On the Deformations of Dorfman's and Sokolov's Operators

Jen-Hsu CHANG

Department of General Courses, Chung-Cheng Institute of Technology, National Defense University, Tau-Yuan County, Taiwan
E-mail: jhchang@ccit.edu.tw
We deform the Dorfman's and Sokolov's Hamiltonian operators by the quasi-Miura transformation coming from the topological field theory and investigate the deformed operators.

1 Introduction

The Dorfman's and Sokolov's Hamiltonian operators are defined respectively as $[2,11]\left(D=\partial_{x}\right)$

$$
\begin{align*}
& J=D \frac{1}{v_{x}} D \frac{1}{v_{x}} D, \tag{1}\\
& S=v_{x} D^{-1} v_{x}, \tag{2}
\end{align*}
$$

which are Hamiltonian operators (or $J^{-1}=D^{-1} v_{x} D^{-1} v_{x} D^{-1}$ and $S^{-1}=\frac{1}{v_{x}} D \frac{1}{v_{x}}$ are symplectic operators). The Dorfman's operator J (or J^{-1}) and the Sokolov's operator S are related to integrable equations as follows.

- The Riemann hierarchy

$$
\begin{align*}
v_{t_{n}} & =v^{n} v_{x}=S \delta H_{n}=\frac{1}{(n+1)(2 n+1)} K \delta H_{n+1}=\frac{1}{(n+1)(n+2)} D \delta H_{n+2} \\
& =\frac{1}{(n+1)(n+2)(n+3)(n+4)} J \delta H_{n+4}, \tag{3}
\end{align*}
$$

where

$$
K=D v+v D, \quad H_{n}=\int v^{n} d x, \quad n=1,2,3 \ldots,
$$

and δ is the variational derivative. When $n=1$, it is called the Riemann equation or dispersionless KdV equation. We notice that it seems that the Riemann hierarchy (3) is a quaterHamiltonian system. But one can show that S and J is not compatible, i.e., $S+\lambda J$ are not a Hamiltonian operator for any $\lambda \neq 0$ (see below).

- The Schwarzian KdV equation [10,13]

$$
\begin{equation*}
v_{t}=v_{x x x}-\frac{3}{2} \frac{v_{x x}^{2}}{v_{x}}=v_{x}\{v, x\}=S \delta H_{1}=J^{-1} \delta H_{2}, \tag{4}
\end{equation*}
$$

where $\{v, x\}$ is the Schwartz derivative and

$$
H_{1}=\frac{1}{2} \int\left(v_{x}^{-2} v_{x x}^{2}\right) d x, \quad H_{2}=\frac{1}{2} \int\left(-v_{x}^{-2} v_{x x x}^{2}+\frac{3}{4} v_{x}^{-4} v_{x x}^{4}\right) d x .
$$

Remark 1. It is not difficult to verify that J^{-1} is also a Hamiltonian operator and, then, J is also a symplectic operator; however, $S^{-1}=\frac{1}{v_{x}} D \frac{1}{v_{x}}$ is not a Hamiltonian operator and, then, S is not a symplectic operator.

Next, to deform the operators J and S, we use the free energy in topological field theory of the famous KdV equation

$$
\begin{equation*}
u_{t}=u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x} \tag{5}
\end{equation*}
$$

to construct the quasi-Miura transformation as follows. The free energy F of KdV equation (5) in TFT has the form $\left(F_{0}=\frac{1}{6} v^{3}\right)$

$$
F=\frac{1}{6} v^{3}+\sum_{g=1}^{\infty} \epsilon^{2 g-2} F_{g}\left(v ; v_{x}, v_{x x}, v_{x x x}, \ldots, v^{(3 g-2)}\right)
$$

Let

$$
\begin{aligned}
\triangle F= & \sum_{g=1}^{\infty} \epsilon^{2 g-2} F_{g}\left(v ; v_{x}, v_{x x}, v_{x x x}, \ldots, v^{(3 g-2)}\right) \\
= & F_{1}\left(v ; v_{x}\right)+\epsilon^{2} F_{2}\left(v ; v_{x}, v_{x x}, v_{x x x}, v_{x x x x}\right) \\
& +\epsilon^{4} F_{3}\left(v ; v_{x}, v_{x x}, v_{x x x}, v_{x x x x}, \ldots, v^{(7)}\right)+\cdots .
\end{aligned}
$$

