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Using the OPE, we formulate new sum rules in the heavy quark limit of QCD. These sum rules imply that the elastic
Isgur-Wise function ξ(w) is an alternate series in powers of (w−1). Moreover, one gets that the n-th derivative of ξ(w) at

w = 1 can be bounded by the (n−1)-th one, and an absolute lower bound for the n-th derivative (−1)nξ(n)(1) ≥ (2n+1)!!

22n .
Moreover, for the curvature we find ξ′′(1) ≥ 1

5
[4ρ2 + 3(ρ2)2] where ρ2 = −ξ′(1). We show that the quadratic term 3

5
(ρ2)2

has a transparent physical interpretation, as it is leading in a non-relativistic expansion in the mass of the light quark.
These bounds should be taken into account in the parametrizations of ξ(w) used to extract |Vcb|. These results are
consistent with the dispersive bounds, and they strongly reduce the allowed region of the latter for ξ(w).

In the leading order of the heavy quark expansion of
QCD, Bjorken sum rule (SR) [1] relates the slope of
the elastic Isgur-Wise (IW) function ξ(w), to the IW
functions of the transitions between the ground state
and the jP = 1

2

+, 3
2

+ excited states, τ
(n)
1/2(w), τ

(n)
3/2(w),

at zero recoil w = 1 (n is a radial quantum number).
This SR leads to the lower bound −ξ′(1) = ρ2 ≥ 1

4 .
Recently, a new SR was formulated by Uraltsev in the
heavy quark limit [2] involving also τ

(n)
1/2(1), τ

(n)
3/2(1),

that implies, combined with Bjorken SR, the much
stronger lower bound ρ2 ≥ 3

4 , a result that came as a
big surprise. In ref. [3], in order to make a system-
atic study in the heavy quark limit of QCD, we have
developed a manifestly covariant formalism within the
Operator Product Expansion (OPE). We did recover
Uraltsev SR plus a new class of SR. Making a natural
physical assumption, this new class of SR imply the
bound σ2 ≥ 5

4ρ2 where σ2 is the curvature of the IW
function. Using this formalism including the whole
tower of excited states jP , we have recovered rigor-
ously the bound σ2 ≥ 5

4ρ2 plus generalizations that
extend it to all the derivatives of the IW function ξ(w)
at zero recoil, that is shown to be an alternate series
in powers of (w − 1).

Using the OPE and the trace formalism in the heavy
quark limit, different initial and final four-velocities vi

and vf , and heavy quark currents, where Γ1 and Γ2

are arbitrary Dirac matrices J1 = h̄
(c)
v′ Γ1 h

(b)
vi , J2 =

h̄
(b)
vf Γ2 h

(c)
v′ , the following sum rule can be written [4] :

{ ∑
D=P,V

∑
n

Tr
[
B̄f (vf )Γ̄2D(n)(v′)

]

Tr
[
D̄(n)(v′)Γ1Bi(vi)

]
ξ(n)(wi)ξ(n)(wf )

+ Other excited states
}

= −2ξ(wif )

Tr
[B̄f (vf )Γ̄2P

′
+Γ1Bi(vi)

]
. (1)

In this formula v′ is the intermediate meson four-
velocity, P ′

+ = 1
2 (1 + /v′) comes from the residue of

the positive energy part of the c-quark propagator,
ξ(wif ) is the elastic Isgur-Wise function that appears
because one assumes vi �= vf . Bi and Bf are the 4× 4
matrices of the ground state B or B∗ mesons and D(n)

those of all possible ground state or excited state D
mesons coupled to Bi and Bf through the currents.
In (1) we have made explicit the j = 1

2

−
D and D∗

mesons and their radial excitations of quantum num-
ber n. The explicit contribution of the other excited
states is written below.

The variables wi, wf and wif are defined as wi = vi ·v′,
wf = vf · v′, wif = vi · vf .

The domain of (wi, wf , wif ) is [3] (wi, wf ≥ 1)

wiwf −
√

(w2
i − 1)(w2

f − 1) ≤ wif

≤ wiwf +
√

(w2
i − 1)(w2

f − 1) . (2)

The SR (1) writes L (wi, wf , wif ) = R (wi, wf , wif ),
where L(wi, wf , wif ) is the sum over the intermediate
charmed states and R(wi, wf , wif ) is the OPE side.
Within the domain (2) one can derive relatively to any
of the variables wi, wf and wif and obtain different SR
taking different limits to the frontiers of the domain.

