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Non-Lie reductions to systems of first-order ordinary differential equations are performed
for a class of systems of two quasilinear reaction-diffusion equations having variable diffu-
sivities. Moreover, families of exact solutions of a diffusive Lotka–Volterra type system are
constructed.

1 Introduction

In this communication, semilinear systems of two reaction-diffusion (RD) equations of the form

Ut = d1(Uα1Ux)x + U(a1 + b1U
α1) + U1−α1(h1 + c1V

α2),

Vt = d2(V α2Vx)x + V (a2 + b2V
α2) + V 1−α2(h2 + c2U

α1) (1)

are considered. Here the subscripts t and x to the functions U and V denote differentiation
with respect to these variables and all the coefficients are constants. The communication is
organized as follows. In Section 2, a set of new non-Lie ansätze are constructed which reduce
RD system (1) to systems of four or more ordinary differential equations. It is shown that these
ansätze cannot be obtained using Lie symmetries of this system. In Section 3, families of exact
solutions of the RD system

Ut = (UUx)x + U(a1 + b1U) + h1 + c1V,

Vt = (V Vx)x + V (a2 + b2V ) + h2 + c2U. (2)

One can note that system (2) is a system of Lotka–Volterra type, with variable (degenerate)
diffusivities (see, e.g. [1]), in which the standard terms c1UV and c2UV are replaced by the
terms h1 + c1V and h2 + c2U , respectively. Hereafter this RD system will be referred as the
degenerate diffusive Lotka–Volterra system (DDLV system).

2 New non-Lie ansätze for the RD system (1)

This section is devoted to non-Lie reductions of RD systems with power-law nonlinearities of
the form (1). Hereafter I assume that both equations contain diffusion coefficients with variable
diffusivities and that the system is coupled, i.e., d1d2α1α2 �= 0, and c1 �= 0 or c2 �= 0.

It is easily checked that the linear substitution

U = d
−1/α1

1 U∗, V = d
−1/α2

2 V ∗ (3)

reduces (1) to the same form with d1 = d2 = 1; therefore, without losing generality, I can
consider DDLV systems of the form

Ut = (Uα1Ux)x + U(a1 + b1U
α1) + U1−α1(h1 + c1V

α2),

Vt = (V α2Vx)x + V (a2 + b2V
α2) + V 1−α2(h2 + c2U

α1). (4)
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According to the results of group classification for systems of two reaction-diffusion equations
with variable diffusivities [2,3], system (4) is invariant only with respect to the trivial Lie algebra
with the basic operators

Pt = ∂t, Px = ∂x (5)

if the coefficients are arbitrary constants. However, there are the following special cases leading
to non-trivial algebras of invariance: b1 = b2 = h1 = h2 = 0 (see case 6 of Table 1 in [3]);
b1 = b2 = h1 = h2 = 0 and α1 = α2 = −4/3 (see case 9 of Table 1 in [3]); b1 = b2 �= 0,
h1 = h2 = 0 and α1 = α2 = −4/3 (see cases 10 and 12 of Table 1 in [3]). In particular, the
DDLV system (4) admits only the trivial Lie algebra (5) if h1 �= 0 or h2 �= 0.

With U = u1/α1 , V = v1/α2 this system is reduced to the form

ut = uuxx +
1
α1
u2

x + α1

[
h1 + a1u+ b1u

2 + c1v
]
,

vt = vvxx +
1
α2
v2
x + α2

[
h2 + a2v + b2v

2 + c2u
]
, (6)

where u(t, x) and v(t, x) are new unknown functions. One observes that system (6) contains
only quadratic nonlinearities. Several new approaches were recently suggested to find exact
solutions of single evolution equation with quadratic nonlinearities (see [6–10] and references
cited therein). Those approaches lead to so called non-Lie ansätze which cannot be found using
the classical Lie method and the non-classical Bluman–Cole method [11] (it was, however, shown
in [12] that some solutions constructed by those ansätze can be found by a modification of the
Bluman–Cole method).