The $\triangle F$ will satisfy the loop equation [4, p. 151]

$$
\begin{align*}
\sum_{r \geq 0} & \frac{\partial \triangle F}{\partial v^{(r)}} \partial_{x}^{r} \frac{1}{v-\lambda}+\sum_{r \geq 1} \frac{\partial \triangle F}{\partial v^{(r)}} \sum_{k=1}^{r}\binom{r}{k} \partial_{x}^{k-1} \frac{1}{\sqrt{v-\lambda}} \partial_{x}^{r-k+1} \frac{1}{\sqrt{v-\lambda}} \\
& =\frac{1}{16 \lambda^{2}}-\frac{1}{16(v-\lambda)^{2}}-\frac{\kappa_{0}}{\lambda^{2}} \\
& +\frac{\epsilon^{2}}{2} \sum_{k, l \geq 0}\left[\frac{\partial^{2} \triangle F}{\partial v^{(k)} \partial v^{(l)}}+\frac{\partial \triangle F}{\partial v^{(k)}} \frac{\partial \triangle F}{\partial v^{(l)}}\right] \partial_{x}^{k+1} \frac{1}{\sqrt{v-\lambda}} \partial_{x}^{l+1} \frac{1}{\sqrt{v-\lambda}} \\
& -\frac{\epsilon^{2}}{16} \sum_{k \geq 0} \frac{\partial \triangle F}{\partial v^{(k)}} \partial_{x}^{k+2} \frac{1}{(v-\lambda)^{2}} \tag{6}
\end{align*}
$$

Then we can determine $F_{1}, F_{2}, F_{3}, \ldots$ recursively by substituting $\triangle F$ into equation (6). For F_{1}, one obtains

$$
\frac{1}{v-\lambda} \frac{\partial F_{1}}{\partial v}-\frac{3}{2} \frac{v_{x}}{(v-\lambda)^{2}} \frac{\partial F_{1}}{\partial v_{x}}=\frac{1}{16 \lambda^{2}}-\frac{1}{16(v-\lambda)^{2}}-\frac{\kappa_{0}}{\lambda^{2}} .
$$

From this, we have

$$
\kappa_{0}=\frac{1}{16}, \quad F_{1}=\frac{1}{24} \log v_{x} .
$$

For the next terms $F_{2}\left(v ; v_{x}, v_{x x}, v_{x x x}, v_{x x x x}\right)$, it can be similarly computed and the result is

$$
F_{2}=\frac{v_{x x x x}}{1152 v_{x}^{2}}-\frac{7 v_{x x} v_{x x x}}{1920 v_{x}^{3}}+\frac{v_{x x}^{3}}{360 v_{x}^{4}} .
$$

Now, one can define the quasi-Miura transformation as

$$
\begin{align*}
u & =v+\epsilon^{2}(\triangle F)_{x x}=v+\epsilon^{2}\left(F_{1}\right)_{x x}+\epsilon^{4}\left(F_{2}\right)_{x x}+\cdots \\
& =v+\frac{\epsilon^{2}}{24}\left(\log v_{x}\right)_{x x}+\epsilon^{4}\left(\frac{v_{x x x x}}{1152 v_{x}^{2}}-\frac{7 v_{x x} v_{x x x}}{1920 v_{x}^{3}}+\frac{v_{x x}^{3}}{360 v_{x}^{4}}\right)_{x x}+\cdots . \tag{7}
\end{align*}
$$

One remarks that Miura-type transformation means the coefficients of ϵ are homogeneous polynomials in the derivatives $v_{x}, v_{x x}, \ldots, v^{(m)}[4$, p. 37], [5] and "quasi" means the ones of ϵ are quasi-homogeneous rational functions in the derivatives, too [4, p. 109] (see also [12]).

