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b Introduction (recap)

Vertex reconstruction can be decomposed into:

* Vertex finding:
given a set of tracks, separate it into clusters of compatible tracks, i.e. vertex
candidates
* inclusively: not related to a particular decay channel
search for secondary vertices in a jet
+ exclusively: find best match with a decay channel.
general solution: combinatorial search — not discussed here.

* Vertex fitting
+ find the 3D point most compatible with a vertex candidate ( i.e. a set of tracks ).
* track smoothing: additional vertex information is used to re-estimate track
momenta




Vertex Fitting



Vertex Fitting .

The Task of estimating a point in 3d space that is most
compatible with a given set of reconstructed tracks.

Least Squares Methods:
‘LinearVertexFitter
*KalmanVertexFitter

sensitive to outliers and non-Gaussian tails in the track errors!

Robustified Methods:
*TrimmingVertexFitter
‘AdaptiveVertexFitter
‘LMSVertexFitter



}
Least square methods BLS = argmin Z r?(B)
b i=1

LinearVertexFitter
V.Karimaki, CMS Note 1997/051
KalmanVertexFitter

R.Friwirth et al., Computer Physics
Comm. 96 (1991) 189-208

cC,100GeV,n<14
L east squaresfit, z-resolution and pull

[ -resclutioninz it [ -pullzinz | Tinit

Enlries 4G5 Entries 441

o Mzan o.001114 Mean 0.1149

2 RMS 002481 40 RIS 9,136
60— 7 {ndf 4279 160 7 ndf 58,02 / 68
- Canstant_BG 61.74 + B4R 35 Constant BG 248910408

5 Mean_ BG -.0320 05 £ D.000RETH Mean BG -2 648 + 3268
0= Sigma. BG 0.003408 + 00002372 30 Sigma_BG 22.05+6.100
[ Constant 5RES & 07748 Constant 20,42+ 3,222
anl— Mean 0005126 + 0.00ERR2 a5 Mean 0.01702+ 0.1276
g Sigma 0.03475 + 0.004121 Sigma 1.625+ 0.1025

20

0
- 15

20

£ 10
1'[|:— 5

. 1 | 1 | [

0.1 0.05 0 0.05 0.1 Ty 20 Al

[ )




~| Trimming Vertex Fitter B1rs = argmin r(B)
\ B =1

LTSVertexFitter: fast Least Trimmed (sum of) Squares
* use h most compatible tracks out of N (1 - h/N: trimming fraction) and
fit them with one of the LS fitters
» algorithm: Fast-LTS (iterative ) P.J. Rousseuw, 1999
* breakdown point = 1-h/N
* user can choose trimming fraction :
* e.g. 3-prong 1, 4 tracks in cone cc, 100 GeV, n < 1.4
* choose h/N=0.75 L TSVertexFitter (80%)
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o 28
| AdaptiveVertexFitter BAdapfwe — argmin Z (,,'E )
* fast iterative, re-weighted LS P
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: 4| LMS Vertex Fitter BLMS = argmin’”fz(B))

B

Coordinate-wise LMS |

: Least Median of

Squares
* minimizes median of the squared e
distances - coordinate wise
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Vertex Finding



s Algorithms

Hierarchic vertex finding algorithms can be classified in:

. algorithms
at first iteration, each track constitutes a vertex candidate
merge compatible candidates

+ until stopping condition is met

*

*

. algorithms
initial vertex candidate made of the whole set of tracks
split into incompatible candidates

* until stopping condition is met

*

*

There are also non-hierarchic methods ( e.g. vector quantisation ).




s Divisive Clusterers - Principal Vertex Finder

Divisive algorithm, search for primary and
secondary vertices

* based on track ~ vertex compatibility at
point of closest approach

* at each iteration:

—» fit all tracks o a common vertex
—> remove least compatible track

refit vertex.
1 vertex candidate
+ 1 set of discarded tracks

* final cleanup: vertices with low x2 probability
discarded

Least compatible track

Vertex 1

Initial vertex




> Agglomerative Finders

Agglomerative clustering algorithms start with singleton groups, and then proceed with
iteratively merging pairs of groups with the minimal distance. The properties of the
algorithm depend on the distance meftric.
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The adding of the most compatible track requires the proper definition of a

Agglomerative Finders (2)

metric; a distance measure between two track clusters.
D( cluster, cluster ) = Dmin, Dmax, Dmedian, Dmean, ...

The distance measure can also be defined by representatives of a cluster ( e.g.

fitter based ).

Dmax [Complete Linkage
s min [Single Linkage]




Agglomerative Finders (3) _

Theorem: The triangle inequality does not hold for the distance
matrix between the PCA's of n tracks.