However, it is not easy to apply those approaches for finding exact solutions of systems
of equations. To my knowledge there are only a few papers devoted to the case of evolution
systems [13,10,14].

It turns out that it is possible to construct non-Lie ansätze and to interpret the relevant exact
solutions of the system (6) using the notion of additional generating conditions [10,15].

Consider an additional generating condition of the following non-coupled system of third
order ordinary differential equations (ODEs)

β1(t)
du

dx
+ β2(t)

d2u

dx2
+
d3u

dx3
= 0, β1(t)

dv

dx
+ β2(t)

d2v

dx2
+
d3v

dx3
= 0, (7)

where β1(t) and β2(t) are arbitrary smooth functions and the variable t is considered as a pa-
rameter. Depending on the coefficients, the solution to the linear ODE system (7) can take the
following forms:

u = ϕ0(t) + ϕ1(t)x+ ϕ2(t)x2, v = ψ0(t) + ψ1(t)x+ ψ2(t)x2 (8)

if β1 = β2 = 0;

u = ϕ0(t) + ϕ1(t)x+ ϕ2(t) exp(γ(t)x), v = ψ0(t) + ψ1(t)x+ ψ2(t) exp(γ(t)x) (9)

if β1 = 0;

u = ϕ0(t) + ϕ1(t) exp(γ1(t)x) + ϕ2(t) exp(γ2(t)x),
v = ψ0(t) + ψ1(t) exp(γ1(t)x) + ψ2(t) exp(γ2(t)x) (10)

if γ1,2(t) = 1
2

(
±√

D − β2

)
, D = β2

2 − 4β1 > 0 and γ1 �= γ2;

u = ϕ0(t) + exp
(
−β2x

2

)[
ϕ1(t) cos

(√−D
2

x

)
+ ϕ2(t) sin

(√−D
2

x

)]
,



64 R. Cherniha

v = ψ0(t) + exp
(
−β2x

2

)[
ψ1(t) cos

(√−D
2

x

)
+ ψ2(t) sin

(√−D
2

x

)]
(11)

if D < 0; and, finally,

u = ϕ0(t) + ϕ1(t) exp(γ(t)x) + xϕ2(t) exp(γ(t)x),
v = ψ0(t) + ψ1(t) exp(γ(t)x) + xψ2(t) exp(γ(t)x) (12)

if D = 0, i.e. γ1 = γ2 = γ �= 0.
Let me consider relations (8)–(12) as a chain of ansätze for the system (6). It is important

to note that each ansatz contains 6 yet-to-be determined functions ϕi, ψi, i = 0, 1, 2. This
enables us to reduce the given system of PDEs to a nonlinear system of first-order ODEs for the
unknown functions ϕi and ψi (γ, β1 and β2 can provide additional unknowns, depending on the
ansatz in question). Indeed, calculating the derivatives Ut, Ux, Uxx with the help of ansatz (8)
and substituting them into system (6), one obtains an expression, which can be splitted into
separate parts for the powers of x. Simultaneously the restriction on coefficients

b1 = b2 = 0 (13)

is required (otherwise ϕ1 = ψ1 = ϕ2 = ψ2 = 0) and then a correctly-specified ODE system for
the functions ϕi and ψi has the form

ϕ̇0 = 2ϕ0ϕ2 +
1
α1
ϕ2

1 + α1(h1 + a1ϕ0 + c1ψ0),

ψ̇0 = 2ψ0ψ2 +
1
α2
ψ2

1 + α2(h2 + a2ψ0 + c2ϕ0),

ϕ̇1 =
2α1 + 4
α1

ϕ1ϕ2 + α1(a1ϕ1 + c1ψ1),

ψ̇1 =
2α2 + 4
α2

ψ1ψ2 + α2(a2ψ1 + c2ϕ1),

ϕ̇2 =
2α1 + 4
α1

ϕ2
2 + α1(a1ϕ2 + c1ψ2),

ψ̇2 =
2α2 + 4
α2

ψ2
2 + α2(a2ψ2 + c2ϕ2). (14)

Finally, given any solution of the ODE system (14), one constructs an exact solution of DDLV
system (4), (13) of the form

U =
(
ϕ0 + ϕ1x+ ϕ2x

2
)1/α1 , V =

(
ψ0 + ψ1x+ ψ2x

2
)1/α2 . (15)

In the case of ansatz (9), two different subcases are obtained, namely: (i) α1 �= −1 and
α2 �= −1; (ii) α1 = α2 = −1.