The truncated quasi-Miura transformation

$$
\begin{equation*}
u=v+\sum_{n=1}^{g} \epsilon^{2 n}\left[F_{n}\left(v ; v_{x}, v_{x x}, \ldots, v^{(3 g-2)}\right)\right]_{x x} \tag{8}
\end{equation*}
$$

has the basic property [4, p. 117] that it reduces the Magri-Poisson pencil [6] of KdV equation (5)

$$
\begin{equation*}
\{u(x), u(y)\}_{\lambda}=[u(x)-\lambda] D \delta(x-y)+\frac{1}{2} u_{x}(x) \delta(x-y)+\frac{\epsilon^{2}}{8} D^{3} \delta(x-y) \tag{9}
\end{equation*}
$$

to the Poisson pencil of the Riemann hierarchy (3):

$$
\begin{equation*}
\{v(x), v(y)\}_{\lambda}=[v(x)-\lambda] D \delta(x-y)+\frac{1}{2} v_{x}(x) \delta(x-y)+O\left(\epsilon^{2 g+2}\right) . \tag{10}
\end{equation*}
$$

One can also say that the truncated quasi-Miura transformation (8) deforms the KdV equation (5) to the Riemann equation $v_{t}=v v_{x}$ up to $O\left(\epsilon^{2 g+2}\right)$.

Remark 2. A simple calculation shows that, under the transformation $u=\frac{\epsilon^{2}}{4}\{m, x\}$, the KdV equation (5) is transformed into the Schwarzian KdV equation

$$
m_{t}=\frac{\epsilon^{2}}{12} m_{x}\{m, x\}=\frac{\epsilon^{2}}{12}\left(m_{x x x}-\frac{3}{2} \frac{m_{x x}^{2}}{m_{x}}\right) .
$$

Furthermore, after a direct calculation, one can see that the Magri Poisson bracket

$$
\begin{equation*}
K(\epsilon)=\{u(x), u(y)\}=u(x) D \delta(x-y)+\frac{1}{2} u_{x}(x) \delta(x-y)+\frac{\epsilon^{2}}{8} D^{3} \delta(x-y) \tag{11}
\end{equation*}
$$

is transformed into the Dorfman's symplectic operator $J^{-1}(m=v)$

$$
\{m(x), m(y)\}=-\frac{\epsilon^{2}}{8} D^{-1} m_{x} D^{-1} m_{x} D^{-1} \delta(x-y)
$$

Now, a natural question arises: under the truncated quasi-Miura transformation (8), are the deformed Dorfman's operator $J(\epsilon)$ and Sokolov's operator $S(\epsilon)$ still Hamiltonian operators up to $O\left(\epsilon^{2 g+2}\right)$? For simplicity, we consider only the case $g=1$, i.e.,

$$
\begin{equation*}
u=v+\frac{\epsilon^{2}}{24}\left(\log v_{x}\right)_{x x}+O\left(\epsilon^{4}\right) \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
v=u-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x}+O\left(\epsilon^{4}\right) \tag{13}
\end{equation*}
$$

The answer is true for the Dorfman's operator $J(\epsilon)$ but it is false for the Sokolov's operator $S(\epsilon)$. It is the purpose of this article.

2 Deformations under quasi-Miura transformation

In the new " u-coordinate", J and S will be given by the operators

$$
\begin{align*}
& J(\epsilon)=M^{*} D \frac{1}{u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}} D \frac{1}{u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}} D M+O\left(\epsilon^{4}\right), \tag{14}\\
& S(\epsilon)=M^{*}\left(u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}\right) D^{-1}\left(u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}\right) M+O\left(\epsilon^{4}\right), \tag{15}
\end{align*}
$$

where

$$
\begin{equation*}
M=1-\frac{\epsilon^{2}}{24} D \frac{1}{u_{x}} D^{2}, \quad M^{*}=1+\frac{\epsilon^{2}}{24} D^{2} \frac{1}{u_{x}} D, \tag{16}
\end{equation*}
$$

