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New Classes of Nonlinear Evolutionary Equations
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We consider new classes of nonlinear evolutionary equations (NEEs) of the n-th order depen-
ding on two arbitrary functions such that the solutions to these equations of traveling wave
type satisfy the corresponding nonlinear superposition principles (NSPs). The construction
is based on the methods of the factorization and exact linearization of ordinary differential
equations (ODEs)

1 Introduction

In the papers [1] and [2] some higher analogs of the nonlinear evolutionary equation of Korteweg–
de Vries are considered. Some NEEs of the higher order are represented in handbook [3]. In the
present paper we have constructed new types of NEEs of higher order. For their construction
the methods of factorization and exact linearization were used (see [4–8]).

In Section 2 the summary of results on the method of a exact linearization is given. In
Section 3 the NEEs of n-th order depending on one arbitrary function and reducible to linear
evolutionary equations (LEEs) by a nonlinear substitution of dependent variable are constructed.
In Section 4 the NEEs of n-th order depending on two arbitrary functions are constructed. Their
solutions of traveling wave type satisfying to nonlinear ODEs, linearized by transformation
dependent and independent variables. In Section 5 the NEEs of n-th order depending on two
arbitrary functions also are are constructed. Their stationary solutions satisfy to the nonlinear
ODEs reduced to the semilinear equations.

2 On the method of exact linearization
for ordinary differential equations

Lemma 1. An autonomous second-order ODE

F (y, y′, y′′) = 0, ()′ =
d

dx
(1)

can be reduced to the linear form

z′′(s) + 2b1z
′(s) + b2z(s) = 0, b1, b2 = const, (2)

by a nonlinear transformation of the dependent and independent variables

y = v(y)z, ds = ydx (3)

if and only if (1) can be factored into noncommutative nonlinear differential operators as(
D −

(
v∗

v
+

u∗

u

)
y′ − r2u

)(
D − v∗

v
y′ − r1u

)
y = 0, D =

d

dx
, ()∗ =

d

dy
(4)

or into commutative operators as(
1
u

D − v∗

vu
y′ − r2

)(
1
u

D − v∗

vu
y′ − r1

)
y = 0,
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where r1 and r2 are the roots of the characteristic equation

r2 + 2b1r + b2 = 0. (5)

Lemma 2. Equation (1) can be linearized by transformation (3), if and only if it can be repre-
sented in the form

y′′ + fy′2 + 2b1ϕy′ + b2ϕ exp
(
−
∫

fdy

)∫
ϕ exp

(∫
fdy

)
dy = 0, (6)

where f = f(y), ϕ = ϕ(y), that reduces to (2) by the transformation

z = β

∫
ϕ exp

(∫
fdy

)
dy, ds = ϕ(y)dx, (7)

where β = const �= 0 is a normalizing factor.

Lemma 3. An autonomous n-th order ODE

F
(
y, y′, . . . , y(n)

)
= 0 (8)

can be reduced to a linear autonomous form

Mn(z) ≡ z(n)(s) +
n∑

k=1

(
n

k

)
bkz

(n−k)(s) = 0, bk = const

by transformation (3) if and only if (8) can be represented in the form

1∏
k=n

[
D −

(
1
y
−
(

ln
∫

ϕ
n2−n+2

2n exp
(∫

fdy

)
dy

)∗
+ (k − 1)

ϕ∗

ϕ

)
y′ − rkϕ

]
y = 0, (9)

where rk are the roots of the characteristic equation

Mn(r) ≡ rn +
n∑

k=1

(
n

k

)
bkr

n−k = 0; (10)

the linearizing transformation (2) then has the form

z = β

∫
ϕ

n2−n+2
2n exp

(∫
fdy

)
dy, ds = ϕdx, (11)

where β = const �= 0 is a normalizing factor.

Note 1. The structure of linearizable equations. Linearizable equations depend on two
arbitrary functions and n parameters serving as coefficients of the linear equations. They are
algebraic with respect to the derivatives of the dependent variable which they include. The
higher-order equations are constructed on the basis of recursive relations. The order of the
nonlinear term is determined as the sum of the products of the orders of derivatives by their
exponents. Each equation belonging to the class under examination can be represented as an
algebraic sum of terms (with coefficients expressed through the dependent variable) each of
which consists of nonlinear terms of the same order. The order of the term not depending on
the coefficients of the transformed linear equation equals the order of the equation. All the other
terms have smaller orders and contain coefficients (parameters) of the linear equation. Then,
a linearizable equation can be represented in the form∑

k1+2k2+···+nkn=n

Ψ12...n
k1k2...kn

y(1)k1y(2)k2 · · · y(n)kn
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+
n−1∑
m=1

