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Liouville integrable separable systems with quadratic in momenta first integrals are consi-
dered. Particular attention is paid to the systems generated by so-called special conformal
Killing tensors, i.e. Benenti systems. Then infinitely many new classes of separable systems
are constructed by appropriate deformations of Benenti class systems.

1 Introduction

The separation of variables for solving by quadratures of the Hamilton–Jacobi (HJ) equations
of related Liouville integrable dynamic systems with quadratic in momenta first integrals has
a long history as a part of analytical mechanics. There are some milestones of that theory. First,
in 1891 Stäckel initiated a program of classification of separable systems presenting conditions
for separability of the HJ equations in orthogonal coordinates [1–3]. Then, in 1904 Levi-Civita
found a test for the separability of a Hamiltonian dynamics in a given system of canonical
coordinates [4]. The next was Eisenhart [5–7], who in 1934 inserted a separability theory in
the context of Riemannian geometry, making it coordinate free and introducing the crucial
objects of the theory, i.e. Killing tensors. This approach was then developed by Woodhouse [8],
Klanins [9, 10] and others. Finally, in 1992, Benenti [11–13] constructed a particular, but very
important subclass of separable systems, based on the so called special conformal Killing tensors.

The first constructive theory of separated coordinates for dynamical systems was made by
Sklyanin [15]. He adopted the method of soliton theory, i.e. the Lax representation, to systematic
derivation of separated coordinates. In that approach involutive functions appear as coefficients
of characteristic equation (spectral curve) of Lax matrix. The method was successfully aplied
to separation of variables for many integrable systems [15–20].

Recently, a modern geometric theory of separability on bi-Poisson manifolds was constructed
[21–26], related to the so-called Gel’fand–Zakharevich (GZ) bi-Hamiltonian systems [27, 28].
Obviously, it contains as a special case Liouville integrable systems with all constants of motion
being quadratic in momenta functions. Indeed, Ibort et.al. [29] proved that the Benenti class of
systems can be lifted to the GZ bi-Hamiltonian form.

In the following paper we construct in a systematic way all Liouville integrable systems on
Riemannian spaces, which are of the GZ type, including as a special case the Benenti class of
systems. What is important, infinitely many classes of separable systems are constructed from
appropriate deformations of the Benenti class of systems. In that sense we demonstrate the
crucial role of this particular class of systems in the separability theory of dynamic systems with
quadratic in momenta first integrals.

2 Separable dynamics on Riemannian spaces

Let (Q, g) be a Riemann (pseudo-Riemann) manifold with covariant metric tensor g and lo-
cal coordinates q1, . . . , qn. Moreover, let G := g−1 be a contravariant metric tensor satisfying
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n∑
j=1

gijG
jk = δk

i . The equations

qi
tt + Γi

jkq
j
t q

k
t = Gik∂kV (q), i = 1, . . . , n, qt ≡ dq

dt
(1)

describe the motion of a particle in the Riemannian space with the metric g, where Γi
jk are the

Levi-Civita connection components. Equations (1) can be obtained by varying the Lagrangian

L(q, qt) =
1
2

∑
i,j

gijq
i
tq

j
t − V (q) (2)

and are called Euler–Lagrange equations. Obviously, for G = I equations (1) reduce to Newton
equations of motion.

One can pass in a standard way to the Hamiltonian description of dynamics, where the
Hamiltonian function takes the form

H(q, p) =
n∑

i=1

qi
t

∂L
∂qi

t

− L =
1
2

n∑
i,j=1

Gijpipj + V (q), pi :=
∂L
∂qi

t

=
∑

j

gijq
j
t

and equations of motion are(
q
p

)
t

= θ0dH =
(

0 I
−I 0

)( ∂H
∂q
∂H
∂p

)
= XH ⇐⇒ qi

t =
∂H

∂pi
, pit = −∂H

∂qi
.

XH denotes the Hamiltonian vector field with respect to a canonical Poisson tensor θ0 and the
whole dynamics takes place on the phase space M = T ∗Q in local coordinates (q1, . . . , qn, p1,
. . . , pn).

