On Equivariant Boundary Value Problems

Vladimir P. BURSKII

Institute of Applied Mathematics and Mechanics, 74 Luxemburg Str., 83114 Donetsk, Ukraine
E-mail: burskii@iamm.ac.donetsk.ua
We describe an investigation method of general equivariant boundary value problem for PDE of general form in a domain and show how it works for the case of simplest group $O(n, \mathbb{R})$.

1 Solvability conditions of equivariant expansion

Let $\Omega \subset \mathbb{R}^{n}$ be a domain, $\mathcal{L}=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ be some arbitrary differential operation with smooth coefficients $a_{\alpha}(x), \mathcal{L}^{+}$be a formally adjoint differential operation. Let L_{0}, L_{0}^{+}be minimal operators (i.e., for example, $D\left(L_{0}\right)$ is the clozure of $C_{0}^{\infty}(\Omega)$ in the norm of the graph $\|u\|_{L}^{2}=$ $\left.\|u\|_{L_{2}(\Omega)}^{2}+\|L u\|_{L_{2}(\Omega)}^{2}\right)$, and L, L^{+}be maximal expansions of $\mathcal{L}, \mathcal{L}^{+}$in the space $L_{2}(\Omega)$ respectively (i.e. $\left.L=\left(L_{0}^{+}\right)^{*}, L^{+}=\left(L_{0}\right)^{*}\right), \tilde{L}=\left.L\right|_{D(\tilde{L})}$ where $D(\tilde{L})$ is the clozure of $C^{\infty}(\bar{\Omega})$ in the norm of the graph $\|u\|_{L}$ and it is analogous for \tilde{L}^{+}.
M.Yo. Vishik introduced the conditions:
V_{1}) the operator $L_{0}: D\left(L_{0}\right) \rightarrow L_{2}(\Omega)$ has a continuous left-inverse,
V_{2}) the operator $L_{0}^{+}: D\left(L_{0}^{+}\right) \rightarrow L_{2}(\Omega)$ has a continuous left-inverse and proved that

1) these conditions are necessary and sufficient for the existence of a solvable expansion L_{B} : $D\left(L_{B}\right) \rightarrow L_{2}(\Omega),\left(\right.$ that is $\left.D\left(L_{0}\right) \subset D\left(L_{B}\right), \exists L_{B}^{-1}: L_{2}(\Omega) \rightarrow D\left(L_{B}\right)\right)$;
2) under conditions V_{1}), V_{2}) for any solvable expansion L_{B} the following decomposition of the domain $D(L)$ is valid: $D(L)=D\left(L_{0}\right)+\operatorname{ker} L+B$, and $L: B \rightarrow \operatorname{ker} L^{+}$is an isomorphism.

Let G be some Lie group, smoothly acting in the closed domain $\bar{\Omega}$. It means, that there is a group of diffeomorphisms $U_{g}: \bar{\Omega} \ni x \rightarrow g \cdot x=U_{g}(x) \in \bar{\Omega}$ of domain $\bar{\Omega}$ onto itself, group, smoothly depending on an element of G, and mapping $g \rightarrow U_{g}$ is a homomorphism of groups. Thus the contraction of diffeomorphisms U_{g} on boundary $\partial \Omega$ induces a smooth action of group G on boundary $\partial \Omega$.

The action of group G on domain $\bar{\Omega}$ generates a representation of the group G in function spaces: $(g u)(x)=u\left(g^{-1} x\right)$ (homomorphism of group G into group of converted operators). Such representation is induced on spaces $C_{0}^{\infty}(\Omega), C^{\infty}(\Omega), H^{m}(\Omega), H^{-m}(\Omega), \mathcal{D}^{\prime}(\Omega), H^{(m)}(\Omega)$, $H^{(-m)}(\Omega)$ and others. Let the differential operation \mathcal{L} be invariant with respect to the action of group G, that is $g(\mathcal{L} u)=\mathcal{L}(g u)$. Then spaces $D(L), D\left(L_{0}\right), C(L)$, ker L are invariant with respect to the action of the group.

If the action of group preserves the volume of the domain Ω then the scalar product in the space $L_{2}(\Omega)$ is invariant with respect to the action of group G, and consequently the representation of the group G is unitary in this space. In this case the operation \mathcal{L}^{+}is also invariant with respect to an action of group G, the spaces $D\left(L^{+}\right), D\left(L_{0}^{+}\right), C\left(L^{+}\right)$, $\operatorname{ker} L^{+}$are invariant.