(
n

m

)
bmϕm


 ∑

l1+2l2+···+(n−m)ln−m=n−m

Ψ12...n−m
l1l2...ln−m

y(1)l1y(2)l2 . . . y(n−m)ln−m




+ bn exp
(
−
∫

fdy

)∫
ϕ

n2+n−2
2n exp

(∫
fdy

)
dy = 0, (12)

where the coefficients Ψ depend on f(y) and ϕ(y) and

Ψ12...n
00...1 = 1, Ψ12...n−m

00...1 = 1, Ψ12...n−1n
10...10 = nf(y).

3 Nonlinear evolutionary equations reducible
to linear evolutionary equations

Proposition 1. An NEE

∂y

∂t
= F

(
y,

∂y

∂x
, . . . ,

∂ny

∂xn

)
, y = y(t, x) (13)

reduces to a linear evolutionary equation (LEE)

∂z

∂t
=

n∑
k=0

(
n

k

)
bk

∂n−kz

∂xn−k
, (14)

by substitution of the form (see (3))

y = v(y)z, (15)

if and only if (13) can be factored as(
1 − v∗

v
y

)
∂y

∂t
=

n∏
k=1

(
∂

∂x
− v∗

v

∂y

∂x
− rk

)
y, (16)

where rk are the roots of characteristic equation (10).

Theorem 1. NEE (13) reduces to LEE (14) by substitution (15) if and only if it can be repre-
sented in the form

exp
(∫

fdy
)
y∫

exp(
∫

fdy)dy

∂y

∂t
=

n∏
k=1

[
∂

∂x
−
(

1
y
− exp

(∫
fdy

)∫
exp(

∫
fdy)dy

)
∂y

∂x
− rk

]
y, (17)

linearizing substitution (15) then has an explicit form

z = β

∫
exp

(∫
fdy

)
dy, β = const �= 0. (18)

Proof. We apply Lemma 3, equation (16), and the formula

1 − v∗

v
y =

exp
(∫

fdy
)
y∫

exp
(∫

fdy
)
dy

. �

Equation (13) in form (16) satisfies the nonlinear superposition principle (NSP)

z =
∫

exp
(∫

fdy

)
dy =

n∑
k=1

ckzk(t, x),

where ck are arbitrary constants and zk(t, x) are linearly independent partial solutions to
LEE (14).
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Example 1. The equation1

yt =
h

2
yxx − 1

2
y2

x, h = const (19)

belongs to the class (17) and it is reduced to the LEE

zt = −hzxx (20)

by the transformation z = exp(−y/h). Let z1(t, x) and z2(t, x) be its linearly independent
solutions. Then the complete integral z = c1z1 +c2z2 of LEE (20), where c1 and c2 are arbitrary
constants, is a linear superposition principle, and the formula

y = −h ln
[
exp

(
−1

h
y1 − λ1

h

)
+ exp

(
−1

h
y2 − λ2

h

)]

is a NSP for (19), where λ1 and λ2 are arbitrary constants, y1(x, t) and y2(x, t) are particular
solutions, and y(x, t) is a complete integral of equation (19).

Note that equation (19) can be linearized into the equation zt = zss by the transformation
z = exp(−y/h), ds =

√
2/hdx.

Note 2. In idempotent analysis, the correspondence principle (in the sense of Maslov) is an
NSP (see for example [9]).

Example 2. The equation

yt = yiv + 4fy′y′′′ + 3fy′′2 + 6(f2 + f∗)y′2y′′ + (f3 + 3ff∗ + f∗∗)y′4

+ 4b1(y′′′ + 3fy′y′′ + (f2 + f∗)y′3)

+ 6b2(y′′ + fy′2) + 4b3y
′ + b4 exp

(
−
∫

fdy

)∫
exp

(∫
fdy

)
dy = 0

can be reduced by substitution (18) to the corresponding fourth-order LEE.

A nonlinear ODE linearizable by transformation (18) was constructed in [10].