Of special importance is the geodesic motion V (q) ≡ 0, with Euler–Lagrange equations and
Hamiltonian representation in the form

qi
tt + Γi

jkq
j
t q

k
t = 0, i = 1, . . . , n ⇐⇒

(
q
p

)
t

= θ0dE = XE , E =
1
2

n∑
i,j=1

Gijpipj .

Functionally independent Hamiltonian functions Hi, i = 1, . . . , n are said to be separable
in the canonical coordinates (λ, µ) if there are n relations, called the separation conditions
(Sklyanin [15]), of the form

ϕi(λi, µi;H1, . . . , Hn) = 0, i = 1, . . . , n, det
[
∂ϕi

∂Hj

]
�= 0, (3)

which guarantee the solvability of the appropriate Hamilton–Jacobi equations and involutivity
of Hi. A special case, when all separation relations (3) are affine in Hi, is given by the set of
equations

n∑
k=1

φk
i (λi, µi)Hk = ψi(λi, µi), i = 1, . . . , n, (4)

where φ and ψ are arbitrary smooth functions of their arguments, is called the Stäckel separation
conditions and the related dynamic systems are called Stäckel separable.

We are going to present a subclass of one-particle dynamics, containing Liouville integrable
and separable systems with n quadratic in momenta constants of motion. Stäckel [1–3] was the
first who gave the characterization of equations of motion integrable by separation of variables.
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He proved that if in a system of orthogonal coordinates (λ, µ) there exists a non-singular matrix
ϕ = (ϕl

k(λk)), called a Stäckel matrix such that the Hamiltonians Hr are of the form

Hr =
1
2

n∑
i=1

(ϕ−1)i
r(µ2

i + σi(λi)), (5)

then Hr are functionally independent, pairwise commute with respect to the canonical Poisson
bracket and the Hamilton–Jacobi equation associated to H1 is separable. Indeed, for quadratic
in momenta constants of motion, the Stäckel separation conditions (4) take the general form

n∑
k=1

φk
i (λi)Hk =

1
2
fi(λi)µ2

i + γi(λi), i = 1, . . . , n, (6)

where fi, γi, φk
i are arbitrary smooth functions of its argument and the normalization φn

i = 1,
i = 1, . . . , n is assumed. To get the explicit form of Hk = Hk(λ, µ) one has to solve the system
of linear equations (6). The results are the following

ϕ =


φ1

1(λ1)
f1(λ1)

φ2
1(λ1)

f1(λ1)
· · · φn−1

1 (λ1)

f1(λ1)
1

f1(λ1)
...

... · · · ...
...

φ1
n(λn)

fn(λn)
φ2

n(λn)
fn(λn) · · · φn−1

n (λn)
fn(λn)

1
fn(λn)

 , σi(λi) = γi(λi)/fi(λi).

Eisenhart considered Stäckel separable systems in the frame of one-particle dynamics on
Riemannian (pseudo-Riemannian) space (Q, g). He gave a coordinate-free representation for
Stäckel geodesic motion introducing a special family of Killing tensors [5–7]. As known, a (1, 1)-
type tensor K = (Ki

j) (or a (2, 0)-type tensor KG = A = (Aij)) is called a Killing tensor with
respect to g if{∑

Aijpipj ,
∑

Gijpipj

}
θ0

= 0,

where {·, ·}θ0 means a canonical Poisson bracket. He proved [5–7] that the geodesic Hamiltonians
can be transformed into the Stäckel form (5) if the contravariant metric tensor G = g−1 has
(n− 1) commuting independent contravariant Killing tensors Ar of a second order such that

Er =
1
2

∑
i,j

Aij
r pipj ,

admitting a common system of closed eigenforms αi

(A∗
r − vi

rG)αi = 0, dαi = 0, i = 1, . . . , n,

where vi
r are eigenvalues of (1, 1) Killing tensor Kr = Arg (K∗

r = gA∗
r).

