On Equivariant Boundary Value Problems

Vladimir P. BURSKII

Institute of Applied Mathematics and Mechanics, 74 Luxemburg Str., 83114 Donetsk, Ukraine E-mail: burskii@iamm.ac.donetsk.ua

We describe an investigation method of general equivariant boundary value problem for PDE of general form in a domain and show how it works for the case of simplest group $O(n, \mathbb{R})$.

1 Solvability conditions of equivariant expansion

Let $\Omega \subset \mathbb{R}^n$ be a domain, $\mathcal{L} = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ be some arbitrary differential operation with smooth coefficients $a_{\alpha}(x)$, \mathcal{L}^+ be a formally adjoint differential operation. Let L_0 , L_0^+ be minimal operators (i.e., for example, $D(L_0)$ is the clozure of $C_0^{\infty}(\Omega)$ in the norm of the graph $||u||_L^2 =$ $||u||_{L_2(\Omega)}^2 + ||Lu||_{L_2(\Omega)}^2)$, and L, L^+ be maximal expansions of $\mathcal{L}, \mathcal{L}^+$ in the space $L_2(\Omega)$ respectively (i.e. $L = (L_0^+)^*$, $L^+ = (L_0)^*$), $\tilde{L} = L|_{D(\tilde{L})}$ where $D(\tilde{L})$ is the clozure of $C^{\infty}(\bar{\Omega})$ in the norm of

the graph $||u||_L$ and it is analogous for \tilde{L}^+ .

M.Yo. Vishik introduced the conditions:

 V_1) the operator $L_0: D(L_0) \to L_2(\Omega)$ has a continuous left-inverse,

 V_2) the operator $L_0^+: D(L_0^+) \to L_2(\Omega)$ has a continuous left-inverse

and proved that

1) these conditions are necessary and sufficient for the existence of a solvable expansion L_B : $D(L_B) \to L_2(\Omega)$, (that is $D(L_0) \subset D(L_B)$, $\exists L_B^{-1}: L_2(\Omega) \to D(L_B)$);

2) under conditions V_1 , V_2) for any solvable expansion L_B the following decomposition of the domain D(L) is valid: $D(L) = D(L_0) + \ker L + B$, and $L: B \to \ker L^+$ is an isomorphism.

Let G be some Lie group, smoothly acting in the closed domain Ω . It means, that there is a group of diffeomorphisms $U_g: \overline{\Omega} \ni x \to g \cdot x = U_g(x) \in \overline{\Omega}$ of domain $\overline{\Omega}$ onto itself, group, smoothly depending on an element of G, and mapping $g \to U_g$ is a homomorphism of groups. Thus the contraction of diffeomorphisms U_g on boundary $\partial\Omega$ induces a smooth action of group G on boundary $\partial\Omega$.

The action of group G on domain $\overline{\Omega}$ generates a representation of the group G in function spaces: $(gu)(x) = u(g^{-1}x)$ (homomorphism of group G into group of converted operators). Such representation is induced on spaces $C_0^{\infty}(\Omega)$, $C^{\infty}(\Omega)$, $H^m(\Omega)$, $H^{-m}(\Omega)$, $\mathcal{D}'(\Omega)$, $H^{(m)}(\Omega)$, $H^{(-m)}(\Omega)$ and others. Let the differential operation \mathcal{L} be invariant with respect to the action of group G, that is $g(\mathcal{L}u) = \mathcal{L}(gu)$. Then spaces D(L), $D(L_0)$, C(L), ker L are invariant with respect to the action of the group.

If the action of group preserves the volume of the domain Ω then the scalar product in the space $L_2(\Omega)$ is invariant with respect to the action of group G, and consequently the representation of the group G is unitary in this space. In this case the operation \mathcal{L}^+ is also invariant with respect to an action of group G, the spaces $D(L^+)$, $D(L_0^+)$, $C(L^+)$, ker L^+ are invariant.

