
HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 1

The use of HepRep in GLASTThe use of HepRep in GLAST

Joseph Perl
SLAC Computing Services
perl@slac.stanford.edu

Riccardo Giannitrapani
Dipartimento di Fisica, Udine (ITALY)
riccardo@fisica.uniud.it

Marco Frailis
Dipartimento di Fisica, Udine (ITALY)
frailis@fisica.uniud.it

GammaGamma--ray Large ray Large
Area Space Area Space
TelescopeTelescope

http://www-glast.slac.stanford.edu/software

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 2

ContentsContents

• The GLAST mission and instrument
• GLAST event display requirements
• Intro to HepRep
• The GLAST way to HepRep
• Conclusions and outlook

We wish to thank all of the GLAST software group for helpful
discussions on event display, graphics, etc.

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 3

GLAST MissionGLAST Mission

Gamma-ray Large Area Space Telescope
measures the direction, energy and arrival time
of celestial gamma rays

-Large Area Telescope (LAT) measures gamma-
rays in the energy range ~20 MeV - >300 GeV

- There is no telescope now covering this
range!!

- Gamma-ray Burst Monitor (GBM) provides
correlative observations of transient events in
the energy range ~20 keV – 20 MeV

Launch: September 2006
Florida

Orbit: 550 km,
28.5o inclination

Lifetime: 5 years
(minimum)

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 4

GLAST Instrument: Large Area Telescope (LAT)GLAST Instrument: Large Area Telescope (LAT)

'$4�
(OHFWURQLFV

*ULG

7UDFNHU

&DORULPHWHU

$&' 7KHUPDO�
%ODQNHW

• Array of 16 identical
“Tower” Modules, each
with a tracker (Si strips)
and a calorimeter (CsI
with PIN diode readout)
and DAQ module.

• Surrounded by finely
segmented Anti-
Coincidence Detector
(plastic scintillator with
PMT readout).

• 3 GB data per day
– 30GB onboard
storage
– download several
times per day
– data makes its
way to SLAC

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 5

An Event Display for GLASTAn Event Display for GLAST

• GLAST already had an integrated Event
Display for its offline software:
– Windows and Linux
– simple, fast wireframe
– 3D and 2D
– tightly integrated into GAUDI
– drives GLAST main offline event loop

(source generation, Monte Carlo, reco,
etc.)

However:
– very limited mouse interaction
– no ability to pick on objects
– no persistency

• For the longer term, GLAST wanted
something more flexible, extensible and
interactive

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 6

Some Key RequirementsSome Key Requirements

– Multiplatform (at least Windows and Linux)
– Easy to install and start
– Fast
– 3D and 2D
– Modern GUI
– Easy navigation and browsing of the event (with incremental

download)
– Pick on objects to inquire about them
– Pick on objects to interact with physics algorithms in our GAUDI

framework
– Ability to drive the GLAST main offline event loop (source

generation, Monte Carlo, reco, etc.)
– Extensible/configurable by the user

• Requirements dictated by physics should be easily added
directly by the physics experts, should NOT require graphics
experts

• New features related to what is represented (for example
changing the trajectory color to code for charge, or energy, or
any other attribute) should not require significant re-coding

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 7

Software LifeSoftware Life--Cycle IssuesCycle Issues

• Design with the assumption that the life-cycle of the event display
may be different from the life-cycle of the infrastructure software.

• Display should not be too tightly coupled with our actual choices of:
• framework
• physics algorithms
• event structure
• persistency mechanisms
• Monte Carlo
• etc.

• We are looking for an event display paradigm rather than a specific
event display application.

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 8

The ClientThe Client--Server ParadigmServer Paradigm

• Server deals with physics, interaction with reconstruction algorithms,
with our data store files etc etc

• Client deals only with graphics representations (that may be augmented
with additional information that has meaning for the experiment)

• Client-server does not necessarily imply remote operation. Client and
server may be on the same machine or may be on different machines.
The client-server separation is in any case a useful construct to cleanly
delineate the two parts of the event display solution

• Client and server communicate with an interface; the crucial point is that
this interface should be simple, extensible and should accommodate all
the needs seen before

• HepRep is such an interface:
“A Generic Interface for Component or Client-Server Event Displays”
provides for the correct distribution of computing work between the two
parts of the system and effectively addresses the many important
maintenance issues involved in such a system

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 9

The HepRep interface breaks the dependency between any particular
experiment’s event display server and any particular event display client.

The HepRep format is independent of any one particular language or protocol.
It can be used from C++ or Java and can be shipped as Corba, RMI, XML, C++,
Java or JNI for consumption by WIRED, FRED or any other HepRep-enabled
event display client.

