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This talk reviews the present situation of FRED, an event display proposal for GLAST.
FRED is part of a bigger framework we are working on for GLAST; details on such a frame-
work are discussed in a companion talk that will be presented later during the week.

We wish to thank all the GLAST people for helpful discussions on event display and related
issues. A big thank also to J.Perl and M.Donszelmann; without them and their HepRep and
WIRED, we never started FRED.

Slides made in ConTEXt, edited in emacs, rendered in PDF.



CHEP’03 - 24 March 2003

Introduction

• GLAST measures the direction, energy and arrival time of celestial gamma
rays

. LAT measures gamma-rays in the energy range from ∼ 20 MeV to more
than 300 GeV. There is no telescope now covering this range!!

− Array of 16 identical Tower Modules, each with a tracker (Si strips)
and a calorimeter (CsI with PIN diode readout) and DAQ module.

− Surrounded by finely segmented ACD (plastic scintillator with
PMT readout).

. GBM provides correlative observations of transient events in the energy
range from ∼ 20 keV to 20 MeV.

• Launch: September 2006, Florida

• Orbit: 550 km, 28.5◦ inclination

• Lifetime: 5 years (minimum)
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Requirements

GLAST has “normal” user requirements for its event display

◦ No revolutions in the collaboration software

◦ No tight dependencies from the collaboration software

◦ Must be flexible (and rigid)

◦ It should be easy

◦ It should be performant

◦ It must be fancy ...

◦ It must provide enought interactivity (e.g. click and inspect)

◦ Open user requirements (people will not tell you what they need and some-
time they don’t know what they need till the last minute)

Some of them are structural, some of them are related to a good GUI
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• Our actual GUI service, althought fast, easy and fully integrated in our
software, miss some of the structural requirements

• Start to use a new external program is risky when you are in an andvanced
state with the infrastructure software (framework, montecarlo, datastores,
geometry repository etc etc)

• Solution (partial): commit to a protocol, not to an application
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Structure

So we started an experiment to use the HepRep protocol paradigm for GLAST
event display, i.e. a client-server framework (Thursday talk will expand on this)

• The server side contains all the relevant physics algorithms specific
of the experiment and all the data relative to the event structure and
geometric information; in our case it lives inside GAUDI, the frame-
work adopted by GLAST

• The client deals with all the graphics issues and the user interfaces

FRED is a new HepRep compatible graphics client.

There is a ready, nice and complete HepRep graphics client in Java, i.e. WIRED;
so why another client?

• A new client for HepRep can help in spreading the protocol

• Programming our own client means we can have full control on function-
alities to implement

• We want to promote a slightly different approach from WIRED
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• We identify three main actors (roles) in an event display applications:

? Programmers that provide the main programs and all the infrastruc-
ture code

? Physics experts that decide what physical information augment the
graphical representation of an event

? End users that need a fast and easy way to customize the application
to their need

EVENT
DISPLAY

Programmers

Physics
Experts Users

Code

Models Scripts

Fillers Mechanism Simple interpreted
language
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• GLAST HepRep server side provide a nice separation/integration between
physics and graphics, enforcing in some way the first two roles.

• For the third one it is up to the graphics client to provide the end user with
enought powerful tools (plugins mechanism, API etc etc)

• So we want FRED to be a graphics client that can be “programmed” with
an easy scripting language

Our choices (see references for links)

? C++ is our choice language

? RUBY is our scripting language

? FOX-Toolkit is our GUI widgets library

? XML is our main persistency format (also compressed)

? CORBA is our main middleware for server-client operations

? OpenGL is our 2D/3D graphics library

XML and CORBA have been choosen for compatibility with WIRED (many
more formats are possible)
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The first version (September 2002) of FRED was a C++ application with a
RUBY interpeter embedded.

C ++

FRED

FOX-ToolkitCORBA

EXPAT

Ruby
User Script

ZLIB

Ruby
Interpreter

EVENT
SOURCE

(XML, CORBA , ...)

OpenGL

HepRep
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This first design had some limitations

◦ No easy WAY to open the GUI API to users (it was possible, but very hard
to do and not really stable)

◦ To add new features to the exposed users API we needed lots of wrapping
work of legacy code

And it suffered also of some structural problems:

◦ Developing of new features was slow (most of the time waiting for compi-
lation/linking just to find that a new smart idea was crap)

◦ The classes were not well structured; too much tight to libraries

− For example the main FRED class was also the Main Window class; big
mistake ...
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But we were happy of some basic choices

◦ Compiled C++ code is fast

◦ Interpreted RUBY code is easy and helpful

◦ The FOX toolkit provides nice GUI

◦ CORBA can be a nightmare, but is really useful and fast (at least in our
experience)

◦ OpenGL is fun (and fast); for now we are using the plain z-buffer approach,
but more elaborate ones are possible

The idea is than to do all the heavy computational tasks with C++ code, and
all the rest, comprising the GUI, with RUBY code.
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So FRED is today a RUBY application that load some C++ compiled code
(shareble libraries) and wrap interfaces to it

C ++ SWIG

FOX-Toolkit

CORBA

EXPAT

Ruby

User Script

ZLIB

EVENT
SOURCE

(XML, CORBA , ...)

