
Transparent Persistence with
Java Data Objects

�

What is JDO:

�

Requirements on Transparent Persistence

�

Architecture of Java Data Objects

�

Available Implementations

�

Applications using JDO:

�

Trivial

�

Indicium: AttributeList/Metadata for LCG

�

AIDA Persistence

�

Minerva: Lightweight Application Framework

�

Prototypes using JDO:

�

Object Evolution

�

References

J.Hrivnac (LAL/Orsay) for CHEP'03 in La Jolla, Mar'03

Objects can be made persistent
without heavy complex systems

polluting user applications.

What is
Transparent (Orthogonal) Persistence (1)

�

Object model independent on persistence

�

Automatic mapping of Java types to native storage types

�

Persistence for 3rd party objects (even when source isn't available)

�

Persistent class source = Transient class source

�

All classes can be persistent

�

Illusion of in-memory access to data

�

Implicit update of dirty instances

�

Automatic caching, synchronisation, retrieval, lazy loading

�

Persistence by reachability (all referenced objects are automatically
persistent)

What is
Transparent (Orthogonal) Persistence (2)

�

Portability across technologies

�

Data Storage: RDBS, ODBS, Files,...

�

API implementations

�

Portability across platforms

�

Automatic in Java

�

No need for different language (DDL, SQL, ...) to handle
persistence (incl. queries)

�

Interoperability with Application Servers (EJB,...)

Architecture
of Java Data Objects (1)

(Java community Process Open Standard JSR-12)MyClass.java

MyClass.class

MyClass.class
(enhanced)

Persistence
Descriptor

(xml)

DB SchemaO/R map

compiler

O/R Mapping DBJVM

enhancer

loader

�

Enhancer makes transient class
PersistenceCapable.

�

Enhancer can be also part of
compiler or loader.

�

Enhancing can be modified via
Persistence Descriptor.

�
All Enhancers are compatible.

Architecture
of Java Data Objects (2)

PersistenceCapable
void jdoIsPersistent();
void jdoIsNew();
void jdoIsDeleted();
void jdoIsTransactional();
void jdoIsDirty();
void jdoMakeDirty();
PersistenceManager jdoGetPersistenceManager();
Object getObjectId();

Track Track

Enhancer

Architecture
of Java Data Objects (3)

 All interactions with
Persistence is
mediated by
PersistenceManager:

�

Manages instances
lifecycle

�

Factory for
Transactions

�

Factory for Queries

�

Factory for
Extents

Transaction
TransactionFactory

Transaction currentTransaction();

PersistenceManager

ExtentFactory
Collection getExtent(Class pc, boolean subclasses); Extent

QueryFactory
Query newQuery();

Query

Available Implementations

�

Commercial (often with free community license):

�

enJin(Versant), FastObjects(Poet), FrontierSuit(ObjectFrontier),
IntelliBO (Signsoft), JDOGenie(Hemisphere), JRelay(Object Industries),
KODO(SolarMetric), LiDO(LIBeLIS), OpenFusion(Prism),
Orient(Orient), PE:J(HYWY),...

�

Open:

�

JDORI(Sun): + reference/standard; - only with files

�

TJDO(SourceForge): + high quality, all RDBS, automatically generated
schema, full JDO; - inflexible mapping

�

XORM(SourceForge): + reuse of existing schema; - no schema
generation, not full JDO

�

JORM(JOnAS/ObjectWeb)

�

OJB(Apache) : + mature mapping engine; - not full JDO

Supported Databases

RDBS and ODBS:

�

Oracle, MS SQL Server, DB2, PointBase, Cloudscape,
MSAccess, JDBC/OBDC Bridge, Sybase, Interbase,
InstantDB, Informix, SAPDB, Postgress, MySQL,
Hypersonic SQL, Versant,...

Files:

�

XML, FOSTORE, flat, C-ISAM, ...

JDO performance = DB performance, JDO itself
introduces very small overhead.

Trivial Example
// Initialisation
PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);
PersistenceManager pm = pmf.getPersistenceManager();
Transaction tx = pm.currentTransaction();

// Writing
tx.begin();
...
Event event = ...;
pm.makePersistent(event);
...
tx.commit();

// Searching using Java-like query language translated internally to DB native query language
// (SQL available too for RDBS)
tx.begin();
Extent extent = pm.getExtent(Track.class, true);
String filter = “pt > 20.0” ;
Query query = pm.newQuery(extent, filter);
Collection results = query.execute();
...
tx.commit();

Indicium (1)

�

Mission (as defined by LCG): To define, accumulate, store, search, filter and
manage Attributes (metadata) external/additional to existing (Event) data.
In other words: Better ntuples. Used in the first analysis phase.

�

Related to Collections (of Events).

�

Satisfied by Java + JDO:

�

AttributeSet = Object with Attributes and reference to another (Event) Object

�

Explicit Collection = Standard Java Collection

�

Implicit Collection (all objects of type T within DB) = Extent

�

Indicium works with any JDO/DB, the only DB-specific part is DB-
management (creation, opening,...).

�

JDO/DB implementation can be switched via properties file, no re-building
is needed. Configuration for JDORI + FOSTORE and TJDO +
Cloudscape/MySQL bundled, others are simple to add.

�

Data stored by Indicium are accessible also via native database protocols
(JDBC, SQL) and tools using them.

Indicium (2)

Convenience AttributeSet interface introduced to capture
standard AttributeSet Usage Patterns.

Four ways of creating AttributeSet:

�

Assembled: AttributeSet constructed at run-time; similar to
classical n-tuples.

�

Generated: AttributeSet class generated from XML
specification.