For n degrees of freedom, let us consider n Stäckel Hamiltonian functions in separated coor-
dinates in the following form

Hr =
1
2

n∑
i=1

vi
rG

iiµ2
i + Vr(λ) =

1
2
µTKrGµ+ Vr(λ), r = 1, . . . , n, (7)

where µ = (µ1, . . . , µn)T and Vr(λ) are appropriate potentials separable in (λ, µ) coordinates.
For the integrable system (7) calculated from (6)

Gii = (−1)i+1 fi(λi) detW i1

detW
, vi

r = (−1)r+1 detW ir

detW i1
, Vr =

n∑
i=1

(−1)i+rγi(λi)
detW ir

detW
,
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where

W =

 φ1
1(λ1) φ2

1(λ1) · · · φn−1
1 (λ1) 1

...
... · · · ...

...
φ1

n(λn) φ2
n(λn) · · · φn−1

n (λn) 1


and W ik is the (n − 1) × (n − 1) matrix obtained from W after we cancel its ith row and kth
column.

In our further considerations we restrict to the so-called GZ case, when φk
i (λi) are monomials,

fi = f and γi = γ. Then, the Stäckel separation conditions are n copies of a so-called separation
curve

H1ξ
m1 + · · · +Hnξ

mn =
1
2
f(ξ)µ2 + γ(ξ), mn = 0 < mn−1 < · · · < m1 ∈ N, (8)

with (ξ, µ) = (λi, µi), i = 1, . . . , n.
In (λ, µ) coordinates n related Hamilton–Jacobi (HJ) equations

Hr

(
λ,
∂W

∂λ

)
= ar, r = 1, . . . , n,

for a generation function W (λ, a) =
n∑

i=1
Wi(λi, a), decouple into n ordinary differential equations

1
2
f(λi)

(
dWi

dλi

)2

+ γ(λi) = a1(λi)m1 + a2(λi)m2 + · · · + an ≡ a(λi)

and hence, the implicit solution of dynamical system with Hamiltonian function Hr is given by

n∑
k=1

∫ λk
ξmi√
ψ(ξ)

dξ = trδri + consti, i = 1, . . . , n,

where 2f(ξ)[a(ξ) − γ(ξ)] ≡ ψ(ξ), called the inverse Jacobi problem.
In this context, a question about classification and construction in natural coordinates of

all separable systems on Riemannian spaces, with n quadratic in momenta constants of motion,
arises. The classification can be made with respect to the admissible forms of Stäckel separability
conditions. The right hand side of the conditions (8) is always the same for the class of systems
considered

r.h.s. =
1
2
f(λi)µ2

i + γ(λi) = ψ(λi, µi), (9)

so different classes of separable systems are described by different forms of the l.h.s. of Stäckel
conditions, while systems from the same class are described by different f and γ in (9).

3 Separable systems in natural coordinates

Among all Stäckel systems a particularly important subclass consists of these considered by
Benenti [11–13] and constructed with the help of the so-called conformal Killing tensor. Let
L = (Li

j) be a second order mixed type tensor on Q and let L : M → R be a function on M

defined as L = 1
2

n∑
i,j=1

(LG)ijpipj . If

{L,E}θ0 = κE, where κ = {ε, E}θ0 , ε = Tr (L),
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then L is called a conformal Killing tensor with the associated potential ε = Tr (L). If we assume
additionally that L has simple eigenvalues and its Nijenhuis torsion vanishes, then L is called
a special conformal Killing tensor [14].