The first subcase leads to the requirement ϕ1 = ψ1 = 0 and then the ansatz reduces to
a particular case of the ansatz (10) that will be considered below. Consider the second subcase.
In a similar way to the above calculation for the ansatz (8), I arrive at the coefficient restric-
tions (13) and also a1 +c1 = a2 +c2, together with the following correctly-specified ODE system
for the functions γ, ϕi and ψi

γ̇ = ϕ1γ
2, ψ1 = ϕ1, ϕ̇1 = −(a1 + c1)ϕ1,

ϕ̇0 = − (h1 + a1ϕ0 + c1ψ0 + ϕ2
1

)
,

ψ̇0 = − (h2 + a2ψ0 + c2ϕ0 + ψ2
1

)
,

ϕ̇2 = γ2ϕ0ϕ2 − 2γϕ1ϕ2 − (a1ϕ2 + c1ψ2),
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ψ̇2 = γ2ψ0ψ2 − 2γψ1ψ2 − (a2ψ2 + c2ϕ2). (16)

Thus, any solution of (16) generates an exact solution of the form

U = (ϕ0 + ϕ1x+ ϕ2 exp γx)−1, V = (ψ0 + ψ1x+ ψ2 exp γx)−1 (17)

of the DDLV system

Ut =
(
U−1Ux

)
x

+ U(a1 + h1U + c1 U/V ),

Vt =
(
V −1Vx

)
x

+ V (a2 + h2V + c2 V/U), (18)

where a1 + c1 = a2 + c2.
Analogously, the ansätze (10) and (11) have been analysed and the two different subcases

listed above were found too. Considering the subcase (i), I have obtained the restriction on
coefficients

γ1 = −γ2 =

√
− b1α2

1

α1 + 1
=

√
− b2α2

2

α2 + 1
≡ γ (19)

for both ansätze. To find real solutions ansatz (10) can be applied only for bk
αk+1 < 0, k = 1, 2

while ansatz (11) works only for bk
αk+1 > 0, k = 1, 2. The relevant ODE systems for finding the

functions ϕi and ψi have the form

ϕ̇0 = α1b1ϕ
2
0 + α1(h1 + a1ϕ0 + c1ψ0) − 4

α1
γ2ϕ1ϕ2,

ψ̇0 = α2b2ψ
2
0 + α2(h2 + a2ψ0 + c2ϕ0) − 4

α2
γ2ψ1ψ2,

ϕ̇1 = (2α1b1 + γ2)ϕ0ϕ1 + α1(a1ϕ1 + c1ψ1),

ψ̇1 = (2α2b2 + γ2)ψ0ψ1 + α2(a2ψ1 + c2ϕ1),

ϕ̇2 = (2α1b1 + γ2)ϕ0ϕ2 + α1(a1ϕ2 + c1ψ2),

ψ̇2 = (2α2b2 + γ2)ψ0ψ2 + α2(a2ψ2 + c2ϕ2) (20)

