
The CDF Run II Data Handling Design

Robert D. Kennedy
FNAL Computing Division

for the CDF Data Handling Group
CHEP03 (San Diego, CA, USA)

Background: Evolve system in use; add network and remote access

Mass Storage System (MSS): Enstore

Network-Access Disk Caching: dCache on commodity file servers

Remote Access Framework: SAM as layer on dCache/Enstore

Future of CDF DH Design: Globally distributed data handling

March 27, 2003

CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 2

Background
The CDF Data Handling System

Delivers data files from repository to clients and vice versa
Manages associated meta-data: simple conceptual view of data
Manages data access resources: tape drives, disk space, etc.
All data stored in ROOT data files, in variety of formats

⇒
⇒
⇒
⇒

The Goals and Constraints: CDF DH in 2002
O(200 TB) of data on tape. Must store/manage O(2 PB) soon
Much meta-data to manage, and more being considered
Need reliable, "fast" data delivery over network, remote access
Extend functionality of existing DH system, while in use.
"Shared" components: development, maintenance, other costs
Work towards a long-term evolutionary path for CDF DH.

⇒
⇒
⇒
⇒
⇒
⇒

The Contributors
CDF DH design based on mating of S/w, H/w systems, thanks to:
CDF Data Handlers and Computing Support, FNAL CCF dept,

DESY dCache and PNFS teams, D0 and FNAL SAM teams,
the ROOT team, and many others.

CDF DH Today (legacy systems not shown)
CDF Run II DH Design

Robert D. Kennedy
CHEP03, abstract 398

page 3

Enstore
10 drives

STK 9940A

10 MB/sec
60 GB cap.

each

Online
Raw Data

Reconstruction
Farms

Static (worm),
Import/Ouput
File Servers

dCache
File Servers
O(50 TB)

discipline=1
raw data limit

sub-caches

On-site Clients

Central Analysis
Farms: 600 cpus

On-site SAM
Stations

Remote SAM
Station A

Remote SAM
Station B

Remote SAM
Station C

Underlying Meta-data: PNFS (Enstore/dCache), CDF Data File Catalog, SAM meta-data

Enstore cp (file)

TDCacheFile/dcap (record)

dCache cp (file)

TNetFile/rootd .or. NFS (record)

Proven and in use

Demonstrated

ftp (file)

Mass Storage System: Enstore

(10) STK T9940A tape drives in dual STK Powderhorn 9310s
Upgrading to (10) STK T9940B tape drives (same tape media)

9940A - I/O rate: 10 MB/sec read/write, Data capacity: 60 GB/tape, up to ~10k tapes
9940B - I/O rate: 30 MB/sec read/write, Data capacity: 200 GB/tape, up to ~ 2PB

⇒
⇒

CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 4

CFR: Don Petravick’s talk on FNAL Data Storage Infra, Dmitry Litvintsev’s talk on CDF DH Sys.

Enstore = Mass storage management, using PNFS meta-data
Developed and supported by FNAL CD. Enstore = network access to files on tape in
robot, with request optimization layer. PNFS (from DESY) looks like a Unix file
system, where the "files" are meta-data units. PNFS = meta-data distributed by NFS.
CDF Enstore: robust and performant. Accessible to users, esp. web-based monitoring.

⇒

Discipline: simultaneous transfers to any one client host⇒

Data outlives its media. Expect it, and plan for it.

Tape media cost is ultimate limitation on data-taking capacity.

⇒

⇒

Network Disk Caching: dCache
dCache = Network-accessible disk cache as front-end to MSS

Originally developed at DESY (Patrick Fuhrmann et al), now co-maintained by
DESY and Fermilab CCF dept. Primary goal: rate-adapting front-end to an MSS.
Oriented towards on-site client access. Expects reliable network, so no integrity check.

⇒

CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 5

CFR: Patrick Fuhrmann’s talk on dcache

Why use dCache instead of CDF "DIM" disk cache in use?
DIM: locally mounted disks, no native network access, CDF specific product.
dCache "out-of-the-box" is more scalable, network-accessible, and feature-laden.
Adaptation was well-encapsulated - easy in software, no significant re-training of users.

⇒

dCache Admin

dCache Pools

Client Program

Enstore

A File request:1,2,3

Message
Datafile

1-request

request-2b

uncached-2a 2-incache

2c-restore

3-deliver

30 MB/sec

typically
< 5 MB/sec

CDF Adaptation to dCache CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 6

CDF dCache: 3 admin hosts, 1 monitor host, 20-50+ pool hosts
Admin hosts are simple dual CPU Linux PCs. Each can support different transfer
and/or authentication protocols. Pool hosts are 2 TB RAID50 IDE Linux file servers,
each supporting 3 "read" pools. Separate CDF test stand is maintained as well.

⇒

TDCacheFile: ROOT TFile class for dCache client protocol
Since our data in ROOT TFiles, we used the sub-class TDCacheFile as a URL-driven
plug-in to access our ROOT datafiles. This enables any ROOT datafile format to be
supported in Enstore and accessible via ROOT... a feature to be explored.

⇒

One line of TCL selects dCache or old cache in user jobs
Abstract interface in CDF software implemented for several modes of dCache access:
with PNFS mounted locally, without PNFS mounted, with a separate broker (SRM).

⇒

Some days >15 TB read, >90% cache hit rates common
Record-oriented transfers as well as file-oriented transfers. Use-cases growing.

⇒

CDF dCache (read) into production state mid-April 2003
Record-oriented transfers as well as file-oriented transfers. Expect greater rates soon.

⇒

Exploiting Affinity Feature CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 7

File Family Affinity: send data to pools based on "file family"
CDF maps "dataset id" to PNFS "file family". We control data in dCache by dataset.

