
The FRED Event Display

an Extensible HepRep Client for GLAST

R.Giannitrapani
M.Frailis

CHEP’03 (San Diego), 24 March 2003

Dipartimento di Fisica
Università degli Studi di Udine

Contents

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

This talk reviews the present situation of FRED, an event display proposal for GLAST.
FRED is part of a bigger framework we are working on for GLAST; details on such a frame-
work are discussed in a companion talk that will be presented later during the week.

We wish to thank all the GLAST people for helpful discussions on event display and related
issues. A big thank also to J.Perl and M.Donszelmann; without them and their HepRep and
WIRED, we never started FRED.

Slides made in ConTEXt, edited in emacs, rendered in PDF.

CHEP’03 - 24 March 2003

Introduction

• GLAST measures the direction, energy and arrival time of celestial gamma
rays

. LAT measures gamma-rays in the energy range from ∼ 20 MeV to more
than 300 GeV. There is no telescope now covering this range!!

− Array of 16 identical Tower Modules, each with a tracker (Si strips)
and a calorimeter (CsI with PIN diode readout) and DAQ module.

− Surrounded by finely segmented ACD (plastic scintillator with
PMT readout).

. GBM provides correlative observations of transient events in the energy
range from ∼ 20 keV to 20 MeV.

• Launch: September 2006, Florida

• Orbit: 550 km, 28.5◦ inclination

• Lifetime: 5 years (minimum)

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

3− 25

CHEP’03 - 24 March 2003

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

4− 25

CHEP’03 - 24 March 2003

Requirements

GLAST has “normal” user requirements for its event display

◦ No revolutions in the collaboration software

◦ No tight dependencies from the collaboration software

◦ Must be flexible (and rigid)

◦ It should be easy

◦ It should be performant

◦ It must be fancy ...

◦ It must provide enought interactivity (e.g. click and inspect)

◦ Open user requirements (people will not tell you what they need and some-
time they don’t know what they need till the last minute)

Some of them are structural, some of them are related to a good GUI

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

5− 25

CHEP’03 - 24 March 2003

• Our actual GUI service, althought fast, easy and fully integrated in our
software, miss some of the structural requirements

• Start to use a new external program is risky when you are in an andvanced
state with the infrastructure software (framework, montecarlo, datastores,
geometry repository etc etc)

• Solution (partial): commit to a protocol, not to an application

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

6− 25

CHEP’03 - 24 March 2003

Structure

So we started an experiment to use the HepRep protocol paradigm for GLAST
event display, i.e. a client-server framework (Thursday talk will expand on this)

• The server side contains all the relevant physics algorithms specific
of the experiment and all the data relative to the event structure and
geometric information; in our case it lives inside GAUDI, the frame-
work adopted by GLAST

• The client deals with all the graphics issues and the user interfaces

FRED is a new HepRep compatible graphics client.

There is a ready, nice and complete HepRep graphics client in Java, i.e. WIRED;
so why another client?

• A new client for HepRep can help in spreading the protocol

• Programming our own client means we can have full control on function-
alities to implement

• We want to promote a slightly different approach from WIRED

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

7− 25

CHEP’03 - 24 March 2003

• We identify three main actors (roles) in an event display applications:

? Programmers that provide the main programs and all the infrastruc-
ture code

? Physics experts that decide what physical information augment the
graphical representation of an event

? End users that need a fast and easy way to customize the application
to their need

EVENT
DISPLAY

Programmers

Physics
Experts Users

Code

Models Scripts

Fillers Mechanism Simple interpreted
language

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

8− 25

CHEP’03 - 24 March 2003

• GLAST HepRep server side provide a nice separation/integration between
physics and graphics, enforcing in some way the first two roles.

• For the third one it is up to the graphics client to provide the end user with
enought powerful tools (plugins mechanism, API etc etc)

• So we want FRED to be a graphics client that can be “programmed” with
an easy scripting language

Our choices (see references for links)

? C++ is our choice language

? RUBY is our scripting language

? FOX-Toolkit is our GUI widgets library

? XML is our main persistency format (also compressed)

? CORBA is our main middleware for server-client operations

? OpenGL is our 2D/3D graphics library

XML and CORBA have been choosen for compatibility with WIRED (many
more formats are possible)

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

9− 25

CHEP’03 - 24 March 2003

The first version (September 2002) of FRED was a C++ application with a
RUBY interpeter embedded.