4 Nonlinear evolutionary equations
with linearizable right-hand sides

Proposition 2. NEE (13) has a solution of the traveling wave type

y(τ) = y(x − at) (21)

and can be reduced to a linear ODE by the substitution

y = v(y)z, ds = u(y)dτ, (22)

if and only if

un−1

(
1 − v∗

v
y

)
∂y

∂t
=

1∏
k=n

[
∂

∂x
−
(

v∗

v
+ (k − 1)

u∗

u

)
∂u

∂x
− rku

]
y, (23)

where rk are the roots of characteristic equation (10).
1This example was adduced in works of V.P. Maslov and his coauthors.
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Proof. Sufficiency. First, note that the right-hand side of equation (23) generalizes for-
mula (4). We seek a traveling wave type solution (21) for (23):

−aun−1

(
1 − v∗

v
y

)
yτ =

1∏
k=n

[
Dτ −

(
v∗

v
+ (k − 1)

u∗

u

)
yτ − rku

]
y, Dτ =

d

dτ
. (24)

Let us rewrite the left-hand side of (24) in the form

−aun−1

(
Dτ − v∗

v
yτ

)
y

and apply substitution (22). We obtain, successively,

−aun−1vDτz = v
1∏

k=n

[
Dτ − (k − 1)

u∗

u
yτ − rku

]
z,

−aun−1vuDsz = vun
1∏

k=n

(Ds − rk)z, Ds = uDτ , (25)

n∑
k=0

(
n

k

)
bkz

(n−k)(s) + az′(s) = 0, b0 = 1, ()′ =
d

ds
. (26)

The necessity of conditions (23) is proved on the basis of equation (25). �

Theorem 2. NEE (13) with condition (23) has a traveling wave type solution (21) if and only
if (23) can be represented in the form

ϕ
3n2−3n+2

2n exp
(∫

fdy
)
y∫

ϕ
n2−n+2

2n exp
(∫

fdy
)
dy

∂y

∂t

=
1∏

k=n


 ∂

∂x
−

1

y
− ϕ

n2−n+2
2n exp

(∫
fdy

)
∫

ϕ
n2−n+2

2n exp
(∫

fdy
)
dy

+ (k − 1)
ϕ∗

ϕ


 ∂y

∂x
− rkϕ


 y, (27)

where rk with k = 1, 2, . . . , n are the roots of characteristic equation (10), or in lexicographic
form

ϕn−1yt =
∑

k1+2k2+···+nkn=n

Ψ12...n
k1k2...kn

y(1)k1y(2)k2 . . . y(n)kn

+
n−1∑
m=1

(
n

m

)
bmϕm


 ∑

l1+2l2+···+(n−m)ln−m=n−m

Ψ12...n−m
l1l2...ln−m

y(1)l1y(2)l2 . . . y(n−m)ln−m




+ bn exp
(
−
∫

fdy

)∫
ϕ

n2+n−2
2n exp

(∫
fdy

)
dy = 0, (28)

where the coefficients Ψ depend on f(y) and ϕ(y) and

Ψ12...n
00...1 = 1, Ψ12...n−m

00...1 = 1, Ψ12...n−1n
10...10 = nf(y).

Then substitution (21) which gives linear ODE (25) has the form

z = β

∫
ϕ

n2−n+2
2n exp

(∫
fdy

)
dy, ds = ϕdτ.
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Proof. We apply Lemma 3, Proposition 2, formulas (9), (11), (12), (14), and the formula

1 − v∗

v
y =

ϕ
n2−3n+2

2n exp
(∫

fdy
)
y∫

ϕ
n2−n+2

2n exp
(∫

fdy
)
dy

. �

Theorem 3 (see [5]). Let z1(s), z2(s), . . . , zn(s) be linearly independent particular solutions to
equation (25). Then the general integral of (25) is

z = c1z1(s) + c2z2(s) + · · · + cnzn(s),

where c1, c2, . . . , cn are arbitrary constants, and this formula is an LSP. The NSP for (27), (28)
is obtained by the formulas

z = ϕ
n2−n+2

2n exp
(∫

fdy

)
=

n∑
k=1

ckzk(s), ds = ϕdτ, τ = x − at.

The general form of a second-order NEE belonging to class (28) (see also (5) and (6)) is

ϕyt = yxx + fy2
x + 2b1ϕyx + b2ϕ exp

(
−
∫

fdy

)∫
ϕ exp

(∫
fdy

)
dy.

Next, we have

−aϕyτ = yττ + fy2
τ + 2b1ϕyτ + b2ϕ exp

(
−
∫

fdy

)∫
ϕ exp

(∫
fdy

)
dy.

The substitution (see formula (7)) z = β
∫

ϕ exp
(∫

fdy
)
dy, ds = ϕdτ yields a linear equation

z′′(s) + 2b1z
′(s) + b2z(s) + az′(s) = 0.

