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It is shown that axially symmetrical solutions of the Klein–Gordon–Fock equation are clas-
sified by eigenfunctions of the wave operator that change the sign of eigenfunctions, i.e., the
energy spectrum of the wave operator contains a point with a zero energy (frequency). The
thermodynamics of the Bose–Einstein condensation is discussed on the basis of the energy
spectrum under consideration. There is a phase transition in this mathematically integrable
model.

In this note we discuss the thermodynamics of free relativistic spinless particles which are
described by the Klein–Fock–Gordon equation (KFG)

(L̂ + ∆⊥ − k2
0)Ψ (x, y, z, t) = 0, (1)

where L̂ = (−1/c2)∂2/∂t2 + ∂2/∂z2 is a wave (hyperbolic) operator, ∆⊥ = ∂2/∂x2 + ∂2/∂y2 is
an elliptical operator, and k0 = (mc/h) is the inverse Compton wavelength.

As the eigenfunctions of equation (1) we put those that change the sign of operator L̂ [1]

Ψ(+) = φ(+) (x, y) exp i
(
−ct
√

k2
z + Q2 + zkz

)
and

Ψ(−) = φ(−) (x, y) exp i

(
−ωt + z

√
(ω2/c2) + Q̃2

)
.

It is easy to verify that L̂Ψ(+) = Q2Ψ(+), L̂Ψ(−) = −Q̃2Ψ(−). Substitution of the eigenfunctions
Ψ(±) in equation (1) gives equations for a definition of functions φ(±) (x, y) as eigenfunctions of
the operator ∆⊥:(

∆2
⊥ − k2

0 + Q2
)
φ(+) (x, y) = 0,

(
∆2

⊥ − k2
0 − Q̃2

)
φ(−) (x, y) = 0,

where functions φ(±) (x, y) have the form

φ(+) (x, y) = exp (i (kxx + kyy)) , k2
x + k2

y = Q2 − k2
0 � 0,

φ(−) (x, y) = K (k⊥x⊥) , x⊥ =
√

x2 + y2

here k⊥ =
√

k2
x + k2

y, k2
⊥ = k2

0 + Q̃2 > 0. The function K0 is expressed by the modified Bessel
function or McDonald function. The wave numbers and angular frequency kz, k⊥, ω satisfy the
dispersion relations for the function Ψ(+):

ω/c =
√

k2
z + k2

⊥ + k2
0 > 0, (2)

for the functions Ψ(−):

ω/c =
√

k2
z − k2

⊥ + k2
0 � 0. (3)
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Dispersion relations of equation (2) and equation (3) are represented by the hyperbolic branches
in (ω/c, kz) plane at a fixed transversal momentum. It should be noted that the dispersion

relation of equation (3) contains the point ω = 0 at |kz| =
√

k2
⊥ − k2

0 � 0, k⊥ � k0.
The group velocity υz = ∂ω/∂kz = ckz/ω tends to infinity at ω = 0. The dispersion ex-

pression of the type of equation (3) was studied by Migdal [2], where the relativistic limit was
considered in the nucleon environment (in the gas approximation). The nucleon environment is
a thermostat. In the paper [2] was pointed that there exists such k at which ω = 0 and therefore
∂ω/∂kz → ∞ [2]. Migdal called this phenomenon the effect of a disappearing rest mass and
a π-condensation [2].

The aim of this note is to consider the thermodynamics of the model described by dispersion
expressions of equation (2) and equation (3) and to study the Bose–Einstein condensation within
it.

Let us write the full number of free particles N in the volume V in the Bose–Einstein statistics
(BES) [3]

N =
V k3

0

2π2

(∫
g1 (ξ) f (ξ, T, µ) dξ +

1
2

∫
g2 (ξ) f (ξ, T, µ) dξ

)
. (4)

The following notations have been used: g1(ξ) = ξ
√

ξ2 − 1, ξ = hω/mc2 = ω/k0c, g2(ξ) =
ξ
√

ξ2 + α2 − ξ2, α = m∗/m, m∗ = (h/c)
√

Q2 − k2
0, where m∗ is the value depending on the

cutting parameter Q. The distribution function f

f = (exp ((ξθ/T ) + (µ/kBT )) − 1)−1 =
∞∑
1

exp (−n ((ξθ/T ) + (µ/kBT ))) ,

here θ = mc2/kB is the characteristic temperature of the relativistic thermodynamics. For
electrons with mass m ≈ 10−27 g and temperature θ ≈ 10100

K, kB is the Boltzmann constant
and µ is the chemical potential. An integral of equation (4) with the density g1(ξ) was calculated
by Pauli [4]. The second integral of equation (4) is calculated by the substitution ξ = α sh (θ)
and using the table integral [5]∫ ∞

0
dθ exp (−q sh θ) = (π/2) (H0 (q) − N0 (q)) = (π/2) A0, (5)

where H0 is the Struve function of zero-th order and N0 is the Bessel function of the second
kind.