C ++

FRED

FOX-ToolkitCORBA

EXPAT

Ruby
User Script

ZLIB

Ruby
Interpreter

EVENT
SOURCE

(XML, CORBA , ...)

OpenGL

HepRep

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

10− 25

CHEP’03 - 24 March 2003

This first design had some limitations

◦ No easy WAY to open the GUI API to users (it was possible, but very hard
to do and not really stable)

◦ To add new features to the exposed users API we needed lots of wrapping
work of legacy code

And it suffered also of some structural problems:

◦ Developing of new features was slow (most of the time waiting for compi-
lation/linking just to find that a new smart idea was crap)

◦ The classes were not well structured; too much tight to libraries

− For example the main FRED class was also the Main Window class; big
mistake ...

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

11− 25

CHEP’03 - 24 March 2003

But we were happy of some basic choices

◦ Compiled C++ code is fast

◦ Interpreted RUBY code is easy and helpful

◦ The FOX toolkit provides nice GUI

◦ CORBA can be a nightmare, but is really useful and fast (at least in our
experience)

◦ OpenGL is fun (and fast); for now we are using the plain z-buffer approach,
but more elaborate ones are possible

The idea is than to do all the heavy computational tasks with C++ code, and
all the rest, comprising the GUI, with RUBY code.

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

12− 25

CHEP’03 - 24 March 2003

So FRED is today a RUBY application that load some C++ compiled code
(shareble libraries) and wrap interfaces to it

C ++ SWIG

FOX-Toolkit

CORBA

EXPAT

Ruby

User Script

ZLIB

EVENT
SOURCE

(XML, CORBA , ...)

OpenGL

OpenSceneGraph IGfxEngine

ISource

GUI

FRED

GfxEngine

Sources
(XML, CORBA ...)

HepRep HepRep HepRep

FOX-Toolkit

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

13− 25

CHEP’03 - 24 March 2003

◦ Faster developing of core functionalities for us

− I have an idea, I test it almost in real time

− I add a new feature in one place, but I can easily move it in another
place later

− Easier to distribute small parts (ideas) between us

◦ Easier extendibility from the users side for all aspects, including GUI changes

◦ Same performances of the full C++ application

− All input-output are in the C++ side

− We don’t wrap graphics operation: on the RUBY side we just open a
canvas, all the OpenGL operations are performed in the C++ side.

− The GUI is not a performance bottleneck (for normal users)

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

14− 25

CHEP’03 - 24 March 2003

Features

. Multiplatform: tested and supported on Windows 2000/XP and Linux
RH, but should work on many Unix flavours

. HepRep Sources: XML file (also compressed) by default, a CORBA
connection with an optional plugin

. Output: both bitmap (for now BMP, soon PNG and JPG) and vectorial
(PostScript).

. Interaction: usual zoom, pan, rotate operations via mouse and keys, plus
selection via mouse of graphics objects and inspection of their attributes.
Possible interaction with GAUDI in the future

. Graphics: using OpenGL, FRED automatically uses any available hard-
ware acceleration; for simple events (like GLAST ones) and in wireframe
mode performances are very good also in software mode.

. Scripting: script API gives access to all the main functionalities of FRED,
comprising the possibility to add new widgets to the GUI. FRED has a
simple internal editor for scripts and also a command line interpreter.

