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The Potentials of the pure SU(3) representations
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Using a new lattice spacing in the spatial directions of .19 fm, I propose to compute potentials and string tensions between static sources
of a variety of representations by measuring Wilson loops. Simulations have been done on an anisotropic lattice (163 ∗ 24) using a
tadpole improved action. A good scaling behavior is obtained for this new lattice based on new measurements. The lattice spatial size
is 3.08 fm which is large enough to not have finite volume effect error. Results have been compared with other lattice calculations and
approximate Casimir scaling is confirmed.

1 Introduction

Measuring the potential energy of a pair of heavy sources
and investigating the theory of confinement in QCD is one
of the problems that has been studied by lattice gauge the-
orists. Recent lattice studies [1], [2] confirm the existence
of the linear potential for the intermediate distances for the
fundamental and higher representations in SU(3). Based
on these measurements, quarks are confined in all repre-
sentations of SU(3). Although lattice calculations are very
accurate but like all numerical measurements, they have
some statistical and systematic errors. One of the errors of
the lattice calculations is finite volume effect. In this paper,
I give results of a new lattice spacing and by comparing it
with previous measurements show that for one of the old
lattices, the lattice spatial size is not big enough and, there-
fore, the finite volume effect gets important so that we have
to put aside that measurement.

In reference [1], I have reported results of simulations on
three anisotropic lattices: 103 × 24, 183 × 24 and 163 × 24
at β equal to 1.7, 2.4 and 3.1 with aspect ratios of 5, 3,
and 1.5 respectively. Good scaling behaviors have been
obtained for the coupling constants 1.7 and 2.4 which are
corresponding to lattice spacing of .45 fm and .25 fm. But
results for the 163×24 lattice with the coupling constant 3.1
(lattice spacing of .11 fm) were not scaled well with other
two lattices, especially for higher representations. There-
fore, another coupling constant with the same lattice di-
mensions has been tried to study the scaling window. With
this new lattice spacing which is .19 fm, a good scaling
behavior is obtained. In this paper, I show that the lattice
spatial size of the finer lattice is significantly smaller than
others such that we encounter finite volume effects error.
Hence, we can throw out the finer lattice measurements
and have an estimation of the lattice size without this error.

Like previous measurements, with this new coupling, po-
tentials are linear at intermediate distance and they are
qualitatively in agreement with Casimir scaling. I still do
not see screening and change of the slope of the potential
for higher representations. Probably because Wilson loops

do not couple well to screened states.

2 Calculations

For simulations, Wilson loops have been measured to cal-
culate potentials between static sources. The potential
V(r), as a function of r which is the spatial separation of
the quark, may be found by looking for the area law fall-
off for large t from Wilson loops: W(r, t) � exp[−V(r)t].
W(r, t) is Wilson loop as a function of r and t, where t is
the propagation time. Wilson loops for higher representa-
tions may be found from Wilson loop of the fundamental
representation [1]. To calculate the string tension, poten-
tials obtained from Wilson loops have been fitted to a linear
plus a Coulombic form: V(r) � −A/r + Kr +C where K is
the string tension.

Simulations have been done on an 163 × 24 anisotropic lat-
tice with as/at = 2, where as and at are the spatial and
temporal spacing, respectively. The improved action used
for the calculations has the form [3]:
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where β = 6/g2, g is the QCD coupling, and ξ is the aspect
ratio (ξ = as/at at tree level in perturbation theory). Ωsp

and Ωtp include the sum over spatial and temporal plaque-
ttes; Ωsr and Ωstr include the sum over 2 × 1 spatial rect-
angular and short temporal rectangular (one temporal and
two spatial links), respectively. For at � as the discretiza-
tion error of this action is O(a4
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s). The coefficients
are determined using tree level perturbation theory and tad-
pole improvement [4]. (The spatial mean link, us is given
by 〈 1

3 ReTrPss′ 〉 1
4 , where Pss′ denotes the spatial plaquette.

When at � as, ut, the temporal mean link can be fixed
to ut = 1, since its value in perturbation theory differs by

unity by O( a2
t
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s
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To minimize the excited state contamination in correlation
functions, spatial links are smeared. In the smearing pro-
cedure, each spatial link is replaced by itself plus a sum of
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its four neighboring spatial staples times a smearing factor
λ [5]. Projection back to SU(3) after smearing or averaging
over different paths in Wilson loops has been done, since I
want to use these links for higher representations and they
should be in SU(3). I have not done thermal averaging
since it takes timelike links out of SU(3). (Thermal aver-
aging is the replacement of a timelike link by its average
with fixed neighbors, which is normally useful to increase
statistics.)

I have used MILC Code as a platform for the simulations
on Origin2000 supercomputer at NCSA and the super com-
puter of the university of Indiana(single node jobs).

3 Results and Discussions

Figure 1 shows a typical plot for representation 6 for R = 2.
The confidence level of the fit, Q, is calculated by mea-
suring the covariance matrix evaluated by the jack knife
method. Fitting is done at large T ’s to get V(R) from Wil-
son loop.

Figure 1. Potential for representation 6. The fit range is from T =
4 to T = 10 and is shown by the solid line. Q is the confidence
level of the fit.

