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In present paper the method of description of anti-Fock representations of the relation
XX∗ = f(X∗X) for unimodal mapping f was devised. Examples of description of anti-Fock
representation sets for piecewise linear-fractional mappings under condition of existence of
attracting cycle were given.

1 Introduction

There were many investigations on the representations of ∗-algebras

Af = C〈X, X∗ |XX∗ = f(X∗X)〉 (1)

and their enveloping C∗-algebras. Some of them are purely mathematical, some are motivated by
physics [4,5]. For example, a general framework was constructed in the paper [6]. Recently there
have appeared papers where attention was focused on ∗-algebras connected with a non-bijective
simple dynamical system (f, I). In particular, quantum inharmonic oscillator algebra [7] and
“unimodal deformation” of a quantum disk algebra [2] were considered. In the present paper
we eliminate the condition of simplicity of a dynamical system, and try to classify the anti-Fock
representations of Af .

Description of representations of Af is closely connected with description of positive orbits of
dynamical system (f, R) [6]. By positive orbits of dynamical system (f, R) we imply sequences

1) ω = (xk)k∈Z : f(xk) = xk+1, xk > 0 for all k;
2) ω = (xk)k∈N : x1 = 0, f(xk) = xk+1, xk ≥ 0 for k > 1 (Fock orbit);
3) ω = (x−k)k∈N : x−1 = 0, f(x−k) = x−k+1, x−k ≥ 0 for k > 1 (anti-Fock orbit).

For every positive orbit one may put in correspondence an irreducible representation of Af [6],
in particular each anti-Fock representation corresponds to each anti-Fock orbit.

The idea of anti-Fock representation description is to construct one-to-one correspondence
among anti-Fock orbits and the paths on a certain graph. To realize this idea we introduce in
the Section 2 the definitions of P -partition of the dynamical system (X, σ) and corresponding
transition graph ΓP . After that we prove Theorem 1 that establishes one-to-one correspondence
between the set of orbits passing through point x ∈ X and a set of certain paths on a graph ΓP .

In the Section 3 of this paper we introduce the definition of negative elements of P -partition
and prove Theorem 3. It establishes one-to-one correspondence between the set of anti-Fock
representations of Af and the set of infinite paths on the graph ΓP that start from the vertex
corresponding to point 0 and do not pass through this vertex and vertices of the set N .

In the Section 4 we give description of anti-Fock representation set of Af , where f = fl,s,t is
piecewise linear-fractional mapping depending on parameters.
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2 Partitions

Definition 1. Let (X, f) be a dynamical system. We say that a partition X = ∪
j∈T

Sj , Si∩Sj =∅,

i �= j, where index set T generally is not countable, is a P -partition, if the following conditions
are held:

1) ∀ i ∈ T either f−1(Si) = ∅ or there exists a partition f−1(Si) = ∪
j∈Qi

Uj , Ui ∩ Uj = ∅,

i �= j such that ∀ j ∈ Qi f(Uj) = Si and f is one to one on Uj ;
2) for any two sets Uj1 , Uj2 , j1, j2 ∈ Qi there are sets Si1 and Si2 , such that Uj1 ⊆ Si1 ,

Uj2 ⊆ Si2 , i1, i2 ∈ T .
We will also assume in this paper that
2′) if j1 �= j2 then i1 �= i2.

The following graph can be associated with P -partition: ΓP = {ΓP 0, ΓP 1}, where ΓP 0 =
{vj : j ∈ T} is the set of vertices, and ΓP 1 = {sij : i, j ∈ T, Si ⊆ σ(Sj)} is the set of ages.

Theorem 1. Let (X, σ) be a dynamical system that possesses P -partition. And let ΓP be a cor-
responding graph. Then there exists one-to-one correspondence between the set of orbits passing
through the point x ∈ X and the set of infinite paths on the graph ΓP starting from the vertex
that corresponds to the element of the partition containing point x.