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

15− 25

CHEP’03 - 24 March 2003

Examples

Menu
Toolbar

Left Slider

Main MDI Container

Status Bar

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

16− 25

CHEP’03 - 24 March 2003

File opened
Event

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

17− 25

CHEP’03 - 24 March 2003

Multiple
Windows

XY XZ

YZ Generic 3D Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

18− 25

CHEP’03 - 24 March 2003

HepRep tree

Selected object

Selected object

Relevant info

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

19− 25

CHEP’03 - 24 March 2003

The Script Editor

Text

Run scriptOpen Script

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

20− 25

CHEP’03 - 24 March 2003

Examples of script: hide gammas

Define a list to fill with paticle objects

list = []

Find the MonteCarlo root in the HepRep

root = $Fred.getRootByName("MC")

Get the particle objects and put them in list

$Fred.getObjectByType(list, root, "Particle")

Iterate on each particle

list.each do |x|

For the actual object get the HepRep Instance

inst = x.getInstance()

If the Name is gamma and the Proc is not primary, hide

if ((inst.getValueByName("Name").getValue() == "gamma") and

(inst.getValueByName("Proc").getValue() != "primary"))

x.setVisible(FALSE)

end

end

Iterate on all the open 3D views and update them

$FredMW.views.each{|x| x.update}

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

21− 25

CHEP’03 - 24 March 2003

Examples of script: add menu voice

hide = proc{load "scripts/hidegamma.rb"}

$FredMW.addItemMenuProc("&Graphics", "Hide gammas", hide, TRUE)

Examples of script: change the background color of the first view

$FredMW.views[0].renderer.setBackground(0,0,0)

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

22− 25

CHEP’03 - 24 March 2003

Outlooks

Some new features that are “coming soon”

• New HepRep sources, expecially an HTTP one for browsing events acces-
sible from internet

• Use of the Ruby RMI mechanism, druby, for remote control of FRED from
other applications

• Export various format for photorealistic rendering of the event (we are
working to a POV one and to a RenderMan one)

• More than just wireframe graphics (filled volumes, semitransparent, layers,
outlines etc etc).

• A “batch” mode to produce event images (vectorial or bitmap) without
starting the GUI

• Options panel, with possibility to save preferred configuration from one
session to the other

• More GLAST specific features (that will be collected in a single plugin)

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

23− 25

CHEP’03 - 24 March 2003

Conclusions

So, is FRED a complete ready-to-use product? Not yet ...

. We need to extend the supported drawables shapes; we have just imple-
mented the GLAST relevant ones (boxes, polylines, points)

. We need also to improve the HepRep compliancy

. Need some documentation

. Lots of fine tunings and tweaks

... but

. An early beta version for GLAST people has been released

. Already usable and quite stable and all the main functionalities are in place

. It is quite easy and fast for us to add new features, soon also for users

. We are ready for feedback

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

24− 25

CHEP’03 - 24 March 2003

References

• FRED http://www.fisica.uniud.it/~riccardo/research/fred/

• GLAST Software http://www-glast.slac.stanford.edu/software

• RUBY http://www.ruby-lang.org/en

• FOX-Toolkit http://www.fox-toolkit.org

• ACE-TAO (Corba) http://www.cs.wustl.edu/~schmidt/TAO.html

• HEPREP http://www.heprep.freehep.org

• WIRED
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired

Introduction

Requirements

Structure

Features

Examples

Outlooks

Conclusions

References

25− 25

http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www.fisica.uniud.it/~riccardo/research/fred/
http://www-glast.slac.stanford.edu/software
http://www-glast.slac.stanford.edu/software
http://www-glast.slac.stanford.edu/software
http://www-glast.slac.stanford.edu/software
http://www-glast.slac.stanford.edu/software
http://www-glast.slac.stanford.edu/software
http://www-glast.slac.stanford.edu/software
http://www.ruby-lang.org/en
http://www.ruby-lang.org/en
http://www.ruby-lang.org/en
http://www.ruby-lang.org/en
http://www.ruby-lang.org/en
http://www.ruby-lang.org/en
http://www.fox-toolkit.org
http://www.fox-toolkit.org
http://www.fox-toolkit.org
http://www.fox-toolkit.org
http://www.fox-toolkit.org
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.heprep.freehep.org
http://www.heprep.freehep.org
http://www.heprep.freehep.org
http://www.heprep.freehep.org
http://www.heprep.freehep.org
http://www.heprep.freehep.org
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired
http://www.slac.stanford.edu/BFROOT/www/Computing/Graphics/Wired