4/9/2002Joseph Perl HepRep218

*

*

*

**

*

*

1 1

1

1

1

1

1

HepRep
Instance

HepRep
TypeTree

HepRep
InstanceTree

HepRep
AttValue

HepRep
Type

HepRep
AttDef

Linked by TypeName

ID: HepRepTreeID ID: HepRepTreeID
TypeTreeID:HRTreeID
InstanceTreeIDs:HRTreeID[]

Name: String
Desc: String
InfoURL: String

TypeName: String

X,Y,Z: Double

Name: String
Desc: String
Category: String
Extra: String

AttDefName: String
Value: Any
ShowLabel: Int

Linked by
AttDef
Name

HepRep
Point

HepRep
Action

Name:String
Expression:String

HepRep

Comments: String[]

HepRep: a Generic Interface Definition for HEP Event Display Representables

+getInstanceTreeTop(
InstanceTreeName: String,
InstanceTreeVersion: String)
:HepRepInstanceTree;

+getTypeTree(
TypeTreeName: String,
TypeTreeVersion: String)
:TypeTree;

+getInstances(
InstanceTreeName: String,
InstanceTreeVersion: String,
TypeNames: String[])
:HepRepInstanceTree;

+getInstancesAfterAction(
InstanceTreeName: String,
InstanceTreeVersion: String,
TypeNames: String[],
Actions:HepRepAction[],
GetPoints: Boolean,
GetDrawAtts: Boolean,
GetNonDrawAtts: Boolean,
InvertAtts: String[])
:HepRepInstanceTree;

+getLayerOrder()
:String[];

+checkForException()
:String;

Comments: String[]
HepRep HepRepTreeID

Name:String
Version:String

Linked by
TypeTreeID

1

HepRep

WIRED Client
(Java)

Other HepRep
Clients

BaBar
Server

LCD
Interface

GLAST
Server

Geant4
Server

FRED Client
(C++/Ruby)

HepRep PurposeHepRep Purpose

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 10

The “Rep” in HepRep means RepresentablesThe “Rep” in HepRep means Representables

• If one just ships references to the underlying physics objects, there
are too many time-consuming callbacks, asking one by one for the
points on the tracks, etc. One doesn’t achieve good separation of
client-server functionality.

• The design decision behind HepRep is to serve Representables, not
Physics Objects.
– A Representable is the Essential Spatial Information of a Physics

Object (track, calorimeter hit, etc.) and can be augmented by that
object’s Physics Attributes (momentum, energy, etc.).

– Serving Representables keeps the detailed reconstruction code,
swimmers and detector models on the server side where they
belong. Spatial information is assembled and shipped in an
efficient manner, avoiding the overhead of too many individual
method calls.

– Rendering decisions are deferred, as much as possible, to the
client.

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 11

Example HepRep RepresentableExample HepRep Representable

A precise fitted track could be served as a set of swim step points, each
augmented by helix parameters and descriptive information (track number,
particle id, etc.). Only in the client is the final decision made whether to
Represent this Representable as

•a dotted line,

•or as set of individual swim step momentum vectors,

•or as a set of helix segments.

Physics Object Representable Representation

Fitted
Track

Track Number
Particle ID
Points(n)
Helix
Params(n)

Track Number:
1
Particle ID: e-

Pt 1
Params

Pt 2
Params

Pt 3
Params Pt 4

Params

OR

OR

OR…

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 12

Example HepRep Object TreeExample HepRep Object Tree

linked by name
to Type Track

linked by name
to Type Track

Type
Track

Instance
of Track

Instance
of Track

AttDefs AttVals

TypeTree InstanceTree

HepRep

Type
Cluster

AttDefs

AttValsPoints

AttVals

AttValsPoints

AttVals

AttVals

Track 1 Track 2
Type
Event

AttDefs AttVals

Type
HitOnTrack

AttDefs AttVals

GLAST Event
multiHad/xxx

GLAST Event
Types version 1.4

Flexible scheme for incremental download.
Client can ask to:
•include or exclude Attributes
•only get Instances of a given Type
•only get Instances that have given Attributes
•and other options

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 13

The HepRep InterfaceThe HepRep Interface

*

*

*

**

*

*

1 1

1

1

1

1

1

HepRep
Instance

HepRep
TypeTree

HepRep
InstanceTree

HepRep
AttValue

HepRep
Type

HepRep
AttDef

Linked by TypeName

ID: HepRepTreeID ID: HepRepTreeID
TypeTreeID:HRTreeID
InstanceTreeIDs:HRTreeID[]

Name: String
Desc: String
InfoURL: String

TypeName: String

X,Y,Z: Double

Name: String
Desc: String
Category: String
Extra: String

AttDefName: String
Value: Any
ShowLabel: Int

Linked by
AttDef
Name

HepRep
Point

HepRep
Action

Name:String
Expression:String

HepRep

Comments: String[]
+getInstanceTreeTop(

InstanceTreeName: String,
InstanceTreeVersion: String)
:HepRepInstanceTree;