For the Riemannian space (Q, g, L), geodesic flow has n constants of motion of the form

Er =
1
2

n∑
i,j=1

Aij
r pipj =

1
2

n∑
i,j=1

(KrG)ijpipj , r = 1, . . . , n, (10)

where Ar and Kr are Killing tensors of type (2, 0) and (1, 1), respectively. Moreover, as was
shown by Benenti [11, 12], all the Killing tensors Kr with a common set of eigenvectors, are
constructed from L by

Kr+1 =
r∑

k=0

ρkL
r−k,

where ρr are coefficients of the characteristic polynomial of L

det(ξI − L) = ξn + ρ1ξ
n−1 + · · · + ρn, ρ0 = 1, (11)

or equivalently by the following ‘cofactor’ formula [30–32]

cof (ξI − L) =
n−1∑
i=0

Kn−iξ
i,

where cof (A) stands for the matrix of cofactors, so that cof (A)A = (detA)I. So, for a given
metric tensor g, the existence of a special conformal Killing tensor L is a sufficient condition
for the geodesic flow on Q to be a Liouville integrable Hamiltonian system with all constants of
motion quadratic in momenta. Moreover, the basic separable potentials V (m)

r are given by the
following recursion relation [30–32]

V (m+1)
r = ρrV

(m)
1 − V

(m)
r+1 , (12)

where the first nontrivial potentials are V (0)
r = −ρr.

It turns out that we can (generically) associate with the tensor L a coordinate system
on Q in which the geodesic flows associated with all the functions Er separate. Namely, let
(λ1(q), . . . , λn(q)) be n distinct, functionally independent eigenvalues of L, i.e. solutions of the
characteristic equation det(ξI − L) = 0. Solving these relations with respect to q we get the
transformation λ → q : qi = αi(λ). The remaining part of the transformation to the sepa-
ration coordinates can be reconstructed from the generating function W (p, λ) =

∑
i
piαi(λ). In

the (λ, µ) coordinates the Stäckel separation conditions (8) for Benenti Hamiltonian functions
Hr = Er + V

(j)
r are given by the separation curve of the form

H1ξ
n−1 +H2ξ

n−2 + · · · +Hn =
1
2
f(ξ)µ2 + ξn+j , j = 0, 1, 2, . . . . (13)

It is important to notice that all Liouville integrable systems of classical mechanics, with
quadratic in momenta first integrals, that was separated in XIX and XX centuries, belong to
the Benenti class. The reason is that only the Benenti class contains dynamic systems on flat
and constant curvature Riemannian spaces. Another important feature of Benenti systems is
that all of them can be lifted to one Casimir bi-Hamiltonian form [29].
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Now we present the way to construct all remaining classes of separable systems by an appro-
priate deformations of the Benenti class. Let us start from the separability condition (8) for n
Hamiltonian functions in the following form

H̃1ξ
(n+k)−1 + H̃2ξ

(n+k)−2 + · · · + H̃n+k =
1
2
f(ξ)µ2 + ξn+j , k ∈ N, j ≥ k, (14)

where H̃n1 = H̃n2 = · · · = H̃nk
= 0, 1 < n1 < · · · < nk < n + k, and the separability condition

for Benenti systems with the same separation coordinates (λ, µ)

H1ξ
n−1 +H2ξ

n−2 + · · · +Hn =
1
2
f(ξ)µ2 + ξn+j . (15)

Theorem 1. Deformation of the Benenti system with separation curve (15) to the new system
with separation curve (14) is given by a following determinant form

H̃r =

∣∣∣∣∣∣∣∣
Hr−k ρr−1 · · · ρr−k

Hn1−k ρn1−1 · · · ρn1−k

· · · · · · · · · · · ·
Hnk−k ρnk−1 · · · ρnk−k

∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣

ρn1−1 · · · ρn1−k

· · · · · · · · ·
ρnk−1 · · · ρnk−k

∣∣∣∣∣∣ , (16)

where ρi, i = 0, . . . , n are coefficients of the characteristic polynomial of the conformal Killing
tensor L (11) related to the Benenti system.