Figure 2 shows potentials versus r for the fundamental,
6, 8, 10, 15a, 15s and 27 representations. The data have
been fitted to a Coulombic plus linear term. As seen from
the plot, at intermediate distances potentials are linear for
all representations which means that quarks are confined.
String tensions are in rough agreement with Casimir scal-
ing. Like previous measurements [1], no sign of screening
or change of the slope of potentials to the slope of the fun-
damental representation is observed. One of the main rea-

Figure 2. Potentials for the fundamental, 6, 8, 10, 15a, 15s and
27 representations. The fits are based on 12800 measurements.
Rough agreement with Casimir scaling is observed in the inter-
mediate distances, but no color screening for representations 8,
10 or 27 and no change of the slope is seen for other representa-
tions with zero triality.

son could be overestimation of potentials for higher repre-
sentations specially for large R. This is because for higher
representations, Wilson loops become very small (even for
small R) so that errors get bigger than Wilson loops. There-
fore, there are not reliable values for Wilson loops at large
T . As an example, the potential for representation 27 and
R = 3 is plotted in figure 3. The fit range is from T = 2
to T = 4. Comparing this figure with figure 1, there is
an indication that the potential may be overestimated, even
though a systematic error has been applied to the amount
of the potential by comparing it with the potential of other
distances that large T ’s have been used in the fitting. I re-
call that the potential can be measured from Wilson loops
for large T .

To study the scaling behavior, the potential between the
static sources are found in terms of hadronic scale, r0,
([r2dV/dr]r=r0 = 1.65), where V is the potential between
quarks in the fundamental representation. In Figure 4, the
potential between two sources in the fundamental represen-
tation in term of r0 is plotted for different lattice measure-
ments. Good scaling behavior is observed for the funda-
mental representation. This behavior is seen for all higher
representations for all lattices including the new one with
β = 2.7 except for the 163 × 24 lattice with β = 3.1. Fig-
ures 5 and 6 show potentials for representations 10 and
15s. The lattice spatial size for the finer lattice is about
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1.58 fm which is significantly smaller than other lattices
where lattice spatial sizes are 3.98 fm, 4.15 fm and 3.04
fm for 103 × 24, 183 × 24 and 163 × 24 with the lattice
spacing .45 fm, .25 fm and .19 fm, respectively. Although
in lattice calculations we are always looking for finer lat-
tices to get the continuum where real physics exists, but in
this case dimensions of the finer lattice (with .11 fm lattice
spacing) are not big enough so that the lattice spatial size
is about one third of other coarser lattices. Hence, finite
volume effect error gets important for the lattice with the
smaller size and that is why it does not scale well. So this
new measurements confirm that we have a good reason to
throw out results of the finer lattice and have a rough esti-
mation of the scaling window and the lattice size that does
not encounter the finite size effects error.

Figure 3. Potential for representation 27 for R = 3. The fit area
is from T = 2 to T = 4. An overestimation of the potential may
have been occurred because of using small T ’s in the fitting.

Table 1. Parameters of the potentials as a function of represen-
tation. K is the string tension, A is the Coulombic coefficient
term, C is the Casimir number and “f“ stands for the fundamental
representation. Errors shown are statistical only.

Repn. K K
K f

A
A f

C
C f

3 .1838(4) - - -

8 .40(2) 2.2(1) 1.89(2) 2.25)

6 .4406(8) 2.40(1) 2.24(1) 2.5

15a .664(6) 3.61(3) 3.3(1) 4.

10 .760(4) 4.14(2) 4.02(3) 4.5

27 1.06(2) 5.7(1) 5.11(6) 6

15s 1.15(2) 6.3(1) 6.40(4) 7.

Table 2. String tensions in terms of r0 for different coupling con-
stants, lattice sizes, and the best estimate.

Rep. Kr2
0(β = 1.7) Kr2

0(β = 2.4) Kr2
0(β = 2.7) Best

103 × 24 183 × 24 163 × 24 estimate
3 1.25(8) 1.32(1) 1.294(2) 1.295(2)(36))

8 2.60(1) 2.60(3) 2.88(2) 2.651(9)(170)

6 2.9(2) 3.00(3) 3.102(5) 3.099(5)(157)

15a 4.4(2) 4.6(1) 4.68(5) 4.65(4)(18)

10 4.9(3) 5.4(2) 5.35(2) 5.35(2)(32)

27 5.9(5) 6.62(6) 7.48(3) 7.30(3)(100)

15s 7.1(5) 7.6(2) 8.1(1) 7.97(9)(67)

Like previous measurements for this new lattice, potentials
are linear at intermediate distances. The coefficient of the
linear term, string tension, is shown in table 1. Ratios of the
string tension, Coulombic coefficient, and Casimir num-
ber of each representation to the corresponding values in
the fundamental representation are shown in the second,
third and fourth column, respectively. As seen from the ta-
ble, rough agreement between measured ratios and casimir
number exists.

Figure 4. The static quark potential V(R) in terms of hadronic
scale r0 for the fundamental representation. A is the coefficient of
the Coulombic term for each lattice measurement. Kr2

0 is the best
estimate for the dimensionless string tension among lattices that
do not encounter finite volume effect error.

In table 2, dimensionless string tensions of different repre-
sentations found by lattices which show good scaling be-
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havior are given. In last column, best estimate of the string
tension for each representation is presented. The best esti-
mate is obtained by the weighted average of the three lat-
tice measurements. The errors on the string tensions are the
statistical error (from the weighted average), and the sys-
tematic error of discretization (determined by the standard
deviation of the results over the 3 couplings).

Figure 5. The static quark potential V(R) in terms of hadronic
scale r0 for representation 10. Results from three lattices includ-
ing the new one, scales well. Results for β = 3.1 do not scale
since the lattice spatial size is significantly smaller than others
and finite size affects measurements.

4 Conclusion

Finite volume effects error has been studied by looking
at four lattice measurements. The lattice spatial size of
the finer lattice is significantly smaller than other lattices
(about one third). This explains why this lattice does not
show a good scaling behavior. It seems that in this case,
the lattice spatial volume is not big enough to study physics
and therefore we can exclude this measurements from our
calculations. Approximate Casimir scaling is observed for
the new measurement and once again results confirm that
quarks are confined in all representations of S U(3).
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Figure 6. Same as figure 5 but for representation 15s.
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