and

ϕ̇0 = α1b1ϕ
2
0 + α1(h1 + a1ϕ0 + c1ψ0) − γ2

α1

(
ϕ2

1 + ϕ2
2

)
,

ψ̇0 = α2b2ψ
2
0 + α2(h2 + a2ψ0 + c2ϕ0) − γ2

α2

(
ψ2

1 + ψ2
2

)
,

ϕ̇1 = (2b1α1 + γ2)ϕ0ϕ1 + α1(a1ϕ1 + c1ψ1),

ψ̇1 = (2b2α2 + γ2)ψ0ψ1 + α2(a2ψ1 + c2ϕ1),

ϕ̇2 = (2b1α1 + γ2)ϕ0ϕ2 + α1(a1ϕ2 + c1ψ2),

ψ̇2 = (2b2α2 + γ2)ψ0ψ2 + α2(a2ψ2 + c2ϕ2) (21)

respectively. The resulting exact solutions of the DDLV system (4) take the form

U =
[
ϕ0(t) + ϕ1(t) exp(−γx) + ϕ2(t) exp(γx)

]1/α1 ,

V =
[
ψ0(t) + ψ1(t) exp(−γx) + ψ2(t) exp(γx)

]1/α2 (22)

and

U =
[
ϕ0(t) + ϕ1(t) cos(|γ|x) + ϕ2(t) sin(|γ|x)]1/α1 ,
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V =
[
ψ0(t) + ψ1(t) cos(|γ|x) + ψ2(t) sin(|γ|x)]1/α2 . (23)

In the subcase (ii), the restrictions

γ1 = −γ2 = γ ∈ R, b1 = b2 = 0 (24)

arise instead of (19). The corresponding systems of ODEs coincide with (20) and (21), in which
one needs to set bk = 0, αk = −1, k = 1, 2.

Finally, I have established that ansatz (12) can be applied only in the case ϕ2 = ψ2 = 0, i.e.
if one is reduced to a particular case of (10).

I have also investigated the direct generalization of (8) of the form

u = ϕ0 + ϕ1x+ · · · + ϕm1x
m1 , v = ψ0 + ψ1x+ · · · + ψm2x

m2 . (25)

It can be shown that ansatz (25) reduces system (6) to a correctly-specified ODE system only
in the cases m1 = m2 = 3 and m1 = m2 = 4 (otherwise ϕi = ψi = 0, i > 2). The corresponding
restrictions on the coefficients are as follows: α1 = α2 = −3

2 , b1 = b2 = 0 for m1 = m2 = 3 and
α1 = α2 = −4

3 , b1 = b2 = 0 for m1 = m2 = 4. The relevant ODE systems are omitted here but
one can find them in [4].

It should be noted that both exponents of power nonlinearities α = −3
2 and α = −4

3 were
earlier found (see [16,17] and [9]) to provide reductions of the single RD equation

Ut = (UαUx)x + a1U + c1U
1−α. (26)

3 Exact solutions of the DDLV system (2)

Consider system (2) and assume b1b2 �= 0 and c1c2 �= 0, i.e. the system contains quadratic
nonlinearities in the reaction terms and the equations are coupled. Taking into account [2, 3],
one easily observes that under these typical restrictions on coefficients, the DDLV system (2)
is invariant only with respect to the trivial algebra (5). So, one can find in that manner only
plane wave solutions of the form

U = ϕ(ω), V = ψ(ω), ω = k1x− k0t, (27)

where k0, k1 ∈ R and the functions ϕ and ψ are solutions of the reduced ODE system

k2
1(ϕϕω)ω + k0ϕω + ϕ(a1 + b1ϕ) + h1 + c1ψ = 0,

k2
1(ψψω)ω + k0ψω + ψ(a2 + b2ψ) + h2 + c2ϕ = 0. (28)

The ODE system (28) is not integrable for k1 �= 0, and only particular solutions can be find
(some of them are presented below). The case k1 = 0 of course leads to solutions which do not
depend on the space variable.