Boundary value problem

$$Lu = f, \qquad \Gamma u \in B,\tag{1}$$

generated by a subspace $B \subset C(L)$ of the boundary space $C(L) = D(L)/D(L_0)$ we shall name *G*-invariant, if the space *B* is invariant with respect to the indicated action of group *G*. A *G*-invariant boundary value problem we will name **equivariant**, if it is clear what group acts. If the group G is compact (and is continuous), then, as it is well known, the Hilbert space of representation is decomposed in the direct sum of finite-dimensional invariant subspaces, in which the irreducible representations of group G are induced. And if the group is also commutative, the irreducible representations are one-dimensional.

Let space of a representation of the group G be the boundary space C(L). For the case of compact group we have decompositions

$$C(L) = \sum_{k=0}^{\infty} \oplus \tilde{C}^k, \qquad C(\ker L) = \sum_{k=0}^{\infty} \oplus C^k(\ker L), \qquad B = \sum_{k=0}^{\infty} \oplus B^k.$$

If our *G*-invariant boundary value problem is well-posed, the decompositions in the direct sum $C(L) = C(\ker L) \oplus B$ imply decompositions in the direct sum $C^k := C^k(\ker L) \oplus B^k = \sum_l \tilde{C}^{k_l}$ with finite-dimensional projectors Π^k : $C^k \to C^k(\ker L)$ along B^k and now check of the well-

with finite-dimensional projectors $\Pi^{\kappa}: C^{\kappa} \to C^{\kappa}(\ker L)$ along B^{κ} and now check of the wellposedness of a *G*-invariant boundary value problem can be reduced to check of two properties:

1) $C^k(\ker L) \cap B^k = 0;$ 2) $\exists \kappa > 0, \quad \forall k, \quad \|\Pi^k\|_{C^k} < \kappa.$

Below we shall study a spectrum of an operator of a general well-posed equivariant boundary value problem for the Poisson equation in a disk and in a ball, detecting cases of violation of the well-posedness of the problem, which are expressed in violation of property 1). Thus the fulfilment of property 2) will be assured by the assumed property of the well-posedness of this problem for the Poisson equation.

2 Equivariant boundary value problems for the Helmholtz equation in a disk

Let us conduct evaluations on check of two properties of the well-posedness of a general equivariant boundary value problem in a simplest case. As the group we will choose group of rotations of the plane $SO(2, \mathbb{R})$. It is compact commutative group.

Let us consider the problem (1), where $\mathcal{L} = \Delta$ and L is the maximum operator generated by the Laplace operator Δ , invariant with respect to the action of rotations group, domain $\Omega = K = \{x \in \mathbb{R}^2 | |x| < 1\}$ is the disk. Let us remark, that here we have $L = \tilde{L}$, i.e. each function from D(L) can be approximated by smooth functions. Let us assume that this boundary value problem is *G*-invariant and is well-posed.

And we study such boundary value problem for the Helmholtz equation

$$L_{\lambda}v = \Delta v + \lambda^2 v = g, \qquad \Gamma v \in B,$$

where λ is a complex number. But in the beginning we study the boundary space $C(L_{\lambda})$ of the Helmholtz operator and its subspace $C(\ker L_{\lambda})$.

Boundary space consists of some pairs of functions $(u|_{\partial\Omega}, u'_{\nu}|_{\partial\Omega}) \in H^{-1/2}(\partial K) \times H^{-3/2}(\partial K)$, therefore a general boundary condition must have the form

$$Au|_{\partial K} + Bu'_{\nu}|_{\partial K} = 0$$

with some operators A, B. The G-invariance of this condition means the commutativity of operators A and B with all the representation operators. But, as it is well-known, a rotation invariant linear operator has a form of the convolution with a function. Therefore we will consider boundary value problems of the type:

$$\alpha * u|_{\partial K} - \beta * u'_{\nu}|_{\partial K} = 0,$$

where $\alpha = \sum \alpha_k e^{ik\tau}$; $\beta = \sum \beta_k e^{ik\tau}$ are functions on the boundary ∂K , * is the convolution on ∂K : $\alpha * \psi = \sum \alpha_k \psi_k e^{ik\tau}$.