M^{*} being the adjoint operator of M. Then we have the following
Theorem 1. 1. $J(\epsilon)$ is a Hamiltonian operator up to $O\left(\epsilon^{4}\right)$. 2. $S(\epsilon)$ is not a Hamiltonian operator up to $O\left(\epsilon^{4}\right)$.
Proof. 1. The fact that $J(\epsilon)$ is a skew-adjoint (or $J^{*}(\epsilon)=-J(\epsilon)$) differential operator (up to $O\left(\epsilon^{4}\right)$) follows immediately from (14). Rather than prove the Poisson form [7] of the Jacobi identity for $J(\epsilon)$, it is simpler to prove that the symplectic two-form

$$
\Omega_{J}(\epsilon)=\int\left\{d u \wedge J(\epsilon)^{-1} d u\right\} d x+O\left(\epsilon^{4}\right)
$$

is closed $[8,9]: d \Omega_{J}(\epsilon)=O\left(\epsilon^{4}\right)$.
A simple calculation can yield

$$
\begin{aligned}
J(\epsilon)^{-1}= & \left(1+\frac{\epsilon^{2}}{24} D \frac{1}{u_{x}} D^{2}\right) D^{-1}\left(u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}\right) D^{-1} \\
& \times\left(u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}\right) D^{-1}\left(1-\frac{\epsilon^{2}}{24} D^{2} \frac{1}{u_{x}} D\right) \\
= & \left(D^{-1} u_{x}-\frac{\epsilon^{2}}{24} D^{-1}\left(\log u_{x}\right)_{x x x}+\frac{\epsilon^{2}}{24} D \frac{1}{u_{x}} D u_{x}\right) D^{-1} \\
& \times\left(u_{x} D^{-1}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x} D^{-1}-\frac{\epsilon^{2}}{24} u_{x} D \frac{1}{u_{x}} D\right)+O\left(\epsilon^{4}\right) \\
= & D^{-1} u_{x} D^{-1} u_{x} D^{-1}+\frac{\epsilon^{2}}{24}\left[D \frac{1}{u_{x}} D u_{x} D^{-1} u_{x} D^{-1}-D^{-1}\left(\log u_{x}\right)_{x x x} D^{-1} u_{x} D^{-1}\right. \\
& \left.-D^{-1} u_{x} D^{-1} u_{x} D \frac{1}{u_{x}} D-D^{-1} u_{x} D^{-1}\left(\log u_{x}\right)_{x x x} D^{-1}\right]+O\left(\epsilon^{4}\right) \\
= & D^{-1} u_{x} D^{-1} u_{x} D^{-1} \\
& +\frac{\epsilon^{2}}{24}\left[D u_{x} D^{-1}-D^{-1} u_{x} D+\left(\log u_{x}\right)_{x} u_{x} D^{-1}+D^{-1}\left(\log u_{x}\right)_{x} u_{x}\right]+O\left(\epsilon^{4}\right) .
\end{aligned}
$$

Let ψ denote the potential function for u, i.e., $u=\psi_{x}$. Thus, formally,

$$
D_{x}^{-1}(d u)=d \psi
$$

and hence, after a series of integration by parts, one has

$$
\begin{aligned}
\Omega_{J}(\epsilon)= & \int\left\{\left[\left(D^{-1} d\left(\frac{\psi_{x}^{2}}{2}\right)\right) \wedge d\left(\frac{\psi_{x}^{2}}{2}\right)-\psi_{x} d \psi \wedge d\left(\frac{\psi_{x}^{2}}{2}\right)\right]\right. \\
& \left.+\frac{\epsilon^{2}}{24}\left[2 \psi_{x x} d \psi \wedge d \psi_{x x}+2 \psi_{x x x} d \psi_{x} \wedge d \psi\right]\right\} d x+O\left(\epsilon^{4}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
d \Omega_{J}(\epsilon) & =\int\left\{0+\frac{\epsilon^{2}}{12}\left[d \psi_{x x x} \wedge d \psi_{x} \wedge d \psi\right]\right\} d x+O\left(\epsilon^{4}\right) \\
& =\frac{\epsilon^{2}}{12} \int\left\{\left(d \psi_{x x} \wedge d \psi_{x} \wedge d \psi\right)_{x}\right\} d x+O\left(\epsilon^{4}\right)=O\left(\epsilon^{4}\right) .
\end{aligned}
$$