+getTypeTree(
TypeTreeName: String,
TypeTreeVersion: String)
:TypeTree;

+getInstances(
InstanceTreeName: String,
InstanceTreeVersion: String,
TypeNames: String[])
:HepRepInstanceTree;

+getInstancesAfterAction(
InstanceTreeName: String,
InstanceTreeVersion: String,
TypeNames: String[],
Actions:HepRepAction[],
GetPoints: Boolean,
GetDrawAtts: Boolean,
GetNonDrawAtts: Boolean,
InvertAtts: String[])
:HepRepInstanceTree;

+getLayerOrder()
:String[];

+checkForException()
:String;

Comments: String[]
HepRep HepRepTreeID

Name:String
Version:String

Linked by
TypeTreeID

1

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 14

HepRep AttributesHepRep Attributes

Any number of Attributes can be hung
from a Type, Instance or Point.
There are four Categories of Attributes:

•Draw Attributes (such as thickness,
color and what shape to draw from the
points) can be modified in the client
through a draw attribute editor

•Physics Attributes (such as track
momentum or hit error) can be used for
visibility cuts (client side or server side)

•PickAction Attributes define special
things to do when the user picks on the
Representable (such as remove hit and
refit track)

•Association Attributes define loose
associations between Representables
(such as track cluster matching)

*

*
1

1

1

HepRep
Instance

HepRep
Type

Linked by TypeName TypeName:
String

X,Y,Z: Double

HepRep
Point

**
1 1

HepRep
AttDef

Name: String
Desc: String
Category:
String
Extra: String

*

Name: String
Desc: String
InfoURL: String

HepRep
AttValue

AttDefName:
String
Value: Any
ShowLabel: Int

Linked by
AttDef
Name

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 15

The GLAST way to HepRep The GLAST way to HepRep

• GLAST uses GAUDI
– An object oriented (C++) framework
– Separation between data and the algorithms on that data

• Data are stored in Transient Data Store (TDS) and/or
Permanent Data Store (PDS)

• Algorithms can act on the TDS, filling it or retrieving
things from it

• Services provides common functionalities on algorithms
– Has its own event loop
– Can be customized at runtime through initialization files

(jobOptions files)
• We need to develop our client-server HepRep framework inside

GAUDI
• We want to be able to drive the event loop from the external

graphics client

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 16

HepRep within GAUDIHepRep within GAUDI

• We have implemented a HepRep based event display
architecture to be usable within GAUDI
– Server lives in the GAUDI world, having access to all

Algorithms, Services and the TDS. Server has full
knowledge of the physics contents of each event and we
have full control on our tools

– Client lives outside GAUDI. Client implements GUI and has
access to HepRep attributes, but does not have direct
access to tools within GAUDI.

– HepRep interface brings information from the server to the
client and commands from the client back to the server.

• HepRep can be implemented in various way; we currently have
implementations in XML (persistent) and CORBA (live)

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 17

HepRep GAUDI ArchitectureHepRep GAUDI Architecture

GAUDI
Graphic
Client

Permanent
Data Store

Transient
Data Store

CorbaSvc

HepRepSvc xml file

HepRepAlgHepRepAlgxxxAlg

HepRep is streamed
directly out to XML and
CORBA

Implements GAUDI’s
IRunnable Interface

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 18

HepRepSvc and CorbaSvcHepRepSvc and CorbaSvc

• HepRepSvc produces a HepRep representation of the event from the
transient data store at the end of each event; this representation can
be “published” either as a persistent XML file (compressed) or as a
CORBA object
– To minimize unnecessary memory costs, we took care that the

entire HepRep is never actually held in C++ memory but is instead
streamed directly out to XML and CORBA

• CorbaSvc implements a GAUDI IRunnable interface and so can drive
the event loop. It publishes a CORBA object that can be than used by
the graphics client to retrieve the event.
– Since the CorbaSvc lives inside GAUDI, it is possible (at least in

principle) to call all the collaboration algorithms on the TDS data
event. This means that this framework will allow a complete
interaction of the graphics client with the physics software.

– Since it is an IRunnable it can stop the event loop and wait for
remote method invocation from the external client

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 19

HepRep FillersHepRep Fillers

• How is the HepRep built out of the Transient Data Store?
• We must make it easy for physics experts to add whatever they want

into the HepRep hierarchy without requiring expert assistance or
requiring them to know what other physics experts are adding.