As in ref. [3], we choose as initial and final states the
B meson Bi(vi) = Pi+(−γ5) Bf (vf ) = Pf+(−γ5) and
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vector or axial currents projected along the vi and vf

four-velocities

J1 = h̄
(c)
v′ /vi h(b)

vi
, J2 = h̄(b)

vf
/vf h

(c)
v′ (3)

we obtain SR (1) with the sum of all excited states jP

in a compact form :

(wi + 1)(wf + 1)
∑
�≥0

� + 1
2� + 1

S�(wi, wf , wif )

∑
n

τ
(�)(n)
�+1/2(wi)τ

(�)(n)
�+1/2(wf )

+
∑
�≥1

S�(wi, wf , wif )
∑

n

τ
(�)(n)
�−1/2(wi)τ

(�)(n)
�−1/2(wf )

= (1 + wi + wf + wif )ξ(wif) . (4)

We get, choosing instead the axial currents,

J1 = h̄
(c)
v′ /vi γ5 h(b)

vi
, J2 = h̄(b)

vf
/vf γ5 h

(c)
v′ , (5)

∑
�≥0

S�+1(wi, wf , wif )
∑

n

τ
(�)(n)
�+1/2(wi)τ

(�)(n)
�+1/2(wf )

+(wi − 1)(wf − 1)
∑
�≥1

�

2� − 1
S�−1(wi, wf , wif )

∑
n

τ
(�)(n)
�−1/2(wi)τ

(�)(n)
�−1/2(wf )

= −(1 − wi − wf + wif )ξ(wif) . (6)

Following the formulation of heavy-light states for ar-
bitrary jP given by Falk [4], we have defined in ref.
[3] the IW functions τ

(�)(n)
�+1/2(w) and τ

(�)(n)
�−1/2(w), � and

j = �± 1
2 being the orbital and total angular momen-

tum of the light quark.

In equations (3) and (5) the quantity Sn is

Sn = viν1 · · · viνn
vfµ1 · · · vfµn

T ν1···νn,µ1···µn (7)

and the polarisation projector T ν1···νn,µ1···µn

T ν1···νn,µ1···µn =
∑

λ

ε′(λ)∗ν1···νn ε′(λ)µ1···µn (8)

depends only on the four-velocity v′. The polarisa-
tion tensor ε′(λ)µ1···µn is a traceless symmetric tensor,
a symmetric tensor with vanishing contractions, trans-
verse relatively to v′. Moreover [3] :

Sn =
∑

0≤k≤n
2

Cn,k(w2
i − 1)k(w2

f − 1)k

(wiwf − wif )n−2k (9)

with Cn,k = (−1)k (n!)2

(2n)!
(2n−2k)!

k!(n−k)!(n−2k)! .

From the sum of (4) and (6) one obtains, differentiat-
ing relatively to wif [5] (� ≥ 0) :

ξ(�)(1) =
1
4

(−1)� �!

{
� + 1
2� + 1

4
∑

n

[
τ

(�)(n)
�+1/2(1)

]2

+
∑

n

[
τ

(�−1)(n)
�−1/2 (1)

]2
+
∑

n

[
τ

(�)(n)
�−1/2(1)

]2}
. (10)

This relation shows that ξ(w) is an alternate series in
powers of (w − 1). Equation (10) reduces to Bjorken
SR [1] for � = 1. Differentiating (6) relatively to wif

and making wi = wf = wif = 1 one obtains :

ξ(�)(1) = �! (−1)�
∑

n

[
τ

(�)(n)
�+1/2(1)

]2
(� ≥ 0) . (11)

Combining (10) and (11) one obtains :

�

2� + 1

∑
n

[
τ

(�)(n)
�+1/2(1)

]2
− 1

4

∑
n

[
τ

(�)(n)
�−1/2(1)

]2

=
1
4

∑
n

[
τ

(�−1)(n)
�−1/2 (1)

]2
(12)

that reduces to Uraltsev SR [2] for � = 1. From (10)
and (11) one obtains :