OpenGL

OpenSceneGraph IGfxEngine

ISource

GUI

FRED

GfxEngine

Sources
(XML, CORBA  ...)

HepRep HepRep HepRep

FOX-Toolkit
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◦ Faster developing of core functionalities for us

− I have an idea, I test it almost in real time

− I add a new feature in one place, but I can easily move it in another
place later

− Easier to distribute small parts (ideas) between us

◦ Easier extendibility from the users side for all aspects, including GUI changes

◦ Same performances of the full C++ application

− All input-output are in the C++ side

− We don’t wrap graphics operation: on the RUBY side we just open a
canvas, all the OpenGL operations are performed in the C++ side.

− The GUI is not a performance bottleneck (for normal users)
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Features

. Multiplatform: tested and supported on Windows 2000/XP and Linux
RH, but should work on many Unix flavours

. HepRep Sources: XML file (also compressed) by default, a CORBA
connection with an optional plugin

. Output: both bitmap (for now BMP, soon PNG and JPG) and vectorial
(PostScript).

. Interaction: usual zoom, pan, rotate operations via mouse and keys, plus
selection via mouse of graphics objects and inspection of their attributes.
Possible interaction with GAUDI in the future

. Graphics: using OpenGL, FRED automatically uses any available hard-
ware acceleration; for simple events (like GLAST ones) and in wireframe
mode performances are very good also in software mode.

. Scripting: script API gives access to all the main functionalities of FRED,
comprising the possibility to add new widgets to the GUI. FRED has a
simple internal editor for scripts and also a command line interpreter.
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Examples

Menu
Toolbar

Left Slider

Main MDI Container

Status Bar
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File opened
Event
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Multiple
Windows

XY XZ

YZ Generic 3D Introduction
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HepRep  tree

Selected object

Selected object

Relevant info
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The Script Editor

Text

Run scriptOpen Script
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Examples of script: hide gammas

# Define a list to fill with paticle objects

list = []

# Find the MonteCarlo root in the HepRep

root = $Fred.getRootByName("MC")

# Get the particle objects and put them in list

$Fred.getObjectByType(list, root, "Particle")

# Iterate on each particle

list.each do |x|

# For the actual object get the HepRep Instance

inst = x.getInstance()

# If the Name is gamma and the Proc is not primary, hide

if ((inst.getValueByName("Name").getValue() == "gamma") and

(inst.getValueByName("Proc").getValue() != "primary"))

x.setVisible(FALSE)

end

end

# Iterate on all the open 3D views and update them

$FredMW.views.each{|x| x.update}
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Examples of script: add menu voice

hide = proc{load "scripts/hidegamma.rb"}

$FredMW.addItemMenuProc("&Graphics", "Hide gammas", hide, TRUE)

Examples of script: change the background color of the first view

$FredMW.views[0].renderer.setBackground(0,0,0)
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Outlooks

Some new features that are “coming soon”

• New HepRep sources, expecially an HTTP one for browsing events acces-
sible from internet

• Use of the Ruby RMI mechanism, druby, for remote control of FRED from
other applications

• Export various format for photorealistic rendering of the event (we are
working to a POV one and to a RenderMan one)

• More than just wireframe graphics (filled volumes, semitransparent, layers,
outlines etc etc).

• A “batch” mode to produce event images (vectorial or bitmap) without
starting the GUI

• Options panel, with possibility to save preferred configuration from one
session to the other

• More GLAST specific features (that will be collected in a single plugin)
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Conclusions

So, is FRED a complete ready-to-use product? Not yet ...

. We need to extend the supported drawables shapes; we have just imple-
mented the GLAST relevant ones (boxes, polylines, points)

. We need also to improve the HepRep compliancy

. Need some documentation

. Lots of fine tunings and tweaks

... but

. An early beta version for GLAST people has been released

. Already usable and quite stable and all the main functionalities are in place

. It is quite easy and fast for us to add new features, soon also for users

. We are ready for feedback
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References

• FRED http://www.fisica.uniud.it/~riccardo/research/fred/

• GLAST Software http://www-glast.slac.stanford.edu/software

• RUBY http://www.ruby-lang.org/en

• FOX-Toolkit http://www.fox-toolkit.org

• ACE-TAO (Corba) http://www.cs.wustl.edu/~schmidt/TAO.html

• HEPREP http://www.heprep.freehep.org

• WIRED
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
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