Proof. Let ∆x = {{xk}k∈Z : x−1 = x} be a set of orbits passing through the point x. Denote
{vji}i∈N, vji ∈ ΓP 0 is a path that starts at vertex vj1 , Kv is the element of P -partition that
corresponds to vertex v and Wx = {{vji}i∈N, x ∈ Kvj1

}, is a set of paths that start at vertex vj1

such that corresponding element of P -partition contains point x. Define mapping φ : ∆x → Wx

in the following way: φ({xk}k∈Z) = {vj}j∈N, x−j ∈ Kvj . From conditions 1, 2 in the definition of
P -partition it follows that mapping φ is well-defined. Let now δ1, δ2 ∈ ∆x, δ1 �= δ2 δ1 = {xk}k∈Z,
δ2 = {yk}k∈Z. Let k0 be the least integer such that xk = yk for all k � k0. Then from
conditions 2, 2′ in the definition of P -partition it follows that xk0−1, yk0−1 belong to different
elements of P -partition, therefore φ(δ1) �= φ(δ2). So φ is injection.

Let now p = {vji}i∈N ∈ Wx be a path. Then from construction of the graph and from condi-
tion 2 in definition of P -partition it follows that there exists a sequence {x−k}k∈N, σ(x−k−1) =
x−k, x−1 = x such that x−k ∈ vjk

. Therefore φ(. . . , x−3, x−2, x−1, σ(x−1), σ(2)(x−1), . . . ) = p.
So mapping φ is bijection. �

Leaving the description of P -partition construction in general case for further investigations
we will concentrate on the partitions of interval.

Consider a unimodal dynamical system (f, [c, d]) such that

f(x) =
{

f1(x), x ∈ [c, b],
f2(x), x ∈ (b, d],

(2)

c ≤ f(c) < d, f1(b) = f2(b) = d, f(d) = c.
To simplify our work we rewrite the definition of P -partition in more convenient and simplified

form just by choosing the partition of preimage.

Definition 2. Let (f, I) be a dynamical system with mapping f defined in (2). We assume that
f−1

i (x) is undefined for some x ∈ I, when there does not exist x′ ∈ I such that f(x′) def= fi(x′) =
x, i = 1, 2.

We say that dynamical system (f, I) possesses a P -partition whenever I = ∪
j
Sj , j ∈ T ,

Si ∩ Sj = ∅, i �= j, where index set T generally is not countable, and the following conditions
are being held.
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1. ∀ j ∈ T f−1
1 (x) and f−1

2 (x) are either undefined for all x ∈ Sj or defined for all x ∈ Sj .
2. a) ∀ j ∈ T whenever mappings are defined f−1

1 (Sj) ⊆ Ss and f−1
2 (Sj) ⊆ St for some

s, t ∈ T, b) s �= t.

Denote δ(x) unilateral orbit (x, f(x), f (2)(x), . . . ) of the point x.

Definition 3. We say that the partition of the interval on the disjoint elements is defined by
the closed set S, whenever

1) any point at S is the element of the partition,
2) other elements of the partition are opened intervals.

Proposition 1. Let (f, I) be a dynamical system with mapping f defined in (2). Then any
closed set S, such that f(S) ⊆ S and δ(b) ⊆ S defines a P -partition.

Proof. First condition in definition of P -partition is fulfilled because f (n)(d) ∈ S, n � 0.
Let’s check the second condition. For one-point elements of partition it is clear. Let Iij =

(xi, xj), xi, xj ∈ S, i �= j be a certain interval of partition. Let suppose that f−1
1 (Iij) �⊆ Ikl for

some k and l, hence there exists a point x ∈ f−1
1 (Iij), x ∈ S. Since f(S) ⊂ S then there exists a

point f(x) ∈ Iij , f(x) ∈ S. Thus we came to contradiction. For f−1
2 is similar. f−1

1 , f−1
2 can’t

map different intervals into one because b ∈ S. �

3 Anti-Fock representation set description

The following theorem (see [6]) connects representations of ∗-algebra Af with certain orbits of
dynamical system (f, R+).

Theorem 2 (V. Ostrovskyi V. and Yu. Samoilenko [6]). There exists the following cor-
respondence between positive orbits of dynamical system (f, R+) and irreducible representations
of ∗-algebra Af = C〈X, X∗ |XX∗ = f(X∗X)〉.