Boundary value problem

$$
\begin{equation*}
L u=f, \quad \Gamma u \in B, \tag{1}
\end{equation*}
$$

generated by a subspace $B \subset C(L)$ of the boundary space $C(L)=D(L) / D\left(L_{0}\right)$ we shall name G-invariant, if the space B is invariant with respect to the indicated action of group G. A G-invariant boundary value problem we will name equivariant, if it is clear what group acts.

If the group G is compact (and is continuous), then, as it is well known, the Hilbert space of representation is decomposed in the direct sum of finite-dimensional invariant subspaces, in which the irreducible representations of group G are induced. And if the group is also commutative, the irreducible representations are one-dimensional.

Let space of a representation of the group G be the boundary space $C(L)$. For the case of compact group we have decompositions

$$
C(L)=\sum_{k=0}^{\infty} \oplus \tilde{C}^{k}, \quad C(\operatorname{ker} L)=\sum_{k=0}^{\infty} \oplus C^{k}(\operatorname{ker} L), \quad B=\sum_{k=0}^{\infty} \oplus B^{k} .
$$

If our G-invariant boundary value problem is well-posed, the decompositions in the direct sum $C(L)=C(\operatorname{ker} L) \oplus B$ imply decompositions in the direct sum $C^{k}:=C^{k}(\operatorname{ker} L) \oplus B^{k}=\sum_{l} \tilde{C}^{k_{l}}$ with finite-dimensional projectors $\Pi^{k}: C^{k} \rightarrow C^{k}(\operatorname{ker} L)$ along B^{k} and now check of the wellposedness of a G-invariant boundary value problem can be reduced to check of two properties:

1) $C^{k}(\operatorname{ker} L) \cap B^{k}=0$;
2) $\exists \kappa>0, \quad \forall k, \quad\left\|\Pi^{k}\right\|_{C^{k}}<\kappa$.

Below we shall study a spectrum of an operator of a general well-posed equivariant boundary value problem for the Poisson equation in a disk and in a ball, detecting cases of violation of the well-posedness of the problem, which are expressed in violation of property 1). Thus the fulfilment of property 2) will be assured by the assumed property of the well-posedness of this problem for the Poisson equation.

2 Equivariant boundary value problems for the Helmholtz equation in a disk

Let us conduct evaluations on check of two properties of the well-posedness of a general equivariant boundary value problem in a simplest case. As the group we will choose group of rotations of the plane $S O(2, \mathbb{R})$. It is compact commutative group.

Let us consider the problem (1), where $\mathcal{L}=\Delta$ and L is the maximum operator generated by the Laplace operator Δ, invariant with respect to the action of rotations group, domain $\Omega=K=\left\{x \in \mathbb{R}^{2}| | x \mid<1\right\}$ is the disk. Let us remark, that here we have $L=\tilde{L}$, i.e. each function from $D(L)$ can be approximated by smooth functions. Let us assume that this boundary value problem is G-invariant and is well-posed.

And we study such boundary value problem for the Helmholtz equation

$$
L_{\lambda} v=\Delta v+\lambda^{2} v=g, \quad \Gamma v \in B
$$

where λ is a complex number. But in the beginning we study the boundary space $C\left(L_{\lambda}\right)$ of the Helmholtz operator and its subspace $C\left(\operatorname{ker} L_{\lambda}\right)$.

Boundary space consists of some pairs of functions $\left(\left.u\right|_{\partial \Omega},\left.u_{\nu}^{\prime}\right|_{\partial \Omega}\right) \in H^{-1 / 2}(\partial K) \times H^{-3 / 2}(\partial K)$, therefore a general boundary condition must have the form

$$
\left.A u\right|_{\partial K}+\left.B u_{\nu}^{\prime}\right|_{\partial K}=0
$$

with some operators A, B. The G-invariance of this condition means the commutativity of operators A and B with all the representation operators. But, as it is well-known, a rotation invariant linear operator has a form of the convolution with a function. Therefore we will consider boundary value problems of the type:

$$
\left.\alpha * u\right|_{\partial K}-\left.\beta * u_{\nu}^{\prime}\right|_{\partial K}=0,
$$

where $\alpha=\sum \alpha_{k} e^{i k \tau} ; \beta=\sum \beta_{k} e^{i k \tau}$ are functions on the boundary ∂K, * is the convolution on $\partial K: \alpha * \psi=\sum \alpha_{k} \psi_{k} e^{i k \tau}$.