�

Implementing: AttributeSet interface implemented by hand.

�

FreeStyle: Any class can serve as AttributeSet (some
convenience functionality of Indicium is lost here).

Cindicium

�

Indicium C++ interface via automatically created JACE proxies.

�

AttributeList interface, implementable even in C++, proposed.

// Construct Signature
Signature signature("AssembledClass");
signature.add("j", "int", "Some Integer Number");
signature.add("y", "double", "Some Double Number");
signature.add("s", "String", "Some String");

// Obtain Accessor to database
Accessor accessor = AccessorFactory::createAccessor("MyDB.properties");

// Create Collection
accessor.createCollection("MyCollection", signature, true);

// Write AttributeSets into database
AssembledAttributeSet* as;
for (int i = 0; i < 100; i++) {
 as = new AssembledAttributeSet(signature);
 as->set("j", ...);
 as->set("y", ...);
 as->set("s", ...);
 accessor.write(*as);
 }

// Search database
std::string filter = "y > 0.5";
Query query = accessor.newQuery(filter);
Collection collection = query.execute();
std::cout << "First: " << collection.toArray()[0].toString() << std::endl;

It is C++ application
using Java classes.

(FreeHEP) AIDA Persistency
AidaJDOStore implements Istore.

The only necessary change to AIDA: Each managed class
should have its XML description.

Extentsions to existing API:

�

Istore should have more control over persistent objects.

�

Richer Query API should be introduced.

JDO bug (4779785):

�

Persistent subclasses wrongly enhanced in Java 1.4.x .

�

Already fixed in JDO CVS, soon in release.

Ituple is also a candidate for another
LCG/Pool/AttributeSet API.

<jdo>
 <package name="hep.aida.ref.histogram">
 <class name="Histogram2D"
 persistence-capable-superclass="hep.aida.ref.histogram.Histogram">
 </class>
 </package>
 </jdo>

Minerva (1)

�

Lightweight Java Framework implementing main Architecture
principles of Athena/Gaudi:

�

Algorithm - Data Separation

�

Persistent - Transient Separation

�

Implementation independence

�

Modularity

�

Based on InfoBus:

�

Data Producers + Data Consumers

�

Declared I/O types of Algorithms

�

Implicit scheduling

�

Algorithms and Services as Servers

�

Multithreaded

Minerva (2)

new Algorithm(<Algorithm properties>);
new ObjectOutput(<dbO1>, <Event characteristics1>);
new ObjectOutput(<dbO2>, <Event characteristics2>);
new ObjectInput(<db1>);
new ObjectInput(<db2>);

Algorithm

ObjectInput ObjectInput

ObjectOutput ObjectOutput

5 Servers are running in parallel
in this example.

They read data from two databases,
process them and

write to other two databases.

Script

Minerva (3)

Running set of Producers/Consumers
created from the script.

Using ObjectBrowser
to inspect Algorithm.

Object Evolution (1)

Ability to change Object shape while keeping its content
and identity.

Two flavors:

�

Schema evolution (Versioning)

�

Object Mapping (DB Projection): Retrieving an Object of
type A dressed as an Object of another type B.

Not addressed by JDO.

Object Evolution (2)

�

JDO Enhances class A so it is PersistenceCapable.

�

AspectJ adds read callback with mapping IA->IB. It is called when
JDO reads.

�

DynamicProxy delivers content of A with interface of IB.

�

DB of Mappers needed.

A

IA

DynamicProxy

IB

A4JDO

A-Mapper

JDO Enhancer

AspectJ

IB b = (IB)DynamicProxy.newInstance(A, IB);

A2B-Mapper

User wants to read
Object A as Object B.

�

Three concepts are used:
�

JDO enhancement
�

Aspect extensions

�

Dynamic Proxy

All this manipulation
is of course hidden.

References (1)

Home references (within the same DB) automatically
resolved by JDO (Persistence by Reachability).

Foreign references (between different databases, possibly
over the network) not resolved by JDO, but:

�

by underlying DB,

�

by Application Framework (EJB,...),

�

By PersistenceManagerFactory and Dynamic Proxy.

References (2)

DynamicProxy

B

A

PersistenceManagerFactory

PersistenceManagerA PersistenceManagerB

Database A

Database B

DynamicProxy is stored when foreign reference is needed.

When read, DynamicProxy calls its callback to:

�

request PersistenceManager handling foreign Object,

�

receive that foreign Object,

�

cast itself into it.

DBCatalog

Object A references Object B,
which resides in different database.

All this manipulation
is of course hidden.

Summary
JDO standard provides suitable foundation of the
persistence service for HEP applications.

Two major characteristics of persistence solutions based
on JDO are:

�

Not intrusiveness.

�

Wide range of available JDO implementation, both
commercial and free, giving access to all major databases.

JDO profits from the native databases functionality and
performance (SQL queries,...), but presents it to users in a
native Java API.

Links

�

JDO:

�

Standard: http://java.sun.com/products/jdo

�

Portal: http://www.jdocentral.com

�

TJDO: http://tjdo.sourceforge.net

�

More details talks:

�

http://hrivnac.home.cern.ch/hrivnac/Activities/2002/June/JDO

�

http://hrivnac.home.cern.ch/hrivnac/Activities/2002/November/Indicium

�

Indicium: http://hrivnac.home.cern.ch/hrivnac/Activities/Packages/Indicium

�

AIDA: http://aida.freehep.org

�

Minerva: http://hrivnac.home.cern.ch/hrivnac/Activities/Packages/Minerva

�

JACE: http://sourceforge.net/projects/jace

�

Author: http://hrivnac.home.cern.ch/hrivnac

