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A new approach to the problem of asymptotic integrability of physical systems is developed
and applied to the KdV equation with higher-order corrections. A central object of the
approach is an integrable reference equation, which is constructed by defining a proper Lie–
Bäcklund group of transformations and applying it to the leading order equation. It is
shown that the solitary wave solutions of the asymptotically integrable equations, derived
using asymptotic transformations, fail to approximate solutions of those equations in some
(rather wide) range of the soliton and system parameters.

1 Introduction

For many important physical systems, the leading order term in an asymptotic perturbation
expansion is given by an integrable nonlinear equation. This implies that those physical systems
are integrable at the nontrivial leading orders in an asymptotic sense. The meaning of the term
“asymptotic integrability” is that the equation with higher-order corrections is integrable up to
a certain order in the asymptotic sense. Asymptotic integrability at certain order is commonly
ascertained by developing an asymptotic transformation relating this higher-order equation to
an integrable equation. If such a transformation is impossible, the nonintegrable effects (the
“obstacles” to integrability [1]) are defined as additional terms appearing in the target equation.

The most extensively studied example is that of weakly nonlinear long waves, when the
leading order equation is the Korteweg–de Vries (KdV) equation. The KdV equation first arose
as an approximate equation governing the unidirectional small amplitude long waves in inviscid
incompressible fluid [2] but later it was introduced in many different physical contexts. If effects
of higher-order are of interest, then extension of terms up to the next orders in the (small) wave
amplitude, with the weakly nonlinear and weakly dispersive effects being in balance, leads to
the extended KdV equation including higher-order corrections. The KdV equation with the
first-order corrections is integrable in the asymptotic sense as it has been shown by Kodama [3]
(see also [4]) who has found a transformation which maps the perturbed KdV equation to
the integrable equation (normal form) obtained by combining the KdV equation with its first
commuting flow. In [4], the normal form was introduced up to the second-order corrections.
It was found that, in general, the asymptotic integrability cannot be extended to the second-
order, and the asymptotic transformation from the second order KdV equation to the equation
representing a normal form plus one obstacle was defined.

It is commonly accepted that the asymptotic transformations from the high-order KdV equa-
tions to the corresponding integrable equation (if there are no obstacles), or to the form given
by the symmetries plus obstacles, can be used for investigating the properties of the high-order
KdV solitons (see, e.g. [5, 6]).

In the present paper, we develop an approach allowing us to study the approximation prop-
erties of the asymptotic solutions of the higher-order KdV equations that are obtained by Ko-
dama’s asymptotic transformation from the normal form solitary waves. Our approach, as
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applied in the context of asymptotic integrability, is aimed at constructing some asymptotically
integrable higher-order KdV equations, for which the asymptotic solutions, alternative to those
derived via Kodama’s transformation, may be defined. The central object of the approach is
some reference integrable equation, which depends on a small parameter of the physical system
in such a way that its asymptotic perturbation expansion, to a certain order, has a form of the
corresponding order KdV equation. The reference integrable equation is constructed by applying
the properly defined Lie–Bäcklund group of transformations to the leading order equation.

2 The reference equation

We will consider a physical system that can be described by an asymptotic perturbation ex-
pansion with the leading order term given by an integrable nonlinear equation. We will assume
the following expansion form with a small parameter ε and a leading order term representing
a scalar differential equation:

F (0)(x, u, u(1), u(2), . . . , u(k)) + εF (1)(x, u, u(1), u(2), . . . , u(k+r))

+ ε2F (2)(x, u, u(1), u(2), . . .) + · · · + εNF (N)(x, u, u(1), u(2), . . .) = O
(
εN+1

)
, (1)

where x = (x1, x2, . . . , xn) are n independent variables, u is the dependent variable, and u(j)

denotes the set of all jth-order partial derivatives of u with respect to x.
Following the ideas of the approach, developed in [7] for the point transformations, we will

consider the one-parameter (a) group of the Lie–Bäcklund transformations

ū = φ(x, u, u(1), u(2), . . . ; a) (2)

with (canonical) Lie–Bäcklund infinitesimal generator

U = η(x, u, u(1), u(2), . . .)
∂

∂u
, (3)

where the order of derivatives appearing in the generator is, in general, not restricted.
The group (2) is defined from the requirement that the leading order equation transform,

under an infinitesimal action of the group (for small values of the group parameter a = ε), into
the first-order perturbed equation obtained by retaining only the leading order and first-order
terms in (1), as follows