⇒

Use-Case: Isolate "scrolling" data from steady-state data
Pools have been specified to have an exclusive affinity to raw datasets. All raw data
goes to only these pools and only raw data goes to these pools. When pools are full,
they recycle their own files to make space. This prevents steady-state datasets from
being displaced by the Reconstruction Farms "scrolling" through all raw data.
Creates a independent sub-cache.

⇒

Use-Case: Provide disk space accountability
A research group can donate file servers to cache IFF they can prove to funding
agency these will only be used for the supported physics: sub-cache for their dataset.

⇒

Use-Case: Guide requests to pool "closest" to client/resources
Data coming from Reconstruction farms can be directed based on the dataset id
to the dCache Write pools closest on network to Reconstruction farms and Enstore.
Optimizes use of network resources.

⇒

Exploiting Pool-to-Pool Copies CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 8

Data processing can be limited by write/read tape latency
Raw data read from tape by Reconstruction farms only after it is written to tape.
This can introduce hours, and in extreme cases days, of latency in data processing.

⇒

Solution: Take the tape drives out of data processing path
Producer writes data to dCache write pool, and initiates staging of that data to read
pool. Clients can immediately access the data. Data written to tape asynchronously.
Data in write pool must be as "safe" as if it were on tape.

⇒

Producer

tape

Consumer

Old Approach
with tape I/O in
the critical path
of data processing

Producer

tape

Consumer

New Approach
exploiting pool-
to-pool copies
with dCache

Write pool

Read pool

initiates

Commodity File Servers CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 9

Linux-based 2 TB, RAID 50, IDE fileservers - vital component⇒
Volatile disk caches challenge file-system, I/O performance

Linux kernel block I/O mechanism and ext3 file system perform poorly managing
1 GB files in a 2 TB file system in volatile disk cache. Writing large files leads to
inefficient small writes to disk (eof). Recycling files soon leads to disk fragmentation,
dropping read performance as well. Volatility may exacerbate other errors as well.

⇒

CDF dCache: a) XFS file system, b) direct I/O writes to disk,
 c) check file CRC before and after writing it to disk.
Both XFS, direct I/O required to maintain performance of file system, I/O. Custom
Enstore cp used to write files into dCache, rechecks CRC values after write - reads file
back to do so. Direct I/O prevents false positives from memory buffering in I/O.
I/O (in-memory) buffering in normal block I/O can fool naive CRC checks.
A little problem at one DH scale can become a grand challenge at the next scale up.

⇒

Data volume processed per day > IDE disk reliability
IDE disks quote ~1 bit error per TB. We process many TB in a day, PB in a year.

⇒

CFR: Frank Wuerthwein’s talk on the CDF Central Analysis Farm

Remote Data Access: SAM CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 10

CFR: Lee Lueking’s talk on SAM-D0 Experience, Gabriele Garzoglio’s talk on SAM-CDF Adapt.

SAM = Data Handling framework, a "proto-DataGrid"
Originally developed by D0, FNAL CD. In use for some time at D0. "Stations" serve
local disk caches to clients, talk to other Stations or a MSS to get files not in cache.

⇒

Extend CDF DH model - adapt to (join) SAM project
Existing CDF DH emphasized reliable local data access. Need to extend to serve remote
institutions (initial motivation), also to integrate more functionality in shared solution.

⇒

Reliable remote access, transport protocols, configurable
Datafile CRC is stored in SAM meta-data. After transport into a Station cache,
CRC value is recalculated and checked. Transport protocol can be configured for
situation: high-bandwidth, low bandwidth, different servers, etc. Stations can be
configured to prefer files from particular Stations or an MSS when fetching.

⇒

Full SAM adaptation very involved, but SAM is in use at CDF
Must adapt independently evolved CDF framework to SAM approach.
Common meta-data schema is being defined, an intrusive and risky process.

⇒

CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 11

CDF DH Baseline Goal

Enstore
10 drives

STK 9940B

30 MB/sec
200 GB cap

each

Online
Raw Data

Reconstruction
Farms

Work Group
File Servers

dCache
File Servers
O(100 TB)

discpline=1
(read pools)

raw data limit
write task

and accounting
sub-caches

On-site Clients

Central Analysis
Farm: 600 cpus
a SAM Station

On-site SAM
Stations

Remote SAM
Stations B1-n

Remote SAM
Stations C1-n

Underlying Meta-data: PNFS (Enstore/dCache) and SAM meta-data

Enstore cp (file)

TDCacheFile/dcap (record)

dCache cp (file)

TNetFile/rootd .or. NFS (record)

Remote SAM
Stations A1-nftp (file)

Summary, Future of CDF DH CDF Run II DH Design
Robert D. Kennedy

CHEP03, abstract 398
page 12

CFR: Stephan Stonjek’s talk on SAMGrid, Fedor Ratnikov’s talk on SAM/GRID Monitoring,
 Frank Wuerthwein’s talk on CDF Central Analysis Farms for "decentralized" CAFs,...

Globally distributed DH - SAM is the first step for CDF
CDF is involved in GRID and GRID-related efforts, and will be more so over time.
We have one MSS-backed "node" in future CDF datagrid at CDF, can expand on this.
Global distributed DH: multiple MSS and databases, not just central ones at FNAL.
Several paths: marriage of SAM and CDF distributed "Central" Analysis Farms.

⇒

Enstore is CDF MSS. Robust, performant and in production

dCache is CDF network disk cache, about to be in production
dCache is successfully run on commodity Linux file servers

SAM for CDF remote access; CDF evolving to full use of SAM

⇒

⇒
⇒

⇒

Institutions have local data/computing resources, want to share
Institutions have significant resources, and want to become CDF resource providers,
not just consumers. Remote SAM stations still dependent on FNAL for MSS, meta-data.

⇒