This completes the proof of (1).
2. The skew-adjoint property of the deformed Sokolov's operator $S(\epsilon)(15)$ is obvious. To see whether $S(\epsilon)$ is Hamiltonian operator or not, we must check whether $S(\epsilon)$ satisfies the Jacobi identity up to $O\left(\epsilon^{4}\right)$. Following $[7,8]$, we introduce the arbitrary basis of tangent vector Θ, which is then conveniently manipulated according to the rules of exterior calculus. The Jacobi identity is given by the compact expression

$$
\begin{equation*}
\left.P(\epsilon) \wedge \delta I=O\left(\epsilon^{4}\right) \quad \text { (mod. div. }\right), \tag{17}
\end{equation*}
$$

where $P(\epsilon)=S(\epsilon) \Theta, I=\frac{1}{2} \Theta \wedge P(\epsilon)$ and δ denotes the variational derivative. The vanishing of the tri-vector (17) modulo a divergence is equivalent to the satisfaction of the Jacobi identity.

After a tedious calculation, one can obtain

$$
\begin{aligned}
S(\epsilon)= & M^{*}\left(u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}\right) D^{-1}\left(u_{x}-\frac{\epsilon^{2}}{24}\left(\log u_{x}\right)_{x x x}\right) M+O\left(\epsilon^{4}\right) \\
= & {\left[u_{x}+\frac{\epsilon^{2}}{24}\left(D^{3}+D^{2}\left(\log u_{x}\right)_{x}-\left(\log u_{x}\right)_{x x x}\right)\right] D^{-1} } \\
& \times\left[u_{x}-\frac{\epsilon^{2}}{24}\left(D^{3}-\left(\log u_{x}\right)_{x} D^{2}+\left(\log u_{x}\right)_{x x x}\right)\right]+O\left(\epsilon^{4}\right) \\
= & u_{x} D^{-1} u_{x}+\frac{\epsilon^{2}}{24}\left[D^{2} u_{x}+D^{2}\left(\log u_{x}\right)_{x} D^{-1} u_{x}-\left(\log u_{x}\right)_{x x x} D^{-1} u_{x}-u_{x} D^{2}\right. \\
& \left.+u_{x} D^{-1}\left(\log u_{x}\right)_{x} D^{2}-u_{x} D^{-1}\left(\log u_{x}\right)_{x x x}\right]+O\left(\epsilon^{4}\right) \\
= & u_{x} D^{-1} u_{x}+\frac{\epsilon^{2}}{24}\left[D^{2} u_{x}-u_{x} D^{2}+\left(\log u_{x}\right)_{x} D u_{x}+u_{x} D\left(\log u_{x}\right)_{x}\right]+O\left(\epsilon^{4}\right) \\
= & u_{x} D^{-1} u_{x}+\frac{\epsilon^{2}}{12}\left[D u_{x x}+u_{x x} D\right]+O\left(\epsilon^{4}\right) .
\end{aligned}
$$

So

$$
P(\epsilon)=S(\epsilon) \Theta=u_{x} D^{-1}\left(u_{x} \Theta\right)+\frac{\epsilon^{2}}{12}\left[2 u_{x x} \Theta_{x}+u_{x x x} \Theta\right]+O\left(\epsilon^{4}\right) .
$$

Hence

$$
I=\frac{1}{2} \Theta \wedge P(\epsilon)=\frac{1}{2} u_{x} \Theta \wedge D^{-1}\left(u_{x} \Theta\right)+\frac{\epsilon^{2}}{12} u_{x x} \Theta \wedge \Theta_{x}+O\left(\epsilon^{4}\right)
$$

