## Using Geant4 in the BaBar Simulation

CHEP03

25 March 2003

Dennis Wright (SLAC)

on behalf of the BaBar computing group

#### Outline

- **BaB**ar overview
  - physics
  - building a Geant4-based simulation
- MC/data comparison
  - EM process validation
  - hadronic process validation
- **Performance**

## BaBar Physics

- CP violation in B0B0bar system
- **EM** interactions
  - must reconstruct B0  $\rightarrow$  J/ψ K<sub>s</sub>, J/ψ K\*, D+D-, ...
  - typical decay product energies:
    - lepton pairs 0.3
    - $\pi^0$  0.3 < E < 2.5 GeV
    - $\gamma 0.1 < E < 4.5 \text{ GeV}$
- hadronic interactions
  - charged π s and K s interacting in beam pipe,
    calorimeters
    - p < 4 GeV/c, most < 1 GeV/c

## The BaBar Detector



## Simulation Design Requirements

- Simulation must run in BaBar Framework
  - tracking, physics, hit scoring (GEANT4) implemented
    as a Framework module
  - Geant4 must give up run control to the Framework
- Work with existing event generators, detector response and reconstruction codes
- **Use** Objectivity database for persistence
  - even though Geant4 does provide persistence
- Simulation must be detailed but fast enough to keep up with high-luminosity production

### BaBar Simulation Overview



#### Use of Geant4 in BaBar

- **BaBar** uses:
  - Geometry
  - Hit-scoring
  - Decay processes
  - EM physics processes(< 10 GeV)</li>
  - Low energy hadronic processes (< 10 GeV)</li>

- **BaBar** does not use:
  - Detector response
  - Persistence
  - Standard particle transport/navigation

#### BaBar/Geant4 Validation

- Since October 2000, several validation test runs generated, compared to data
  - total of 20 million events
  - 25 different event types: B0B0bar, bhabhas, dimuons

#### **Examined:**

- Detector material model
- Tracking, resolution, reconstruction
- Particle ID
- EM processes
- Hadronic processes
- performance/robustness

## EM Process Validation: dE/dx

- ✓ Min. ionizing e+,e-from rad. Bhabhas (0.2
  - mean energy loss inHe-ISO gas reproduced
  - − widths agree → fluctuations are reproduced



## EM Validation: shower shapes







## EM Validation: π<sup>0</sup> Reconstruction

- π<sup>0</sup> mass test of tracking, energy scale,
  containment in calorimeter
- $\frac{1}{2}\pi^0$  width depends on shower simulation, detector response to photons
- Looked at  $\pi^0$  s with energies 0.3 to 2.1 GeV from  $K_s \rightarrow \pi^0 \pi^0$

# EM Validation: π<sup>0</sup> Reconstruction data MC



#### Hadronic Validation

- Currently using low energy parameterized (LEP) model
  - re-engineered version of GHEISHA
  - not especially appropriate for BaBar energies (50MeV 5 GeV)
- Cascade models now being tested as alternatives
  - binary cascade
  - Bertini cascade looks promising
- Thin target tests used for validation
  - using BaBar data
  - using other data

## Hadronic Validation: Models



## Hadronic Validation: Models



## BaBar "Thin Target" Hadronic Tests



## Performance

- Simulation stage of generic B0-B0bar event includes event generator, tracking, hit-scoring
  - On 866 MHz PIII takes 5.0 s/evt
  - Used Geant4 4.0
- Currently running MC production at ~20 sites (1440 M events so far)
- Run failures due to Geant4 getting rare
  - 1 per million events

#### Conclusions

- BaBar is the first large experiment to develop and use a Geant4-based simulation
- **EM** validation well in hand
  - Some differences between MC and data but so far probably due to detector response simulation
- Hadronic validation beginning in earnest
  - Testing low energy parameterized, binary cascade, Bertini cascade models
  - BaBar thin target tests just beginning
- Simulation is robust and reasonably fast