1. There is an irreducible representation πω in Hilbert space l2(Z) given by the formulae:
Uek = ek−1, Cek =

√
xkek for k ∈ Z and X = UC is a polar decomposition that corresponds to

every positive non-cyclic orbit ω(xk)k∈Z .
2. There is an irreducible representation πω in Hilbert space l2(N) given by the formulae:

Ue0 = 0, Uek = ek−1, Cek =
√

xkek for k > 1 and X = UC that corresponds to positive
non-cyclic Fock-orbit ω = (xk)k∈N .

3. There is an irreducible representation πω in Hilbert space l2(N) given by the formulae:
Uek = ek−1, Cek =

√
xkek for k > 1 and X = UC that corresponds to positive non-cyclic

anti-Fock-orbit ω = (x−k)k∈N .
4. There is a family of m-dimensional irreducible representations πω,φ in Hilbert space

l2({1, . . . , m}) given by the formulae: Ue0 = eiφem−1, Uek = ek−1, Cek =
√

xkek for k =
1, . . . , m; 0 ≤ φ ≤ 2π and X = UC that corresponds to cyclic positive orbit ω = (xk)k∈N of
length m.

Note that in the case when mapping f is not polynomial the ∗-algebra Af is undefined.
Instead of it we may consider C∗(Af ), a C∗-algebra obtained from free ∗-algebra F(X, X∗)
generated by X with sub-norm ‖b‖ = sup

π
‖π(b)‖, where supremum is taken over all π ∈

Rep(F(X, X∗)) such that π(XX∗) = f(π(X∗X)) by standard factorization and completion
procedure.

Definition 4. We call the element Si of P -partition positive or respectively negative if Si ⊂
[0, +∞) or respectively Si ⊂ (−∞, 0). Let N be a set of vertices of the graph ΓP that correspond
to negative elements of the partition.
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Theorem 3. Let (f, I) be a dynamical system with mapping f defined in (2), and let ΓP be
a graph associated with P -partition defined by the set S = {δ(b) ∪ δ(0) ∪ ω(δ(b)) ∪ ω(δ(0))}. Then
there exists one-to-one correspondence between the set of anti-Fock representations of Af and
the set of infinite paths on the graph ΓP that start from the vertex corresponding to point 0 and
do not pass through this vertex and vertices of the set N .

Proof. By Proposition 1 the set S defines a P -partition. By Theorem 1 there exists one-to-one
correspondence between the set of anti-Fock orbits and the set of infinite paths on the graph ΓP

starting from the vertex that corresponds to the element of the partition containing point 0.
Since point 0 belongs to S, all elements of the partition are either positive or negative. Therefore
anti-Fock orbits correspond to paths that do not pass through vertex corresponding to 0 and
vertices of the set N . �

Remark 1. We can reduce the number of elements in the partition mentioned in Theorem 3
just by splitting elements fn(0) with appropriate intervals. For example, 0 with interval (0, x).

Corollary 1. Let (f, I) be a dynamical system with mapping f defined in (2) and let ΓP be
a graph associated with P -partition defined by the set S = {δ(b) ∪ ω(δ(b))}. Let Q be an element
of P -partition such that 0 ∈ Q. And let any preimage of zero do not belong to Q or equivalently
no closed path starting from corresponding vertex. Then there exists one-to-one correspondence
between the set of anti-Fock representations of Af and the set of infinite paths on the graph ΓP

that start from the vertex corresponding to element Q and do not pass through vertices of the
set N .

4 Linear-fractional mappings

Many important examples of ∗-algebras, C∗-algebras and their representations arising in physical
models are connected with dynamical systems. In particular, the two-parameter unit quantum
disk algebra [4]

C〈z, z∗ | qzz∗ − z∗z = q − 1 + µ(1 − zz∗)(1 − z∗z)〉,
0 ≤ µ ≤ 1, 0 ≤ q ≤ 1, (µ, q) �= (0, 1),

that can be rewritten [6] in the form Af = C〈X, X∗ |XX∗ = f(X∗X)〉, where

F (λ) =
(q + µ)λ + 1 − q − µ

µλ + 1 − µ
.

In present paper we investigate “unimodal deformation” of the relation written above and de-
scribe anti-Fock representations of a corresponding ∗-algebra.

Consider a continuous unimodal piecewise linear-fractional map f : R → R that consists of
two hyperbolae:

f(x) =




f1(x) =
α1x + β1

γ1x + δ1
, x � b,

f2(x) =
α2x + β2

γ2x + δ2
, x > b.

(3)

According to paper [3] we restrict ourselves to the following conditions

f1(x) is increasing, f2(x) is decreasing, b > 0, f(b) > b, f(f(b)) < b,

0 � f (2)(b), f (3)(b) � f (2)(b). (4)
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Under these conditions anti-Fock orbit sets of dynamical systems (f, R) and (f, [f(f(b)), f(b)])
coincide. Hence we will consider dynamical systems as defined in (2).

Considering mapping (3) up to the topological conjugacy [8, 1] under condition (α1 − δ1)2 +
4γ1β1 � 0 we may assume γ1 = 0, α2 = 1.

Thus we restrict ourselves to the following set of mappings (see Fig. 1): f = fl,s,t : [0, 1] →
[0, 1], l > 0,

fl,s,t(x) =




f1(x) = lx + a, x ∈ [0, b],

f2(x) =
x − 1
sx + t

, x ∈ (b, 1],
(5)

Conditions f1(b) = f2(b) = 1, f2(1) = 0 give us formulae for a and b via l, s, t:

a = 1 − l
t + 1
1 − s

, b =
t + 1
1 − s

.

0

1

f2

1b

f1

a

Figure 1

In paper [1] the conditions of existence of stable cycle γn = {x1, . . . , xn} such that

xi < xi+1, f(xi) = xi+1, i = 1, . . . , n − 1, f(xn) = x1

were obtained.
Let us display some necessary results from paper [1].
Conditions b ∈ (0, 1), f

′
2(x) < 0 and a ∈ [0, 1) give us following restrictions:

s < 1, −1 < t < −s, t � 1 − s

l
− 1.

So we will assume that parameters l, s, t lie in the area

Π =
{

(l, s, t) : l > 0, s < 1, t ∈
(
−1, min

{
−s,

1 − s

l
− 1

})}
.

Denote

Ln = 1 + l + l2 + · · · + ln =
1 − ln+1

1 − l
.

Theorem 4. Mapping f has the cycle γn iff

t � − ln−2 + sLn−3

Ln−2
and it is attracting iff




s <
1

Ln−1
,

t <
ln−1 + s(1 − 2ln−1) − s2Ln−2

sLn−1 − 1
.
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We denote the corresponding areas of parameters by Πn

Πn =
{

(l, s, t) :
ln−1 + s(1 − 2ln−1) − s2Ln−2

sLn−1 − 1
> t � −ln−2 − sLn−3

Ln−2
,

1
Ln−1

> s

}
.

The lower border of each area Πn is defined by the surface of existence, we denote it by En.
The upper border is defined by surface of stability, we denote it by Sn.

On the Fig. 2 we give section of these areas for s = −2.

Figure 2.

It is well-known [2], [7] that the structure of anti-Fock representation set as well as the
structure of C∗(Af ) heavily depends on the dynamics of (f, I). We will show that anti-Fock
representation set has a good description whenever the corresponding dynamical system has an
attracting cycle.

The following theorem from [8] helps us to describe possible attracting cycles of dynamical
system generated by piecewise linear mappings (s = 0). In Theorem 6 we will give such a
description.

Theorem 5. Let f : I → I be a unimodal mapping, f ∈ C3(I\{c}) and Sf(x) = 0, x ∈ I\{c}
(Sf(x) is Schwarzian derivative of f(x), Sf = f

′′′

f ′ − 3
2

(
f
′′

f ′

)2

) then the set of all not repellent
cycles is either empty or consists of one attracting or semiattracting cycle or represents the cycle
of closed intervals B = {J0, J1, . . . , Jn−1} of some period n � 1 such that f (n)(x) = x, x ∈ J0

and the point c is one of the ends of interval J0.

Theorem 6. Let f : I → I, I = [c, d] be a continuous piecewise linear unimodal mapping such
that (f(b) = max

x∈I
f(x) = d, f(d) = c, f(c) ≥ c). Whenever corresponding dynamical system has

a stable cycle then this cycle is of type γn.

Proof. First of all we recall that cycle γn exists iff s − 2 iterations of point cv are smaller
than b. Let the stable cycle β = {x1, x2, . . . xk}, k > 2 exist. It is easy to check that there exists
a sequence of points xj , xj+1, . . . , xj+s such that xi < b, i = j, . . . , j + s − 1, xj+s > b, s ≥ 1,
1 ≤ j ≤ k−s and product of derivatives at these points equals to u, |u| < 1. Also s−2 iterations
of point c are smaller than b. Therefore the cycle γs exists. And product of derivatives at points
of this cycle also equals u. Hence cycle γs is stable. According to Theorem 5 there exists only
one stable cycle. Therefore β = γs. �

The following proposition gives description of anti-Fock representation set of C∗(Afl,s,t
) under

condition of existing of stable cycle.
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Proposition 2. Let point (l, s, t) be an inner point of area Pn. Then there exists countable
P -partition of the following form:

Let I1 = (f (2n−1)(1), b], I2 = (f (2n)(1), 1) and Ij = f (j−2)(I2), j � 3. Then I = ∪
j
Ij ∪

(f (n+1)(1), f (2)(1)) ∪ (f (n+2)(1), f (3)(1)) ∪ · · · ∪ (f (2n−2)(1), f (n−1)(1)) ∪ (b, f (n)(1)) ∪ S = ∪
j
Ij ∪

J1 ∪ J2 ∪ · · · ∪ Jn−1 ∪ S, where set S consists of the points of unilateral orbit δ(1) = (f (k)(1),
k � 0) = (xi)i∈N and points of the cycle γn = {y1, y2, . . . , yn}.

Corresponding transition graph has the following form:

������ � � ����
�� ��������� � �����

Jn−1 Jn−2 J2 J1In+2In+3In+4

�� ������������� �� �����

����

x1x2x3xn+1xn+2xn+3

������ � � �� �
y1y2yn−1yn�

� 	

I1

� � � � � ����
I2I3I4

�




�

�

There exists one-to-one correspondence between the paths on the graph that start at point x2,
and do not pass this point, and irreducible anti-Fock representations of C∗(Af ).

Proof. Structure of P -partition and corresponding transition graph follows from ω(δ(1)) = γn

and can be checked by the direct calculations.
From f−1

1 (x) = ∅, x ∈ [0, f(0)) it follows that: f−1
1 (Ink+3) = ∅, f−1

1 (xnk+2) = ∅, k � 0, and
f−1
1 (J1) = ∅, f−1

1 (y1) = ∅.
We also have:

f−1
1 (It) = It−1, t �= nk + 3, t � 2, k � 0,

f−1
1 (xt) = xt−1, t � 2, t �= nk + 2, k � 0,

f−1
1 (Jk) = Jk−1, 2 � k � n − 1,

f−1
1 (yk) = yk−1, k �= 1, f−1

2 (Ink+3) = Ink+2, f−1
2 (xnk+2) = xnk+1, k � 0,

f−1
2 (I1) ∈ Jn−1, f−1

1 (I1) ∈ Jn−2,

f−1
2 (x1) = ∅, f−1

1 (x1) = b ∈ I1,

f−1
2 (y1) = yn, f−1

2 (1) = ∅.

From f−1
2 (x) ∈ (b, f (n)(1)) when x ∈ (f (n+1)(1), 1) it follows that:

f−1
2 (It) ∈ Jn−1, t �= nk + 3, k � 1,

f−1
2 (xt) ∈ Jn−1, t �= 1, t �= nk + 2, k � 1,

f−1
2 (Jt) ∈ Jn−1, 1 � t � n − 1,

f−1
2 (yk) ∈ Jn−1, k �= 1.

One-to-one correspondence between paths and representations follows from Theorem 3. �
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