The boundary condition for Fourier coefficients of functions $\left.u\right|_{\partial \Omega},\left.u_{\nu}^{\prime}\right|_{\partial \Omega}$ from the space B can be written in the form

$$
\begin{equation*}
\forall k \in \mathbb{Z}, \quad \alpha_{k} a_{k}+\beta_{k} b_{k}=0 \tag{2}
\end{equation*}
$$

Let us designate by C^{k} an image of an enclosure $I_{k}: \mathbb{C}^{2} \rightarrow C(L)$ acting by a rule $I_{k}:(a, b) \rightarrow$ $\left(a e^{i k \tau}, b e^{i k \tau}\right)$. The boundary problem sets a subspace B of the space $C(L)$, which, as we see, intersects each space C^{k} in a straight line. The well-posedness of our problem, i.e. expansion in the direct sum $C\left(L_{\lambda}\right)=B \oplus C\left(\operatorname{ker} L_{\lambda}\right)$, means now that

$$
\exists A>0, \quad \forall k \in \mathbb{Z}, \quad\left|\sin \left(B^{k}, C^{k}\left(\operatorname{ker} L_{\lambda}\right)\right)\right|>A,
$$

i.e.

$$
\forall k, \quad \frac{\left|\beta_{k} \lambda J_{k}^{\prime}(\lambda)-\alpha_{k} J_{k}(\lambda)\right|}{\sqrt{\left|\lambda J_{k}^{\prime}(\lambda)\right|^{2}+\left|J_{k}(\lambda)\right|^{2}}}>A>C \quad \text { at } \quad \lambda \neq 0
$$

and

$$
\frac{\left|k \beta_{k}-\alpha_{k}\right|}{\sqrt{k^{2}+1}}>A>0 \quad \text { at } \quad \lambda=0
$$

Proposition 1. The problem (2), which is well-posed for the equation $\Delta u=g$, is well-posed for the equation $\Delta u+\lambda^{2} u=g$ at $\lambda \neq 0$ if and only if the following condition holds

$$
\forall k, \quad\left|k \beta_{k} J_{k}^{1}(\lambda)-\alpha_{k} J_{k}^{2}(\lambda)\right| \neq 0
$$

Proposition 2. Spectrum of the operator of well-posed boundary value problem (2) for the equation $\Delta u=g$ is a set $\bigcup_{k} \Sigma_{k}$, where Σ_{k} is the set of proper values of a form $-\lambda^{2}$ and λ runs all zeros of the equation

$$
\begin{equation*}
\beta_{k} \lambda J_{k}^{\prime}(\lambda)-\alpha_{k} J_{k}(\lambda)=0 \quad \text { at } \quad \lambda \neq 0 . \tag{3}
\end{equation*}
$$

Proposition 3. Spectrum of the operator of well-posed boundary value problem (2) for the equation $\Delta u=g$ is finite-to-one.
Proposition 4. Every well-posed G-invariant boundary value problem for the Poisson equation is quite correct, i.e. its solving operator is compact.

Propositions concerning the same equation on n-dimensional ball have similar formulations but the equation (3) has the following form:

$$
\beta_{l}^{1} \lambda J_{\nu+l}^{\prime}(\lambda)-\beta_{l}^{1} \nu J_{\nu+l}(\lambda)-\alpha_{l}^{1} J_{\nu+l}(\lambda)=0
$$

where $\nu=\frac{n}{2}-1, l \in \mathbb{N} \cup 0$.
And the corresponding equivariant boundary value problem must have the following form:

$$
\left.u\right|_{\partial \Omega} * \alpha+\left.u_{\bar{\nu}}^{\prime}\right|_{\partial \Omega} * \beta=0,
$$

where $\alpha=\sum_{l=0}^{\infty} \sum_{k} \alpha_{l}^{k} H_{l}^{k}, \beta=\sum_{l=0}^{\infty} \sum_{k} \beta_{l}^{k} H_{l}^{k}$ are functions on sphere S^{n-1}, which are decomposed in Fourier series, $*$ is convolution on $\partial \Omega$: $\psi * \alpha=\sum_{l=0}^{\infty} \sum_{k} \psi_{l}^{k} \alpha_{l}^{1} H_{l}^{k}$, what means, in particular, that we can omit tesseral (not zonal) parts in decomposition α and β.
[1] Burskii V.P., Investigation methods of boundary value problem for general differential equations, Kyiv, Naukova Dumka, 2002 (in Russian).