F (0)(x, u, u(1), u(2), . . . , u(k)) + εF (1)(x, u, u(1), u(2), . . . , u(k+r)) = 0. (4)

To define the group the following steps are made:
(i) The group (2) is applied to the unperturbed equation F (0) = 0 written in the variables ū,

ū(1) and so on, as

F (0)(x, ū, ū(1), ū(2), . . . , ū(k)) = 0. (5)

As the result, equation (5) is transformed to

H(x, u, u(1), u(2), . . . , u(s); a) = 0 (6)

or infinitesimally

F (0)(x, ū, ū(1), ū(2), . . . , ū(k)) = F (0)(x, u, u(1), u(2), . . . , u(k))

+ aU (k)F (0)(x, u, u(1), u(2), . . . , u(k))
∣∣∣∣
[F (0)]

+O
(
a2

)
(a � 1), (7)
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where U (k) is the kth extended infinitesimal generator of (3) defined by

U (k) = η
∂

∂u
+ Dj(η)

∂

∂uj
+ DiDj(η)

∂

∂uij
+ · · · (8)

and [F (0)] denotes the set of equations including the equation F (0) = 0 and its differential
consequences:

DiF
(0) = 0, DiDjF

(0) = 0, . . . . (9)

(ii) It is required that

U (k)F (0)(x, u, u(1), u(2), . . . , u(k))
∣∣∣∣
[F (0)]

= F (1)(x, u, u(1), u(2), . . . , u(k+r)). (10)

It yields determining equations for the Lie–Bäcklund group generator η(x, u, u(1), u(2), . . .).
(iii) With the group generator defined, the finite transformations (2) can be determined as

a solution of the Lie–Bäcklund equation

dū

da
= η(x, ū, ū(1), ū(2), . . .), ū|a=0 = u(x). (11)

It is evident from (i)–(iii) that the group (2) defined in such a way is neither a symmetry
group of equation (1) nor a symmetry group of the unperturbed equation.

In some cases, for specific relations among the coefficients of differential monomials in the
first-order term of (1), the Lie–Bäcklund equation (11) can be solved in a closed form so that
the finite transformation (2) is represented by an analytical function. Using this closed form
transformation one can construct the equation (6) in an explicit form (not as a series). This new
equation is dependent on a parameter a (for the sake of brevity we will name it the “a-equation”)
and possesses the following properties:

a) The a-equation is integrable, since there exists an exact transformation (inverse to (2))
that converts equation (6) into the leading order integrable equation (5). Therefore any exact
solution of equation (5) yields the exact solution of the a-equation.

b) When a � 1, the a-equation coincides with the initial perturbed equation (1) up to
first-order in a = ε.

c) In the case when (1) is an evolution equation and the x-derivative terms at each order
represent differential polynomials of specific weights, the corresponding order terms in an ex-
pansion of the a-equation in series with respect to a have the same differential structure as those
in the original equation but with the monomial coefficients specified in a certain way.

In view of the property (c), the a-equation can be considered as a model for the original
physical system in a sense, since it contains impacts of all orders of the asymptotic perturbation
expansion on the solution. This model may correspond to a real physical system if there are
enough freedoms to satisfy the required conditions on the coefficients.

From another point of view, an expansion of the a-equation up to a certain order produces
equations that can be treated as asymptotically integrable at this order since the equation
expanded is exactly integrable and the terms dropped may be considered as having an asymp-
totically negligible influence upon the solution.

3 Applications to the higher-order KdV equations

It can be shown with the use of an appropriate perturbation method (e.g., see [2]) that the
higher-order correction to the KdV equation has the following expansion form with a small
parameter ε:

ut + K(0)[u] + εK(1)[u] + ε2K(2)[u] + · · · + εNK(N)[u] = O
(
εN+1

)
, (12)
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where K(0)[u] gives the KdV flow in its standard form

K(0)[u] = u3 + 6uu1 (13)

and the next two terms in (12) are given by

K(1)[u] = a
(1)
1 u5 + a

(1)
2 u3u + a

(1)
3 u2u1 + a

(1)
4 u1u

2, (14)

K(2)[u] = a
(2)
1 u7 + a

(2)
2 u5u + a

(2)
3 u4u1

+ a
(2)
4 u3u

2 + a
(2)
5 u3u2 + a

(2)
6 u2u1u + a

(2)
7 u1u

3 + a
(2)
8 u3

1. (15)

The subscript t denotes derivatives with respect to time variable and other subscripts denote
derivatives of the corresponding order with respect to the space variable x. Each polynomial
K(n)[u] has the scaling property with the homogeneous weight 2n+5 if one assigns the weight 2
to u and 1 to ∂/∂x.

Following the approach described in the previous section, we consider the one-parameter (a)
Lie–Bäcklund group of transformations

ū = φ(x, t, u, p, u1, u2, . . . ; a), U = η(x, t, u, p, u1, u2, . . .)
∂

∂u
, (16)

where the nonlocal terms containing

p = D−1(u), D−1(·) =
∫ x

−∞
(·)dx′ (17)

may appear. The transformation (16) is defined by the requirement that it converts the leading
order equation ut + K(0)[u] = 0 written in the variables ū, ū1 and so on, as

F (0)(ū) = ūt + ū3 + 6ūū1 = 0 (18)

into a new equation H(u; a) = 0 which possesses the property that, for small values of the group
parameter a, it coincides with the perturbed equation (12) up to first-order in a = ε:

H(u; a) = ut + K(0)[u] + aK(1)[u] + O
(
a2

)
(a � 1). (19)

Applying this requirement (expressed in terms of the group generator by (10)) yields determining
equations for the Lie–Bäcklund group generator η(x, t, u, p, u1, u2, . . .).

It is evident that the generator η(x, t, u, p, u1, u2, . . .) defined in such a way is not unique
since, in addition to the terms depending on the coefficients a

(1)
1 , . . . , a

(1)
4 of the differential poly-

nomial K(1)[u], it may include the terms representing symmetries of the leading order equation
F (0)(u) = 0 with arbitrary coefficients. In what follows, we will deal with a minimal form of the
group generator excluding symmetries, since only it yields the transformation generating the
a-equation possessing the property (c): the terms of its expansion with respect to a, at each
order, represent differential polynomials of the homogeneous weight like (14), (15) and so on.
This minimal form is uniquely defined from the determining equations yielded by (10) as

η = λ1u
2 + λ2u2 + λ3u1p + λ4x(u3 + 6uu1) (20)

or equivalently as

η = λ1u
2 + λ2u2 + λ3pu1 − λ4xut, (21)
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where the parameters λ1, . . . , λ4 are expressed through the coefficients a
(1)
1 , . . . , a

(1)
4 of K(1)[u]

by the relations

λ1 =
1
6

(
a

(1)
4 − a

(1)
2 − 4a

(1)
1

)
, λ2 =

1
12

(
a

(1)
4 − a

(1)
3 + 6a

(1)
1

)
,

λ3 =
1
3

(
a

(1)
2 − 8a

(1)
1

)
, λ4 =

1
3
a

(1)
1 . (22)

It is seen that the group generator depends explicitly on x but it does not contain t.
With the group generator defined, the finite transformations (16) are determined as a solution

of the Lie–Bäcklund equation

dū

da
= λ1ū

2 + λ2ū2 + λ3ū1p̄ + λ4x(ū3 + 6ūū1), ū|a=0 = u(x, t), (23)

where, alternatively, the expression for η on the right-hand side, may be defined as in (21). We
will concentrate on the cases where the Lie–Bäcklund equation (23) can be solved in a closed
form, which correspond to the specific relations between the coefficients a

(1)
1 , . . . , a

(1)
4 of the

differential polynomial K(1)[u].
In the present paper, we will consider only the following case

a
(1)
2 = 8a

(1)
1 , a

(1)
3 = a

(1)
4 + 6a

(1)
1 (24)

which, according to (22), corresponds to the generator (21) with the coefficients λ2 and λ3

vanishing. Then the Lie–Bäcklund equations (23) can be solved to give

ū(x, t; a) =
u(ξ, τ)