(−1)� ξ(�)(1) =
1
4

2� + 1
�

�!{∑
n

[
τ

(�−1)(n)
�−1/2 (1)

]2
+
∑

n

[
τ

(�)(n)
�−1/2(1)

]2}
. (13)

implying

(−1)�ξ(�)(1) ≥ 2� + 1
4

[
(−1)�−1ξ(�−1)(1)

]
(14)

and the absolute bound

(−1)�ξ(�)(1) ≥ (2� + 1)!!
22�

(15)

that gives, in particular, for the lower cases,

−ξ′(1) = ρ2 ≥ 3
4

, ξ′′(1) ≥ 15
16

(16)

Let us first consider the derivatives of the SR for vector
currents (4) relatively to wif with the boundary con-
dition wif = 1. For wif = 1, the domain (2) implies :
wi = wf = w. We define therefore LV (wif , w) ≡
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LV (wif , wi, wf )|wi=wf =w, and likewise for RV . We
then take the p + q derivatives

(
∂p+qLV

∂wp
if∂wq

)
wif =w=1

=

(
∂p+qRV

∂wp
if∂wq

)
wif =w=1

(17)

and exploit systematically the obtained relations. To
get information on the curvature σ2 of the elastic IW
function we go to the second order derivatives.

Let us consider likewise the derivatives of the SR for
axial currents (6) with the boundary condition wif =
1, wi = wf = w → 1 like in (17). We obtain :

ρ2 − 4
5
σ2 +

∑
n

|τ (2)(n)
3/2 (1)|2 = 0 . (18)

4
3
ρ2 + (ρ2)2 − 5

3
σ2 +

∑
n�=0

|ξ(n)′(1)|2 = 0 (19)

that imply :

σ2 ≥ 5
4

ρ2 (20)

σ2 ≥ 1
5
[
4ρ2 + 3(ρ2)2

]
. (21)

There is a simple intuitive argument to understand the
term 3

5 (ρ2)2 in the best bound (21). Let us consider
the non-relativistic quark model, i.e. a non-relativistic
light quark q interacting with a heavy quark Q through
a potential. The form factor – to be identified with the
IW function – has then the simple form :

F (k2) =
∫

dr ϕ+
0 (r) exp

(
i

mq

mq + mQ
k · r

)
ϕ0(r) (22)

where ϕ0(r) is the ground state radial wave function.
Identifying the non-relativistic IW function ξNR(w)
with the form factor F (k2) (22), one finds, because of
rotational invariance :

ξNR(w) ∼= 1 − m2
q < 0|z2|0 > (w − 1)

+
1
2

1
3

m4
q < 0|z4|0 > (w − 1)2 + · · · (23)

where |0 > stands for the ground state wave function.
Therefore, one has the following expressions for the
slope and the curvature, in the non-relativistic limit :

ρ2
NR = m2

q < 0|z2|0 > , σ2
NR =

1
3

m4
q < 0|z4|0 > .(24)

From spherical symmetry and completeness, one can
prove then,

σ2
NR ≥ 3

5
[
ρ2

NR

]2
. (25)

Notice that, denoting by R the bound state radius and
mq the light quark mass, in the non-relativistic limit,
(ρ2

NR)2 and σ2
NR scale like m4

qR
4.

An interesting phenomenological remark is that the
simple parametrization for the IW function [6]

ξ(w) =
(

2
w + 1

)2ρ2

(26)

satisfies the inequalities (14), (20)-(21) if ρ2 ≥ 3
4 .

The result (15), that shows that all derivatives at zero
recoil are large, should have important phenomenolog-
ical implications for the empirical fit needed for the
extraction of |Vcb| in B → D∗�ν. The usual fits to
extract |Vcb| using a linear or linear plus quadratic de-
pendence of ξ(w) are not accurate enough.

As a simple example of a fit with the simple func-
tion (26), we can use BELLE data on B̄0 → D∗+e−ν̄
for the product |Vcb|F∗(w) [7]. The function F∗(w)
is equal to the Isgur-Wise function ξ(w) in the heavy
quark limit. Assuming only departures of this limit
at w = 1, i.e. we fit ξ(w) from the data with
|Vcb|F∗(w) = |Vcb|F∗(1)ξ(w), we obtain the fol-
lowing results for the normalization and the slope
F∗(1)|Vcb| = 0.036 ± 0.002, ρ2 = 1.15 ± 0.18.