Proof: Let A, B, and C denote three tracks. Let A and B share one common
vertex V. let further B and C also share one common vertex V,. Then:

Hence: o - S
AB=¢, BC=¢, AC=d>¢
q.e.d. e
AB+BC <K AC VY,
B\Y2
— Dmin ( a.k.a. single linkage, minimum
spanning tree ) = bad choice A C



Apex Points

To fix the problem with the triangle inequality, one may try to find a point that
fully represents the track. One such point could be the ApexPoint; that is a cluster
point in the set of all Points of Closest Approach that lie on the considered track.
The most promising ApexPoint finding algorithm is "Mtv": Minimal Two Values.

Points of closest

approach N ._" '
| -, 4 Considered track
: R -
¢
4 “
- . — &
‘ ApexPointFinder: Mtv

S
L)

- ApexPointFinder: Mamf



Vector Quantisation

Vector quantisation works by having a set of prototypes learn to represent the
ApexPoints. The prototypes will then be interpreted as Vertex candidates.

3

Learning algorithm:
frequency sensitive 2r
competitive learning.

This is work in progress, only
(very promising) preliminary results  or
have been obtained so far.




5 Global Association Criterion

The "weights” as we have defined them for the AdaptiveVertexFitter, can also
be used to define a global "plausibility” criterion of the result of a vertex
reconstructor: the GlobalAssociationCriterion:

Let w, be the weight of track i with respect to vertex j.

The "penalty” p,, can then be defined as:

(1-w._ ifi€ ]

1

pij:<

W, ifi€ |

The average of all penalties then makes up the GlobalAssociationCriterion.



Global Association Criterion (2)

What can the GlobalAssociationCriterion be used for?
* exhaustive vertex finding algorithm
information-theoretic limit?
equivalence to Minimum Encoding Length [MEL]?
* stopping criterion for other algorithms.
* "SuperFinder” algorithms
combines the results of two finders into one better finder

L 4

*work in progress, no detailed results yet.



Vertex Finding Results



Recap: tuning and score

Finetuning process needs a score.

Score needs PerformanceEstimators:
VertexFindingEfficiencyEstimator: How many reconstructible
simulated vertices were found.

VertexPurityEstimator: How many wrong tracks are in the
reconstructed vertices.

VertexTrackAssignmentEstimator: How many assigneable
tracks were assigned to a vertex.

FakeRateEstimator: how many fake vertices were found.

-> Score:
Eff . Eff.,°.Pur,¢.Pur®. Ass?®. Ass . (1-Fake)’



Simulation experiments

Performance was analysed against:

full fledged Monte Carlo events

50 GeV b-jets (one primary vertex, one 'signal’ secondary
vertex )

n<1l4

finetuning:

1000 events final round, 200 events per pre-round.

score :

Eff°. Eff.°. Pur?® . Pur °. Ass®° . Ass °°. (1-Fake)'



Agglomerative Fitting

PVR-Linear

DOPhi

Score




> Conclusions

Current algorithms seem to be quite good already.
But: can we do even better?

Future plans:
*another 'learning algorithm':
Potts neurons or super-paramagnetic clustering (SPC)
*GlobalAssociationCriterion:
theoretical and practical exploration of
GlobalAssociationCriterion and its potential applications.
*and, most importantly:

Tests, performance analyses, case studies



Backup slides




| Least square methods (2)

LinearVertexFitter
V.Karimaki, CMS Note 1997/051

* works with p.c.a.sin 3D
* Straight line approximation of tracks at
linearization point i.p. wrt. lin.p.

Line constralint

cC,100GeV,n<14
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R.Friwirth et al., Computer Physics Comm. 96 (1991) 189-208

* works with track parameters at perigee
P.Billoir et al., NIM A311(1992) 139-150
* helix approximation of tracks
5 parameters at the perigee:
(P. 6,9, ¢ 2)
p signed transverse curvature
0 polar angle
¢, azimuthal angle at perigee
€ signed d,

z, z-coordinate at perigee

*

*

*

*

*

*

*

e Least squares methods(1)




Agglomerative algorithm,
search for secondary vertices

* geometrical correlations of tracks
from same secondary vertex
* track = straight line around the
primary vertex
* projection onto well-chosen plane
* tracks from same secondary
vertex have same | and @, in that

plane

< d,-¢algorithm (CDF)

Origin = Primary vertex

= | sin(@-@) = 1.(0-%)




S d,-@algorithm (cont.)

. d 0,04 B
In (d,,9) plane: Tt dy= L(0-9)
* 1 point for each track . K

* tracks from same secondary E Positive slope

_ 4
vertex: F \ /
0 s

+ have d, 20 : I
+ aligned along segment of §
ositive slope (1 >0 U
p p ( ) —0.03 :— ./. . AWD‘Cd e\,ent
* tracks from primary : :
vertices: O T T e s
* have dy =0 ® B tracks ?

O P.V. tracks