1 − aλ1u(x, τ)
, ξ = x, τ = t − aλ4x, (25)

where

λ1 =
a

(1)
4

6
− 2a

(1)
1 , λ4 =

a
(1)
1

3
. (26)

In (25), ū is a solution of the KdV equation (18) and u is a solution of the reference equation
H(u; a) = 0 which possesses the property (19). The equation for u(ξ, τ) obtained by substitu-
ting (25) into (18) is

H(u; a) =
1

a4λ4
1v

4

{
6a2λ2

1 [L(v)]3 − 6vL(v)
[
1 + a2λ2

1L
2(v)

]

+ aλ1v
2
[
aλ1vτ − 6L(v) + aλ1L

3(v)
]}

= 0, (27)

where

v = u − 1
aλ1

, L =
∂

∂ξ
− aλ4

∂

∂τ
. (28)

The a-equation (27) treated as an equation for u(x, t) is dependent on a – not only explicitly
but also through the independent variable τ as is defined in (25). It possesses the properties
(a)–(c) formulated in the previous section. Solutions of the a-equation (27) can be obtained
from solution of the integrable KdV equation (18) by the transformation (inverse to (25):

u(x, t; a) =
ū(x, z)

1 + aλ1ū(x, z)
, z = t + aλ4x, (29)

where ū(x, z) satisfies ūz + ū3 + 6ūū1 = 0.
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Despite the fact that the maximal order of derivatives in equation (27) is three – the same as
in the leading order equation, its expansion in to series with respect to a includes the terms with
higher-order derivatives (which appear due to the a-dependence of the independent variable τ),
and those high-order terms have the same differential structure as the corresponding order terms
in the original equation (12). However, the monomial coefficients in the higher-order terms are
now specified in a certain way.

In the expansion of equation (27), the coefficients in the first-order term are specified ac-
cording to (24). We will also write out the relations defining the monomial coefficients in the
second-order term

a
(2)
1 =

4
3
a

(1)
1

2
, a

(2)
2 = 14a

(1)
1

2
, a

(2)
3 =

1
3
a

(1)
1

(
84a

(1)
1 + 5a

(1)
4

)
,

a
(2)
4 =

4
3
a

(1)
1

(
18a

(1)
1 + a

(1)
4

)
, a

(2)
5 =

2
3
a

(1)
1

(
66a

(1)
1 + 5a

(1)
4

)
, (30)

a
(2)
6 = 36a

(1)
1

2
+ 10a

(1)
1 a

(1)
4 +

1
6
a

(1)
4

2
, a

(2)
7 =

1
6
a

(1)
4

2
, a

(2)
8 =

1
6
a

(1)
4

(
12a

(1)
1 + a

(1)
4

)
.

4 Asymptotic integrability

The analysis made in [4] is based on a near identity transformation Tε : v → u

u = Tε(v) = v + εΦ(1)(v) + · · · (31)

such that the perturbed KdV equation (12) is transformed to

vt + K(0)[v] + εG(1)[v] + ε2G(2)[v] + · · · + εNG(N)[v] = O
(
εN+1

)
, (32)

where G(n)(v) are differential polynomials of the same structure as the corresponding polyno-
mials in (12). In particular, if the calculations are aimed at defining obstacles to the asymptotic
integrability, then G(n)(v) are represented as

G(n)(v) = a
(n)
1 K

(n)
0 (v) + R(n)(v), R(n)(v) =

∆(n)∑
i=1

µ
(n)
i R

(n)
i (v). (33)

Here K
(n)
0 (v) are symmetries of the leading order KdV equation. The number ∆(n) in (33) is

the total number of the conditions µ
(n)
i = 0 (number of obstacles) needed to be satisfied for

existence of a transformation to the normal form containing only symmetries.
At order ε, the transform Tε is given by the first-order term Φ(1) of the generating function.

There is no obstacles to asymptotic integrability at the first-order. The transform Tε at the next
orders is defined via an expansion of the generating function Φ in the power series of ε [4]. At
order ε2, there is one obstacle to asymptotic integrability, which means that one condition on
the coefficients a

(1)
1 , . . . , a

(1)
4 , a

(2)
1 , . . . , a

(2)
8 needs to be satisfied for existence of a transformation

to the normal form.
We will study the approximate solitary wave solutions for the KdV equation (12) of a specific

form, namely, one with the first- and second-order corrections given by the terms of an expansion
of the a-equation (27) in series with respect to a. There is no obstacle to asymptotic integrability
of this equation via Kodama’s transformation to the normal form – the relations (24) and (30),
defining the expansion of the a-equation (27) satisfy the condition for vanishing the obstacle.