The formula (16) applies separately to the geodesic and the potential parts. The geodesic
part Ẽr can be presented in the following form

Ẽr =
1
2
pT K̃rG̃p, r = 1, . . . , n+ k, (17)

where metric tensor G̃ and Killing tensors K̃r are

G̃ = (−1)kϕ−1D0G, K̃r = Kr −Kr−1D1D
−1
0 + · · · + (−1)kKr−kDkD

−1
0 ,

ϕ =

∣∣∣∣∣∣
ρn1−1 · · · ρn1−k

· · · · · · · · ·
ρnk−1 · · · ρnk−k

∣∣∣∣∣∣ , D0 =

∣∣∣∣∣∣
Kn1−1 · · · Kn1−k

· · · · · · · · ·
Knk−1 · · · Knk−k

∣∣∣∣∣∣ ,
Di =

∣∣∣∣∣∣
Kn1 · · · Kn1−i+1 Kn1−i−1 · · · Kn1−k+1

· · · · · · · · · · · · · · · · · ·
Knk

· · · Knk−i+1 Knk−i−1 · · · Knk−k+1

∣∣∣∣∣∣ , i = 1, . . . , k

and Km in determinant calculations are treated as symbols, not as matrices. The proof of the
theorem as well as other details can be found in [32].

Systems constructed in such way although obtained through the deformation procedure on
the level of Hamiltonian functions, are far from being trivial generalizations of Benenti systems.
There is no obvious relations between solutions of a given Benenti system and all its defor-
mations. In each case we have a different inverse Jacobi problem to solve. Notice that the
common feature of appropriate deformed systems is the same set of separated coordinates de-
termined by the related Benenti system. Moreover, all of them can be lifted to a multi-Casimir
bi-Hamiltonian form [32].

4 Example

Consider the case n = 2. Let Q be a two dimensional flat space parametrized by canonical
coordinates q = (q1, q2) with the contravariant metric tensor G and related special conformal
Killing tensor L of the form

G =
(

1 0
0 1

)
, L =

(
q1 1

2q
2

1
2q

2 0

)
=⇒ K2 =

(
0 1

2q
2

1
2q

2 −q1
)
.
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Two geodesic Hamiltonians E1 and E2, according to (10) are

E1 =
1
2
p2
1 +

1
2
p2
2, E2 =

1
2
q2p1p2 − 1

2
q1p2

2.

Let us choose the potential V (2). As ρ1 = −q1 and ρ2 = −1
4(q2)2 hence

V
(2)
1 = (q1)3 +

1
2
q1(q2)2, V

(2)
2 =

1
16

(q2)4 +
1
4

(q1)2(q2)2.

It is one of the integrable cases of the Henon–Heiles system with Hamiltonian function H1 = E1+
V

(3)
1 , second constant of motion H2 = E2+ V

(3)
2 and Newton equations

(q1)tt = −3(q1)2 − 1
2

(q2)2, (q2)tt = −q1q2.

The transformation to separated coordinates (λ, µ) takes the form

q1 = λ1 + λ2, q2 = 2
√
−λ1λ2,

p1 =
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1
, p2 =

√
−λ1λ2

(
µ1

λ1 − λ2
+

µ2

λ2 − λ1

)
,

and the separation curve is

H1ξ +H2 =
1
2
ξµ2 + ξ4.

Now, let us consider the simplest deformation given by k = 1, n1 = 2. Then,

G̃ = − 1
ρ1
G =

(
1
q1 0
0 1

q1

)
, K̃2 = 0, K̃3 = −K2

2 =
( −1

4(q2)2 1
2q

1q2
1
2q

1q2 −1
4(q2)2 − (q1)2

)
,

Ṽ1 = − 1
ρ1
V1, Ṽ2 = 0, Ṽ3 = V2 − ρ2

ρ1
V1,

hence

H̃1 =
1
2

1
q1
p2
1 +

1
2

1
q1
p2
2 + (q1)2 +

1
2

(q2)2,

H̃3 = −1
8
q22
q1
p2
1 +

1
2
q2p1p2 − 1

8
q22
q1
p2
2 −

1
16

(q2)4.

H̃1 and H̃2 are in involution and are separated in the same coordinates (λ, µ) as the Henon–Heiles
system. The appropriate separation curve takes the form

H̃1ξ
2 + H̃3 =

1
2
ξµ2 + ξ4.
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