Example 3. Consider the equation

yyt = yxx + 3yyx + y3. (29)

Seeking a solution of type (21) for equation (29) leads to the ODE −ayyτ = yττ + 3yyτ + y3.
Using the substitution y2 = z, ds = ydτ , we obtain a linear equation

z′′(s) + 3z′(s) + 2z(s) + az′(s) = 0.

The general form of an NEE of order n = 3 belonging to a class (28), is

ϕ2yt = yxxx + 3fyxyxx +

(
1
3

ϕyy

ϕ
− 5

9
ϕ2

y

ϕ2
− 1

3
f

ϕy

ϕ
+ f2 + fy

)
y3

x

+ 3b1ϕ

[
yxx +

(
f +

1
3

ϕy

ϕ

)
y2

x

]
+ 3b2ϕ

2yx

+ b3ϕ
5/3 exp

(
−
∫

fdy

)∫
ϕ4/3 exp

(∫
fdy

)
dy. (30)

Example 4. Consider the Harry–Dym equation

yt = y3yxxx. (31)
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It belongs to class (30), namely

ϕ2yt = yxxx +

(
1
3

ϕyy

ϕ
− 5

9
ϕ2

y

ϕ2

)
y3

x + b3ϕ
3/5

∫
ϕ4/5dy

with f = 0, b3 = 0, ϕ = y−3/2. It admits the representation

y−3yt =
(

∂x +
yx

y

)(
∂x − 1

2
yx

y

)
yx.

The ordinary differential equation corresponding to a solution of (31) of type (21) has the form

y′′′(τ) + ay−3y′(τ) = 0. (32)

Equation (32) is reduced to the linear form z′′′(s) + az′(s) = 0 by the substitution z = 1/y,
ds = y−3/2dτ .

5 Nonlinear evolutionary equations
with factorable right-hand sides

The new classes of the nonlinear evolutionary equations (NEE) of n-th order, depending on two
arbitrary functions and n − 1 parameters, are constructed (see also [11]):

∂y

∂t
=

∂

∂x

[
v

v − v∗y

1∏
k=n−1

(
∂

∂x
−
(

v∗

v
+ (k − 1)

u∗

u

)
∂y

∂x
− rku

)]
y, (33)

where rk = const, k = 1, . . . , n − 1, v = v(y), u = u(y), ()∗ = d/dy.
Besides solutions such as a traveling wave, stationary solutions of the equation (33) are also

of interest. The corresponding ODE have the form

1∏
k=n−1

[
∂

∂x
−
(

v∗

v
+ (k − 1)

u∗

u

)
dy

dx
− rku

]
y = C

(
1 − v∗

v
y

)
, D =

d

dx
. (34)

By substitution y = v(y)z, ds = u(y)dx the equation (34) is reduced to a semilinear equation

1∏
k=n−1

(Ds − rk)z = C

(
1 − v∗

v
y

)
v−1u1−n, (35)

where right-hand side is a function of z.

Example 5. The Korteweg–de Vries equation (KdV)

yt + yxxx − 6yyx = 0

belongs to the class (33) and admits a representation of the form

yt + ∂x(yxx − 3y2) = 0

and also a factorization

yt +
2
3
∂x

(
∂x − r2y

1/2
)(

∂x +
1
2

yx

y
− r1y

1/2

)
y = 0,

r1,2 = ∓ 3√
2
, u = y1/2, v = y−1/2.
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The semilinear equation corresponding to (35) is the equation

z′′(s) − 9
2
z = Cz−1/3.

Example 6. Consider modified KdV-equation (MKdV)

yt + yxxx − 6y2yx = 0.

It admits a factorization yt + ∂x(yxx − 2y3) = 0, and the following

yt +
1
2
∂x(∂x − 2y)

(
∂x +

yx

y
+ 2y

)
y = 0,

here u = y, v = y−1, r1,2 = ±2.

Example 7. Generalized MKdV-equation

yt + yxxx − aykyx = 0

admits first a representation

yt + ∂x

(
yxx +

a

k + 1
yk+1

)
= 0,

and then a factorization

yt +
2

k + 2
∂x

(
∂x − r2y

k/2
)(

∂x +
k

2
yx

y
− r1y

k/2

)
y = 0,

where u = yk/2, v = y−k/2, r1,2 = ±i
√

a(k+2)
2(k+1) .

Corresponding semilinear equation has the form

z̈ +
a(k + 2)
2(k + 1)

z = Cz−
k

k+2 .
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