and then

$$
\begin{aligned}
\delta I & =-\frac{1}{2}\left[\Theta \wedge D^{-1}\left(u_{x} \Theta\right)\right]_{x}-\frac{1}{2} u_{x} \Theta \wedge D^{-1}\left(\Theta_{x}\right)+\frac{\epsilon^{2}}{12}\left[\Theta \wedge \Theta_{x}\right]_{x x}+O\left(\epsilon^{4}\right) \\
& =-\frac{1}{2} \Theta_{x} \wedge D^{-1}\left(u_{x} \Theta\right)+\frac{\epsilon^{2}}{12}\left[\Theta \wedge \Theta_{x}\right]_{x x}+O\left(\epsilon^{4}\right) .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
P(\epsilon) \wedge \delta I= & \left\{u_{x} D^{-1}\left(u_{x} \Theta\right)+\frac{\epsilon^{2}}{12}\left[2 u_{x x} \Theta_{x}+u_{x x x} \Theta\right]\right\} \\
& \wedge\left\{-\frac{1}{2} \Theta_{x} \wedge D^{-1}\left(u_{x} \Theta\right)+\frac{\epsilon^{2}}{12}\left[\Theta \wedge \Theta_{x}\right]_{x x}\right\}+O\left(\epsilon^{4}\right) \\
= & 0+\frac{\epsilon^{2}}{12}\left\{-\frac{1}{2} u_{x x x} \Theta \wedge \Theta_{x} \wedge D^{-1}\left(u_{x} \Theta\right)+u_{x x x} D^{-1}\left(u_{x} \Theta\right) \wedge \Theta \wedge \Theta_{x}\right. \\
& \left.+3 u_{x x} u_{x} \Theta \wedge \Theta \wedge \Theta_{x}+u_{x}^{2} \Theta_{x} \wedge \Theta \wedge \Theta_{x}\right\}+O\left(\epsilon^{4}\right) \\
= & 0+\frac{\epsilon^{2}}{24} u_{x x x} \Theta \wedge \Theta_{x} \wedge D^{-1}\left(u_{x} \Theta\right)
\end{aligned}
$$

which can be easily checked that it cannot be expressed as a total divergence. So $S(\epsilon)$ cannot satisfy the Jacobi identity and therefore $S(\epsilon)$ is not a Hamiltonian operator. This completes the proof of (2).

Remark 3. Using the technics of the last proof, one can show that J and S is not compatible. Since J and S are Hamiltonian operators, what we are going to do is show that $[7,8]$

$$
\tilde{Q}(\Theta) \wedge \delta R+Q(\Theta) \wedge \delta \tilde{R} \neq 0 \quad(\text { mod. } \quad \text { div. })
$$

where

$$
\begin{aligned}
& Q(\Theta)=v_{x} D^{-1}\left(v_{x} \Theta\right), \quad R=\frac{1}{2} \Theta \wedge Q(\Theta) \\
& \tilde{Q}(\Theta)=\left(\frac{1}{v_{x}}\left(\frac{\Theta x}{v_{x}}\right)_{x}\right)_{x}, \quad \tilde{R}=\frac{1}{2} \Theta \wedge \tilde{Q}(\Theta)=-\frac{1}{2 v_{x}^{2}} \Theta_{x} \wedge \Theta_{x x} .
\end{aligned}
$$

Then

$$
\delta R=\frac{-1}{2}\left[\Theta \wedge D^{-1}\left(v_{x} \Theta\right)\right]_{x}-\frac{1}{2} v_{x} \Theta \wedge D^{-1}\left(\Theta_{x}\right)=\frac{-1}{2} \Theta_{x} \wedge D^{-1}\left(v_{x} \Theta\right)
$$

and

$$
\delta \tilde{R}=-\left(\frac{1}{v_{x}^{3}} \Theta_{x} \wedge \Theta_{x x}\right)_{x}
$$

Hence

$$
\begin{aligned}
& \tilde{Q}(\Theta) \wedge \delta R+Q(\Theta) \wedge \delta \tilde{R} \\
&=\left(\frac{1}{v_{x}}\left(\frac{\Theta_{x}}{v_{x}}\right)_{x}\right)_{x} \wedge\left(\frac{-1}{2} \Theta_{x} \wedge D^{-1}\left(v_{x} \Theta\right)\right)-v_{x} D^{-1}\left(v_{x} \Theta\right) \wedge\left(\frac{1}{v_{x}^{3}} \Theta_{x} \wedge \Theta_{x x}\right)_{x} \\
&= \frac{1}{2} \frac{1}{v_{x}}\left(\frac{\Theta_{x}}{v_{x}}\right)_{x} \wedge\left[\Theta_{x x} \wedge D^{-1}\left(v_{x} \Theta\right)+v_{x} \Theta_{x} \wedge \Theta\right] \\
&+\left[v_{x x} D^{-1}\left(v_{x} \Theta\right)+v_{x}^{2} \Theta\right] \wedge\left(\frac{1}{v_{x}^{3}} \Theta_{x} \wedge \Theta_{x x}\right) \\
&= \frac{1}{2 v_{x}} \Theta_{x x} \wedge \Theta_{x} \wedge \Theta-\frac{v_{x x}}{2 v_{x}^{3}} \Theta_{x} \wedge \Theta_{x x} \wedge D^{-1}\left(v_{x} \Theta\right) \\
&+\frac{v_{x x}}{v_{x}^{3}} D^{-1}\left(v_{x} \Theta\right) \wedge \Theta_{x} \wedge \Theta_{x x}+\frac{1}{v_{x}} \Theta \wedge \Theta_{x} \wedge \Theta_{x x} \\
&= \frac{1}{2 v_{x}} \Theta \wedge \Theta_{x} \wedge \Theta_{x x}+\frac{v_{x x}}{2 v_{x}^{3}} \Theta_{x} \wedge \Theta_{x x} \wedge D^{-1}\left(v_{x} \Theta\right) \\
& \neq 0 \quad(\bmod . \text { div. })
\end{aligned}
$$