• We provide a Filler mechanism:
– The physics expert implements an abstract interface (IFiller)
– In this implementation he has access to the TDS and to all

relevant GAUDI methods and tools to retrieve information from it
– In the filler he decides what to put in the HepRep tree, both in

terms of types and of instances
– Filler uses an abstract HepRep Builder (HepRep factory), so that

the physicist does not need to be concerned with the eventual
HepRep implementation (XML, CORBA or other)

– Each filler is listed in a register (held by HepRepSvc). At each
event, all needed fillers are called back to create the HepRep
representation of the event

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 20

HepRep Filler and Builder ArchitectureHepRep Filler and Builder Architecture

IBuilder

CorbaBuilder

IFiller

*

XMLBuilder

GeometryFiller MCFiller

RegistryHepRepSvc

ReconFiller Physicist just writes a
filler

Has access to TDS and
GUADI methods

Knows how to fill relevant
part of HepRep trees

Registered with
HepRepSvc

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 21

Value of the Filler and Builder ArchitectureValue of the Filler and Builder Architecture

• Good separation between the physics experts and the graphics
experts
– Physicist just looks at a few example fillers, then makes a new one

based on those.
– Physicist does not need to learn anything else about the event

display server or client (no need to learn CORBA, no need to learn
XML, etc.)

– Similar filler mechanism has been used by BaBar to good effect.
• Different physicists can work on different fillers

– Good separation between GLAST subsystems, either physical (for
example ACD from TKR) or conceptual (for example
reconstruction from Monte Carlo)

• Good abstraction from the runtime implementation of the HepRep
– One filler is used for all the possible HepRep formats (CORBA,

XML, etc.)
• Very flexible

– New fillers can be added at any time

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 22

HepRep Current Use ArchitectureHepRep Current Use Architecture

While all four experiments are now using WIRED, and two can use FRED,
they use a variety of HepRep and legacy implementations:
• BaBar has a HepRep1 Corba server, dependent on BaBar code.

• LCD passes WIRED java objects using a legacy data format (pre-HepRep).

• Geant4 has abstract HepRep1 and HepRep2 implementations to XML and Java.
• GLAST has an abstract HepRep2 implementation to XML and Corba.

HepRep1
HepRep2
+legacy
data
formats

LCD
(java)

Javalegacy
format

WIRED 3
(Java)

XML

HepRep2
FRED
(C++/Ruby)

GLAST
(c++)

HepRep2

BaBar
(c++)

CorbaHepRep1

Geant4
(c++)

XMLHepRep1

Corba

RMI

Java

XML

Corba

XML

Corba

LCD
Application

GLAST
XML/Corba
Streamer

BaBar Corba
Server

Geant4 XML
Streamer /
Java Builder HepRep2 Java

XML

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 23

HepRep NearHepRep Near--Term Future ArchitectureTerm Future Architecture

HepRep2

LCD
(java)

XML

HepRep2GLAST
(c++)

HepRep2

BaBar
(c++)

CorbaGeant4
(c++)

Corba

RMI

Java

XML

CorbaXML

C++

C++ Shared
HepRep
Factory

Java

All data sources speak HepRep2 to an abstract HepRep factory (from FreeHEP).
By instantiation of one or another concrete implementation of HepRep:

• a C++ program can change from creating HepRep in C++ memory
• to creating HepRep as an XML streamer (a pure C++ solution with no external
library dependencies and no creation of the HepRep in memory)
• to creating HepRep as Corba streamer (depends on Corba libraries)

• or creating HepRep as Java (via Java Native Interface)

HepRep2

Corba

XML

Java

RMI

IceCube
(java)

Java Shared
HepRep
Factory

WIRED 3
(Java)

FRED
(C++/Ruby)

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 24

Conclusions and outlookConclusions and outlook

• GLAST wanted
– A flexible, extensible and

maintainable framework for
event display

– Without committing to any one
graphics application

• GLAST now has
– A HepRep based client-server

framework integrated into our
GAUDI application

– A filler and builder mechanism
to abstract event description
from event representation

– User has choice of client
application:

• WIRED (Java)
• FRED (C++/Ruby)

• Outlook
– GLAST can use any event

display application that
implements the HepRep
interface

HepRep for GLAST CHEP 03 March 24-28 2003

J.Perl, R.Giannitrapani and M.Frailis 25

ReferencesReferences

• HepRep: a generic interface definition for HEP event display representables
http://heprep.freehep.org

• Fred: oh no, another event display (a HepRep client)
http://www.fisica.uniud.it/~riccardo/research/fred

• WIRED: world wide web interactive remote event display (a HepRep Client)
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired

• SLAC HepRep WIRED Work Plan
http://www.slac.stanford.edu/~perl/wired

• A Component Approach to HEP Event Displays
http://www.slac.stanford.edu/~perl/component

• Requirements for a New BaBar Event Display (most parts apply to any exp)
http://www-sldnt.slac.stanford.edu/hepvis/paper/paper.asp?id=37

• WIRED for GLAST
http://www.slac.stanford.edu/~perl/GLAST/talk_20010118.ppt

• The FreeHEP Java Library
http://java.freehep.org

• GLAST Software
http://www-glast.slac.stanford.edu/software