It turns out that a much wider class of exact solutions of the DDLV system (2) can be
constructed using the non-Lie reductions presented in Section 3. Consider the ODE system (20)
with α1 = α2 = 1. As it was shown above, this system is obtained from system (2) using the
ansatz

U = ϕ0(t) + ϕ1(t) exp(−γx) + ϕ2(t) exp(γx),
V = ψ0(t) + ψ1(t) exp(−γx) + ψ2(t) exp(γx), (29)

where γ =
√

b
2 , b = −b1 = −b2 > 0.
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It can be noted that the ODE system (20) admits essential simplification for ϕ2 = ψ2 = 0,
reducing to

ϕ̇0 = −bϕ2
0 + h1 + a1ϕ0 + c1ψ0, ψ̇0 = −bψ2

0 + h2 + a2ψ0 + c2ϕ0,

ϕ̇1 = −3
2
bϕ0ϕ1 + a1ϕ1 + c1ψ1, ψ̇1 = −3

2
bψ0ψ1 + a2ψ1 + c2ϕ1. (30)

Now one observes that the first two equations of (30) decouple. Formally speaking, this
subsystem has four steady-state solutions. I assume that there is at least one real solution
among them, say (U0, V0). In other words, (U0, V0) is a real solution of the system of algebraic
equations

bU2
0 = h1 + a1U0 + c1V0, bV 2

0 = h2 + a2V0 + c2U0. (31)

Substituting ϕ0 = U0, ψ0 = V0 into the last two equation of (30), one arrives at a linear ODE
system

ϕ̇1 =
(
a1 − 3

2
bU0

)
ϕ1 + c1ψ1, ψ̇1 = c2ϕ1 +

(
a2 − 3

2
bV0

)
ψ1. (32)

According to the classical theory of linear ODE systems, the form of the general solution of (32)
depends on �1 = [(a1 − a2) + 3

2b(V0 − U0)]2 + 4c1c2. So I obtain the following general solutions
of (32):

if �1 > 0 then

ϕ1 = e1c1 exp(s1t) + e2

(
s2 − a2 +

3
2
bV0

)
exp(s2t),

ψ1 = e1

(
s1 − a1 +

3
2
bU0

)
exp(s1t) + e2c2 exp(s2t), (33)

where s1,2 = 1
2

[
a1 + a2 − 3

2b(U0 + V0) ±
√�1

]
;

if �1 < 0 then

ϕ1 = c1 exp(pt)(e1 sin(qt) + e2 cos(qt)),

ψ1 = exp(pt)
[(
e1

(
p− a1 +

3
2
bU0

)
− e2q

)
sin(qt)

+
(
e1q + e2

(
p− a1 +

3
2
bU0

))
cos(qt)

]
, (34)

where p = 1
2

(
a1 + a2 − 3

2b(U0 + V0)
)
, q = 1

2

√−�1;
if �1 = 0 then

ϕ1 = (e1c1t+ c2) exp(st),

ψ1 =
[
e1(1 ±√−c1c2t) ± e2

√−c2
c1

]
exp(st)m, (35)

where s = 1
2

[
a1 + a2 − 3

2b(U0 + V0)
]
. Here e1 and e2 are arbitrary constants.

Thus, three two-parameter families of exact solutions of the DDLV system

Ut = (UUx)x + U(a1 − bU) + h1 + c1V,

Vt = (V Vx)x + V (a2 − bV ) + h2 + c2U (36)
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of the form

U = U0 + ϕ1(t) exp

(
−
√
b

2
x

)
, V = V0 + ψ1(t) exp

(
−
√
b

2
x

)
(37)

can be constructed. Of course, each family arises only if the coefficients of the DDLV system (36)
satisfy the relevant conditions on �1.

It should be stressed that any exact solution (37) with ϕ1(t) and ψ1(t) given by (33)–(35)
is a non-Lie solution of the DDLV system (36) if e1e2 �= 0. In fact, it is easily seen that this
solution cannot be reduced to the form (27), i.e. it cannot be obtained using the Lie symmetries
of the DDLV system (36). However, one observes that all solutions obtained, except the solution
generated by formulas (37) and (34), are reduced to the form (27) if e1 = 0. In other words,
these two-parameter families of solutions contain as subclasses one-parameter families of Lie
solutions.

Some other families of exact solutions of DDLV (2) are constructed in [4].
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