as required.

3 Concluding remarks

- That $J(\epsilon)$ is a Hamiltonian operator (up to $O\left(\epsilon^{4}\right)$) is proved in [1]. We give another proof here, which remarkably simplifies the proof given in [1].
- We notice that all the deformed operators $J(\epsilon)(14), D(\epsilon)\left(=D+O\left(\epsilon^{4}\right)\right), K(\epsilon)(11)$ under the quasi-Miura transformation (7) are Hamiltonian operators (up to $O\left(\epsilon^{4}\right)$). That the deformed Sokolov's operator $S(\epsilon)$ is not Hamiltonian is a little surprising that means that the Poisson bracket of the Hamiltonians $H_{m}(u ; \epsilon), H_{n}(u ; \epsilon)$ for $S(\epsilon)$

$$
\left\{H_{m}(u ; \epsilon), H_{n}(u ; \epsilon)\right\}_{S(\epsilon)}
$$

will not be $O\left(\epsilon^{4}\right)$ but $O\left(\epsilon^{2}\right)$, i.e., it cannot be a conserved quantity of the Riemann hierarchy (3).

Acknowledgments

The author thanks for the support of National Science Council under grant no. NSC 91-2115-M-014-001.
[1] Chang J.H., Rational approximate symmetries of KdV equation, J. Phys. A: Math. Gen., 2003, V.36, 80258034; nlin.SI/0211032.
[2] Dorfman I., The Krichever-Novikov equation and local symplectic structures, Dokl. Akad. Nauk SSSR, 1988, V.302, 792-795.
[3] Dorfman I., Dirac structures and integrability of non-linear evolution equations, England, John Wiley \& Sons Ltd, 1993.
[4] Dubrovin B. and Zhang Y.J., Normal forms of hierarchies of integrable PDES, Frobenius manifolds and Gromov-Witten invariants, math.DG/0108160.
[5] Lorenzoni P., Deformations of bi-Hamiltonian structures of hydrodynamic type, J. Geom. and Phys., 2002, V.44, 331-375.
[6] Magri F., A simple construction of integrable systems, J. Math. Phys., 1978, V.19, 1156-1162.
[7] Olver P.J., Applications of Lie groups to differential equations, New York, Springer-Verlag, 1993.
[8] Olver P.J. and Nutku Y., Hamiltonian structures for systems of hyperbolic conservational laws, J. Math. Phys, 1988, V.29, 1610-1619.
[9] Olver P.J., On the Hamiltonian structure of evolution equations, Math. Proc. Camb. Phil. Soc., 1980, V.88, 71-88.
[10] Krichever I.M. and Novikov S.P., Holomorphic bundles and nonlinear equations. Finite-gap solutions of rank 2, Dokl. Akad. Nauk SSSR, 1979, V.247, 33-37.
[11] Sokolov V.V., Hamiltonian property of the Krichever-Novikov equation, Dokl. Akad. Nauk SSSR, 1984, V.277, N 1, 48-50.
[12] Strachan I.A.B., Deformations of the Monge/Riemann hierarchy and approximately integrable systems, nlin.SI/0205051.
[13] Wilson G., On the quasi-Hamiltonian formalism of KdV equation, Phys. Lett. A, 1988, V.132, 445-450.