The boundary condition for Fourier coefficients of functions $u|_{\partial\Omega}$, $u'_{\nu}|_{\partial\Omega}$ from the space B can be written in the form

$$\forall k \in \mathbb{Z}, \qquad \alpha_k a_k + \beta_k b_k = 0. \tag{2}$$

Let us designate by C^k an image of an enclosure $I_k: \mathbb{C}^2 \to C(L)$ acting by a rule $I_k: (a, b) \to (ae^{ik\tau}, be^{ik\tau})$. The boundary problem sets a subspace B of the space C(L), which, as we see, intersects each space C^k in a straight line. The well-posedness of our problem, i.e. expansion in the direct sum $C(L_\lambda) = B \oplus C(\ker L_\lambda)$, means now that

$$\exists A > 0, \quad \forall k \in \mathbb{Z}, \quad |\sin(B^k, C^k(\ker L_\lambda))| > A,$$

i.e.

$$\forall k, \quad \frac{|\beta_k \lambda J'_k(\lambda) - \alpha_k J_k(\lambda)|}{\sqrt{|\lambda J'_k(\lambda)|^2 + |J_k(\lambda)|^2}} > A > C \quad \text{at} \quad \lambda \neq 0$$

and

$$\frac{|k\beta_k - \alpha_k|}{\sqrt{k^2 + 1}} > A > 0 \quad \text{at} \quad \lambda = 0.$$

Proposition 1. The problem (2), which is well-posed for the equation $\Delta u = g$, is well-posed for the equation $\Delta u + \lambda^2 u = g$ at $\lambda \neq 0$ if and only if the following condition holds

$$\forall k, \quad |k\beta_k J_k^1(\lambda) - \alpha_k J_k^2(\lambda)| \neq 0$$

Proposition 2. Spectrum of the operator of well-posed boundary value problem (2) for the equation $\Delta u = g$ is a set $\bigcup_{k} \Sigma_k$, where Σ_k is the set of proper values of a form $-\lambda^2$ and λ runs all zeros of the equation

$$\beta_k \lambda J'_k(\lambda) - \alpha_k J_k(\lambda) = 0 \quad at \quad \lambda \neq 0.$$
(3)

Proposition 3. Spectrum of the operator of well-posed boundary value problem (2) for the equation $\Delta u = g$ is finite-to-one.

Proposition 4. Every well-posed G-invariant boundary value problem for the Poisson equation is quite correct, i.e. its solving operator is compact.

Propositions concerning the same equation on n-dimensional ball have similar formulations but the equation (3) has the following form:

$$\beta_l^1 \lambda J_{\nu+l}'(\lambda) - \beta_l^1 \nu J_{\nu+l}(\lambda) - \alpha_l^1 J_{\nu+l}(\lambda) = 0,$$

where $\nu = \frac{n}{2} - 1$, $l \in \mathbb{N} \cup 0$.

And the corresponding equivariant boundary value problem must have the following form:

$$u|_{\partial\Omega} * \alpha + u'_{\bar{\nu}}|_{\partial\Omega} * \beta = 0,$$

where $\alpha = \sum_{l=0}^{\infty} \sum_{k} \alpha_{l}^{k} H_{l}^{k}$, $\beta = \sum_{l=0}^{\infty} \sum_{k} \beta_{l}^{k} H_{l}^{k}$ are functions on sphere S^{n-1} , which are decomposed in Fourier series, * is convolution on $\partial \Omega$: $\psi * \alpha = \sum_{l=0}^{\infty} \sum_{k} \psi_{l}^{k} \alpha_{l}^{1} H_{l}^{k}$, what means, in particular, that we can omit tesseral (not zonal) parts in decomposition α and β .

^[1] Burskii V.P., Investigation methods of boundary value problem for general differential equations, Kyiv, Naukova Dumka, 2002 (in Russian).