With the table integral of equation (5) we represent the full number of particles N as the
series:

N =
V k3

0

2π2

∞∑
n=1

(K2(nθ/T )/(nθ/T ) +
(
α3/2

)
B (nθ∗/T )) exp(−µn/kBT ), (6)

where B (q) = (π/2)
((

2A1 (q) /q2 − A0 (q) /q
))

, θ∗ =
(
m∗c2/kB

)
. The series of equation (6) can

be summarized in the asymptotic at low temperature T � θ, therefore we have

N ≈ V k3
0

2π2

(√
π

2
(T/θ)3/2 F3/2 ((θ/T ) + µ/kBT ) +

α

2

(
T

θ

)2

F2

(
µ

kBT

))
, (7)

where Fp (x) =
∞∑
1

(exp (−nx)) /np, Fp (0) =
∞∑
1

1/np = ζ (p), and ζ (p) is the zeta Riemannian

function. Taking into account that Fp (x) → 0 at x � 1, we can see that the first term in
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equation (7) is negligibly small compared with the second one. Therefore in the asymptotic
limit at low temperatures T � θ we get an approximate relation

N ≈ V k3
0

2π2
α

(
T

θ

)2

F (µ/kBT ) =
V k∗

4π2

(
kBT

hc2

)2

F2 (µ/kBT ) (8)

with k∗ = (m∗c/h) =
√

Q2 − k2
0.

The critical temperature of condensation T = Tc is determined from equation (8) on condition
that the chemical potential µ is zero and the full number of particles N is a constant

N =
V k∗

4π2

(
kBT

hc2

)2

ζ (2) = const, Tc ∼
(

N

V

)1/2

, (9)

where ζ (2) =
∞∑
1

1/n2 = 1.64

Define as N0 a number of particles (condensate) with the zero-th energy and the temperature
T > Tc: N = N0 + N1, where

N1 = N (T/Tc)
2 , T � Tc,

N0 = N
(
1 − T 2/T 2

c

)
, T � Tc.

In the nonrelativistic thermodynamics the condensation depends on the temperature according
to the following law: (N1/N) = (T/Tc)

3/2.
Let us calculate the internal energy of condensate U , at T � θ

U =
V k3

0

4π2
mc2

∫
ξg2(ξ)f (ξ, θ, µ = 0) dξ � 1.5NkBT (T/Tc)

2 . (10)

In equation (10) we have used an approximate equality 2ζ(3)/ζ(2) ≈ (2 · 1.2)/1.6 = 1.5, re-
spectively, the capacity CV will be: CV = 4.5NkB (T/Tc)

2. Expressions of equation (8) and (9)
enable us to calculate the chemical potential µ:

(T/Tc)
2 ζ (2) =

∞∑
n=1

(1/n2) exp (−µn/kBT ) . (11)

In equation (11) we can make an approximate summation up in the vicinity of the critical
temperature (T − Tc) /Tc � 1 on condition that (µ/kBT ) � 1. It gives:

µ ≈ 2kBT ln(T/Tc), at T − Tc � Tc.

Now we can calculate the internal energy U and capacity CV of overcondensated particles
in the temperature interval T − Tc � Tc; U = 1.5NkBT , Cv = 1.5NkB. The overcondensate
consisting of relativistic bosons with energy U = 1.5NkBT has the same behavior as an ideal
undegenerated gas.

Using the definition of a Heaviside step we write the internal energy of the condensate of
relativistic bosons in the form

U = 1.5NkBT
(
(T/Tc)

2 θ(Tc − T ) + θ(T − Tc)
)

. (12)

The internal energy U in equation (12) is continuous at temperature T = TC and has an
angular point (break). The capacity CV has the discontinuity at T = TC and the value of
this discontinuity will be ∆C = CV (TC + 0) − (TC − 0) = −3kbN . In the nonrelativistic
thermodynamics the capacity CV versus temperature dependence is continuous.
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To write an equation of state of a condensate we calculate the thermodynamic potential Ω:

Ω = kBT
V k3

0

4π2

∫
g2 (ξ) ln (1 − exp (− (ξθ/T ) − (µ/kBT ))) ≈ −U/3. (13)

In equation (13) integration by parts was made and an asymptotic of special functions at large
values of the argument (i.e., at low temperatures) used. From equation (13) it follows that
relations between thermodynamic potential Ω and internal energy U are the same as for massless
relativistic particles.

Entropy S is obtained by formula: S =
∫

dTCV (T ) /T + const, where the constant is deter-
mined from the condition of the continuous entropy at T = TC .

S =
3
2
NkB

(
3
2

(T/TC)2 θ (TC − T ) + ((3/2) + ln(T/TC))θ (T − TC)
)

. (14)

Equation (14) is true in the interval of temperatures (T − TC) /TC � 1. Entropy of condensate
is smaller than the entropy of an overcondensate, i.e., the condensate is a more ordered state.

Now we have to consider the density of the number of particles N of equation (6) at high tem-
peratures θ/T < 1. Using the asymptotes of special functions at small values of the argument,
we have

N ≈ V k3
0

2π2

(
(T/θ)3 F3 (µ/kBT ) +

α2

2
(kBT/�c) F1 (µ/kBT )

)
. (15)

There is no critical temperature in equation (15) because F1(0) =
∞∑
1

1
n → ∞.

In conclusion, we have shown that axially symmetrical solution of the Klein–Gordon–Fock
equation with equation (3) as the dispersion relation yields a Bose–Einstein condensation at low
temperatures.

Acknowledgements

The authors would like to thank Mikhail Belogolovskii for useful discussions and kind coopera-
tion.

[1] Borghardt A. and Karpenko D., Fundamental solution of the Volkov problem (characteristic representation),
J. Nonlinear Math. Phys., 1998, V.5, N 4, 357–363.

[2] Migdal A., Fermions and bosons in the strong fields, Moscow, Nauka, 1978.

[3] Cubo R., Statistical mechanics, Amsterdam, North-Holland, 1968.

[4] Pauli W., Relativitatstheorie, Berlin, Ens. Der Math., 1921.

[5] Gradsteyn I. and Ryzhik I., Integral, series and products, New York, Academic Press, 1965.