As we can see, the determination of F∗(1)|Vcb| is
rather precise, while ρ2 has a larger error. However,
the values obtained for |Vcb| and ρ2 are strongly corre-
lated. It is important to point out that the most pre-
cise data points are the ones at large w, so that higher
derivatives contribute importantly in this region. Due
to the alternate character of ξ(w) as a series of (w−1),
one does not see strongly the curvature of ξ(w), but
the curve is definitely not close to a straight line.

A considerable effort has been developed to formulate
dispersive constraints on the shape of the form fac-
tors in B̄ → D∗�ν [8]-[9]. The starting point are the
analyticity properties of two-point functions and posi-
tivity of the corresponding spectral functions. Disper-
sion relations relate the hadronic spectral functions to
the QCD two-point functions in the deep Euclidean
region, and positivity allows to bounds the contribu-
tion of the relevant states, leading to constraints on
the semileptonic form factors.

Our approach, based on Bjorken-like SR, holds in the
physical region of the semileptonic decays B̄ → D(∗)�ν
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and in the heavy quark limit. Concerning this last sim-
plifying feature, we should underline that there is no
objection of principle to include in the calculation ra-
diative corrections and subleading corrections in pow-
ers of 1/mQ.

The dispersive approach starts from bounds in the
crossed channel by comparison of the OPE and the
sum over hadrons coupled to the corresponding cur-
rent, B̄D̄, B̄D̄∗, · · · and one analytically continues to
the physical region of the semileptonic decays. This
is done for a single reference form factor, for example
the combination V1(w) = h+(w)−mB−mD

mB+mD
h−(w) that

enters in the B̄ → D�ν rate. Ratios of the remaining
form factors to V1(w) are computed in the physical re-
gion by introducing 1/mQ and αs corrections to the
heavy quark limit. The dispersive approach consid-
ers physical quark masses, in contrast with the heavy
quark limit of our method.

The two approaches are quite different in spirit and in
their results. However, it can be interesting to com-
pare numerically our bounds with the ones of the dis-
persive approach, as they happen to be complemen-
tary. We must however keep in mind precisely the
differences between the two methods.

We have demonstrated in [5] that the IW function
ξ(w) is an alternating series in powers of (w−1), with
the moduli of the derivatives satisfying the bounds
(14) and (21).

Let us consider the main results of ref. [9], that are
summarized by the one-parameter formula

V1(w)
V1(1)

∼= 1−8ρ2z +(51ρ2−10)z2− (252ρ2−84)z3(27)

with the variable z(w) defined by

z =
√

w + 1 −√
2√

w + 1 +
√

2
(28)

and the allowed range for ρ2 being

−0.17 < ρ2 < 1.51 . (29)

Of course, the function V1(w)
V1(1) contains finite mass cor-

rections that are absent at present in our method.
Nevertheless, let us compare these results with our
lower bounds, assuming the rough approximation

V1(w)
V1(1)

∼= ξ(w) . (30)

Let us now comment on the implications of our type
of bounds. The simplest important remark is that,

within the simplifying hypothesis (30), (29) is consid-
erably tightened by the lower bound on ρ2 ≥ 3

4 :

3
4
≤ ρ2 < 1.51 (31)

that shows that our lower bounds are complementary
to the upper bounds obtained from dispersive meth-
ods. Within the hypothesis of the heavy quark limit,
the region allowed by the dispersive bounds for ξ(w)
with ρ2 within the range (29) is much reduced by the
bounds (31).

In conclusion, using sum rules in the heavy quark limit
of QCD, as formulated in ref. [3], we have found lower
bounds for the moduli of the derivatives of ξ(w). Any
phenomenological parametrization of ξ(w) intending
to fit the CKM matrix element |Vcb| in B → D(∗)�ν
should satisfy these bounds. Moreover, we discuss
these bounds in comparison with the dispersive ap-
proach. We show that there is no contradiction, our
bounds restraining the region for ξ(w) allowed by this
latter method.
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