The one-soliton solution of the leading order KdV equation and the corresponding solution
of the second-order normal form are

u = 2k2sech2
[
k

(
x − 4k2t

)]
, (34)

v = 2k2sech2
{

k
[
x −

(
4k2 + 16εa

(1)
1 k4 + 64ε2a

(2)
1 k6

)
t
]}

, (35)
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Figure 1. A residual error for the solutions of the second-order KdV equation defined by (24) and (30)
in comparison with the terms of the leading order KdV equation (thick solid for the error, thin solid
for ut, short-dashed for 6uux and long-dashed for uxxx): for the solution (36) obtained by Kodama’s
transformation (ε = a) from the normal form solitary wave (top) and for the solution (37) of the a-
equation (bottom). For both solutions a

(1)
1 = 1, a

(1)
4 = 30, k = 1.

where a phase constant has been omitted for the sake of simplicity. Applying Kodama’s trans-
formation to the solution (35) yields

u(x, t) = 2k2sech2Z +
2
3
εk4

(
16a

(1)
1 − a

(1)
4 + 4a

(1)
1 cosh 2Z

)
sech4Z

+
2
9
ε2k6

(
282a

(1)
1

2 − 32a
(1)
1 a

(1)
4 + a

(1)
4

2
+ 8a

(1)
1

(
19a

(1)
1 − a

(1)
4

)
cosh 2Z (36)

+ 14a
(1)
1

2
cosh 4Z

)
sech6Z, Z = k

[
x −

(
4k2 + 16εa

(1)
1 k4 +

256
3

ε2a
(1)
1

2
k6

)
t

]
.

It is readily checked that this solution satisfies the second-order KdV equation with the coeffi-
cients defined by (24) and (30) if the terms of the order ε3 are dropped.

Applying the transformation (29) to the solution (34) yields the corresponding one-soliton
solution of the a-equation (27), as follows:

u =
12k2

3 + 2a
(
a

(1)
4 − 12a

(1)
1

)
k2 + 3 cosh

{
2k

[
x − 4k2

(
t + aa

(1)
1 x
3

)]} . (37)

The results presented in Fig. 1 and Fig. 2 demonstrate that the solitary wave solutions,
constructed from the normal form solitons using a near identity transformation, although being
formally asymptotic solutions of the higher-order KdV equations, have very bad approximation
properties for the values of the soliton wave-number k larger than one. Even for k = 1 an
acceptable approximation is achieved only for values of the expansion parameter ε ∼ 10−2. For
k = 2 (the second soliton in Fig. 2) the solution is invalid already for ε < 10−2.



Lie–Bäcklund Groups and Asymptotic Integrability 355

5 10 15 20 25
x

-4

-2

2

4

6

8

10
u

a�0.01

5 10 15 20 25
x

-4

-2

2

4

6

8

10
u

a�0.012

Figure 2. Comparison of different two-soliton (k1 = 1; k2 = 2) solutions of the KdV equation defined
by (24) and (30) at t = 1: thick solid – the solution of the a-equation; thin solid – the solution obtained
by Kodama’s transformation (ε = a) from the second-order normal form two-soliton solution. For both
solutions a

(1)
1 = 1, a

(1)
4 = 30.

It should be noted in this connection that the solutions constructed via Kodama’s transforma-
tion are ones of an excessive accuracy. For example, in the one-soliton solution (36), one should
have taken Z = k

[
x −

(
4k2 + 16εa

(1)
1 k4

)
t
]

in the terms multiplied by ε, and Z = k
(
x − 4k2t

)
in the terms multiplied by ε2. However, the approximation properties for such a solution were
found to be even worse than those for (36).

We also conclude, based on some features of the solitary wave solutions of the a-equation (not
discussed here), that the solutions constructed via Kodama’s transformation cannot (because of
the k-dependence of their approximation properties) reflect some solution features intrinsic for
the original physical system.
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