s4+v(s, z). The additional equations ∆(1) := X∗(∆) = 0
etc.: now become

∆(1) = −10t − 3ux − 2tuxt − 5
3
t3uxx − xuxx = 0, ∆(2) = 2 + uxt + t2uxx = 0 (26)
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and taking into account also the invariance condition XQu = 0, we easily conclude that this is
a weak CS of order σ = 3 and obtain the solution

u(x, t) = − t4

3
− 2tx − 12

(x − t3/3)2
(27)

If instead we do not impose the invariance condition XQu = 0 and solve the three equations (21),
(26), we find, in addition to the invariant solution (27), also the following family of solutions
u(x, t) = −t4/3 + c1t − 2tx + c2, showing that the above symmetry is also a partial symmetry.
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