
Introduction
Modern Trigger and Data Acquisition systems have a very complex structure and behaviour. Auto-
mation of system testing and error diagnosing and recovery are important issues for the control of 
such systems, because it helps to minimise experiment down-time. In the scope of the ATLAS Trig-
ger and Data Acquisition (TDAQ) software, Diagnostics and Verification System (DVS) was devel-
oped. DVS is a framework which allows Trigger-DAQ developers and experts to integrate tests and 
knowledge into it, so it can be later used by non-experienced shift operator to verify functionality of 
the TDAQ and diagnose problems.

Use Cases
The main users of DVS are TDAQ Operator, TDAQ 
Expert, and also TDAQ Supervisor application which 
helps Operator to control the system.
The following use cases for DVS can be identified:
UC1: TDAQ Expert implements and configures tests 
for TDAQ components and stores tests in the reposi-
tory. He also stores the knowledge about testing 
sequences and components behaviour in DVS Knowl-
edge Base
UC2: During TDAQ initialization, TDAQ Supervisor 
application or TDAQ Expert launches a number of 
tests to ensure that h/w and s/w TDAQ components are 
in a correct state
UC3: When an error is detected during the data taking, 
TDAQ Operator or Expert browses TDAQ configura-
tion in DVS GUI and asks to verify the status of a 
group of TDAQ components. Using knowledge base 
and test repository, DVS organizes tests in sequences and execute them, analyses test results, diag-
noses errors and presents to the Operator conclusion about the reason of errors and also advises 
Operator how to repair failed components.

Design approach
The design approach for DVS was
• use simple components tests, developed by experts, which are stored in tests repository and made 

available for later use in the framework
• use expert system technology to store TDAQ developers knowledge in order to make it available 

for non-experienced shift operators to help them to control TDAQ

Implementation
For developers (experts), DVS pro-
vides an extensible framework which 
can be used to
• develop and configure tests for 

classes or objects in TDAQ configu-
ration, or redefine existing ones and 
store them in test repository

• develop knowledge base, using 
expert system language, to store spe-
cific knowledge about components functionality, which is later presented to the Operator

For end users DVS provides
• possibility to have a “testable“ view on TDAQ configuration, where user can select a single com-

ponent or a group of components and verify its status. This functionality is provided via GUI, C++ 
and Java API.

What is a test
A test is a small application, which verifies status of a single s/w or h/w TDAQ element in a config-
uration and returns a test result, that can be Passed, Failed or Unresolved. Test should be as inde-
pendent as possible, i.e. it should not rely on functionality of other TDAQ components. Typically 
test is developed by a component expert. Test can be launched on any host used in the configuration. 
It is possible to have a number of tests defined for one TDAQ element. Those tests can be started on 
different hosts, synchronously or in parallel.

Test Repository
Test repository is a database which 
allows to describe different attributes of 
a test and to store all the information in 
the TDAQ Configuration Database.
Each test in the repository is an instance 
of one of the three classes defined in Test 
Repository schema (presented on the 
right): Test, Test4Object or Test4Class.
The first class allows to define basic test 
attributes:
• test implementation (as a link to 

SW_object class from TDAQ Configuration Database schema)
• test parameters
• test timeout
• host name where test shall be executed
• mode of tests execution: synchronous or asynchronous (in case if a number of tests are defined for 

an object)
Test4Class and Test4Object classes, inherited from Test class used to associate a test to objects in the 
TDAQ Configuration database. Instances of Test4Object class are tests which verify the functional-
ity of particular TDAQ components, database identifiers of those are stored in ‘object_id’ attribute of 
Test4Object. To define a test for all objects of a particular class, it’s necessary to create instance of 
Test4Class and fill it’s ‘class_name’ attribute with the name of tested class.
C++ API (Test Data Access Library) is provided to access all the required configuration information.
Currently Online SW test repository contains:
• tests for all TDAQ infrastructure services
• test for computer (remote access test)
• test for VME module (“vme ping” test)
• test for S-Link (source-destination test)

DVS GUI
• implemented in Java
• hypertext navigation
• launched from main TDAQ Control “Integrated GUI” application
• presents TDAQ configuration as an hierarchical tree of testable components, so user con select sin-

gle component or a group of them
• component’s status (component test result) is highlighted
• test output, diagnosis and advice are presented in text panes for each component

CLIPS expert system shell
The core of DVS is an expert system engine, implemented in CLIPS (“C“ language Integrated Pro-
duction System). It’s main features are
• embeddable in C/C++ applications
• fully featured O-O language + rules
• developed by NASA

• free for non-commercial use
• “de-facto“ standard of forward-chaining rule-base (production) system

Additional functionality
• Log file browser for accessing log files produced by applications in distributed environment
• Help panel to read on-line documentation for components.

Examples

DVS

Supervisor 

Operator

Expert

Verify 
Component

Diagnose 
Errors

Develop & 
Configure  

Test

Browse 
Testable 

Components

DVS

Expert Operator

Supervisor

Test 
Repository

Knowledge 
Base

Expert 
System API GUI

Test 
__________  

host: string 
timeout : integer 
parameters : string 
exec_mode: integer

Test4Object 
__________  

object_id : list<string> 

Test4Class 
__________  

class_name : string 

SW_Object
is-a

testable TDAQ components test log

Diagnosis and Advice Panels 

Screen shot of  DVS GUI. 
There was a sequence of 3 tests 
started for object “workstation 
lxplus065“. All tests were 
passed.

Test for application “MRS Server“ 
failed. DVS started a number of 
additional tests to diagnose the prob-
lem. The actions to be done to repair 
the failed component are presented 
in “Advice“ panel.

Verification and Diagnostics Framework in ATLAS Trigger and Data Acquisition
I.Alexandrov1, A.Amorim2, E.Badescu3, M.Barczyk4, D.Burckhart-Chromek4, M.Caprini3, M.Dobson4, J.Flammer4, R.Hart5, R.Jones4,

A.Kazarov4,6, S.Kolos4,6,V.Kotov1, D.Liko4, L.Lucio2,4, L.Mapelli4, M.Mineev1, L.Pedro2, Yu.Ryabov6, I.Soloviev4,6, H.Wolters2

1) Joint Institute for Nuclear Research, Dubna, Russia
2) FCUL (Science University of Lisbon), Lisbon, Portugal
3) Institute of Atomic Physics, Bucharest, Romania4) European Organization for Nuclear 
Research (CERN), Geneva, Switzerland

5) National Institute for Nuclear Physics and High Energy Physics (NIKHEF), Amster-
dam, Netherland
6) Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia


