

Computing Experience from CDF and DO

Stephen Wolbers Fermilab CHEP2003, March 24, 2003

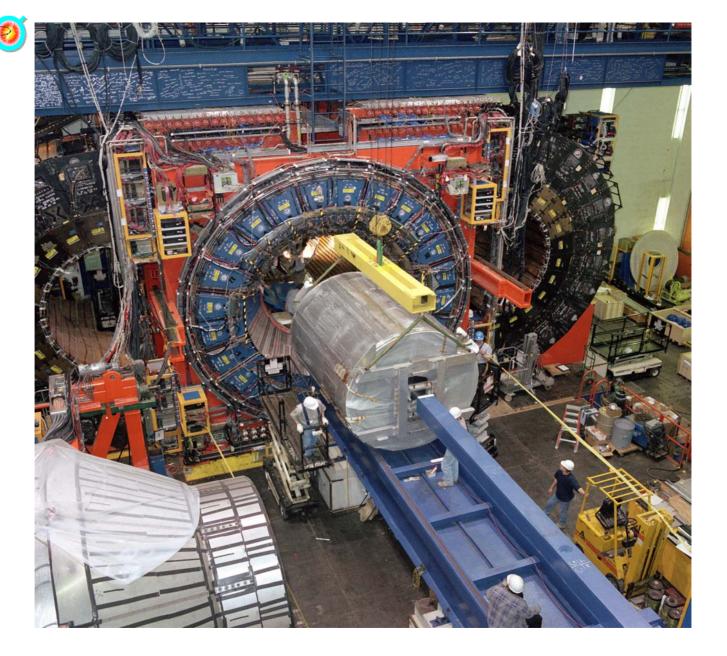
Stephen Wolbers, CHEP2003

Outline

- Run 2 overview
- Computing experience/issues
- Mid-course corrections
- Future directions
- Conclusions

My viewpoint/bias: Deputy Head of FNAL CD 1997-2003, technical work on CDF production farms.

Run 2 Overview


- Run 2 officially began March 1, 2001.
- Planning for Run 2 computing started many years ago and work has been continuous.
- Luminosity lower than expected, but it is increasing and will continue to increase.
- Both CDF and DO have been taking data steadily at high rates limited primarily by DA capability. (Triggers are adjusted as luminosity increases.)
- Big detectors, large collaborations, many challenges.
- Computing is a big issue essential for physics.
- Run 2 has many years to go.

Stephen Wolbers, CHEP2003

The CDF Collaboration

Europe

1 University

6 Universities

1 Research Lab

- 4 Universities
- 2 Research Labs
- 1 University
- 1 University

Asia

4 Universities 1 Research Lab

۲	

1 University

3 Universities

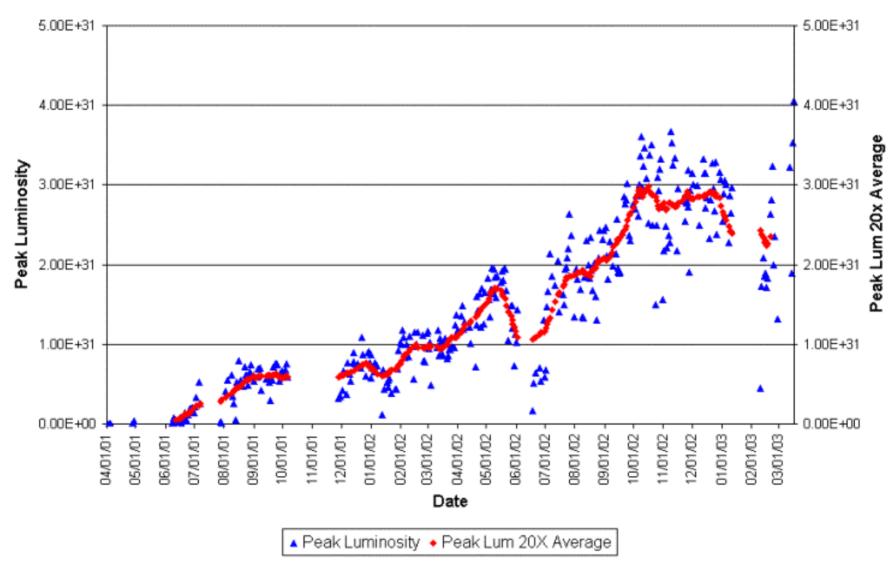
É

Stephen Wolbers

U. of Amsterdam / NIKHEF U. of Nijmegen / NIKHEF

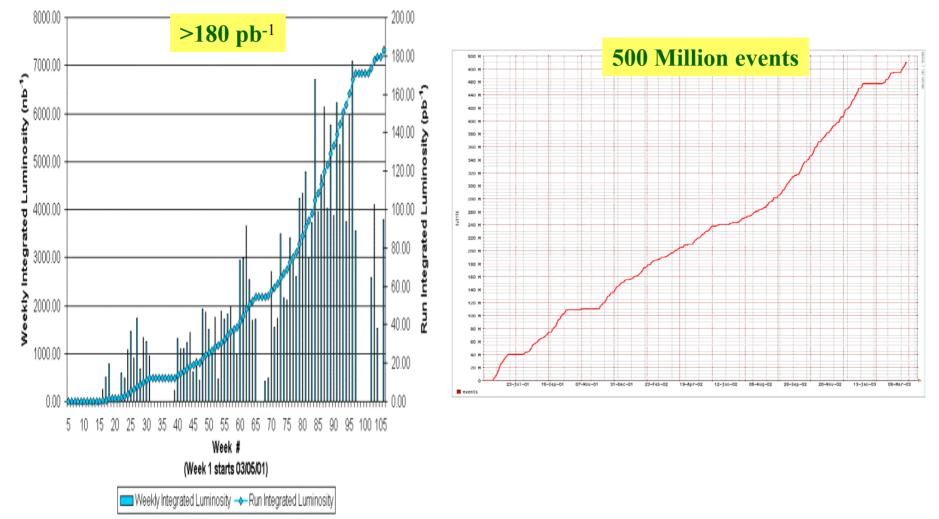
Ann Heinson, UC Riverside

ITEP, Moscow Moscow State U.


IHEP, Protvino PNPI, St. Petersburg RIT, Stockholm Stockholm U.

Uppsala U.

Imperial College, London U. of Manchester


Collider Run IIA Peak Luminosity

Stephen Wolbers, CHEP2003

CDF Raw Events

Stephen Wolbers, CHEP2003

Run 2 Computing History

- Early work/planning (goes back to 1995-1996):
 - Computing projects in both collaborations.
 - Computing Division efforts.
 - Joint projects Computing Division/CDF/DO.
- Planning and Reviews:
 - DMNAG report (1997)
 - Software Needs Assessment (1997)
 - Von Ruden external reviews:
 - 1997(2), 1998, 1999(2)

Short History (2)

The Run 2 joint computing project has so far:

- Designed hardware and software systems for Run 2 data storage, processing and analysis.
- Defined and ran joint CD/D0/CDF projects.
- Procured, installed, integrated and operated Run 2 offline computing systems.
- Spent approximately \$18M on equipment over 5 years (2-6-2-4-4).
- Framework, code management, code distribution
- Reconstruction packages
- Online Systems
- Analysis Systems

What was successful?

- Joint Projects
- Data volume was more or less correct.
- Reconstruction farms.*
- Linux.
- Open source.
- · ROOT.
- PCs.
- C++/C++ gurus. Liz Sexton
- Networks & TCP/IP.*
- Mass Storage/Enstore.* Don Petravick
- SAM data handling system. Lee Lueking
- Offsite Monte Carlo production (DO).
- Commodity computing.
- Analysis Model.
- Code management/distribution. Art Kreymer
- Reviews.*
- Moore's Law.*

* More Details will be given

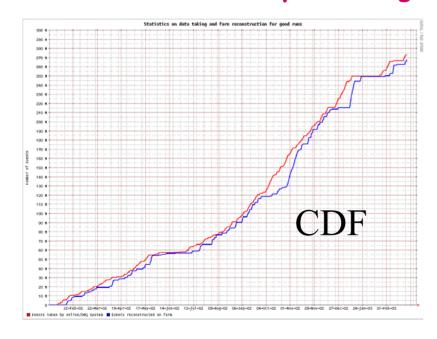
Farms

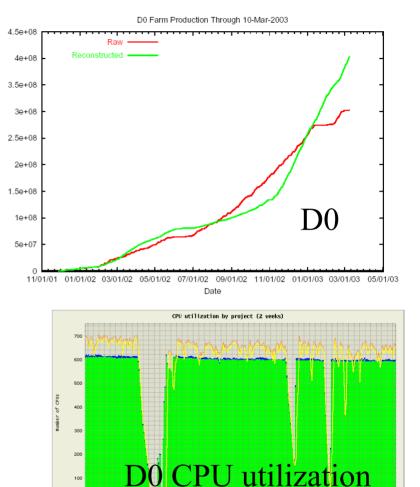
- Farms (PC clusters) for event reconstruction and Monte Carlo are extremely successful.
- CPU power is plentiful and cheap.
- Networking is adequate, local resources are sufficient (memory and disk).
- The big issues are power and cooling and space!
- Maintaining these big systems is a non-trivial effort:
 - Hardware/OS/Networks/NIS/NFS.
 - Reconstruction Code.
 - Database and mass storage connections and tuning.
 - Operations Software and coordination with collaboration.
 - It is easy to mess this up!

Farms - Run 1 vs Run 2

- · 30 MHz UNIX WS
- 16-32 Mbyte memory
- Shared 10 Mbit
- 10 Mbyte executable
- 5-20 seconds/event
- 5-7.5 Hz
- 100 CPUs

• 1.7 GHz PC (X60) (X60) • 1-2 Gbyte memory Switched 100 Mbit (X100) >200 Mbyte executable (X20) • (X30) 2-10 seconds/event • 50-75 Hz (X10) 800 CPUs (X8) •


A tremendous increase in capability



CDF and DO Reconstruction Bottom Line: Keeping up with

Raw data and Reprocessing

Sun Mon Tue Wed Thu Fri Sat

general production process .

Total

restricted_test_process

CPUS!

Auerage Current

593.3

596.9

552.0

555.6

3.6

Project

Thu

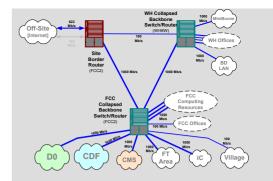
Updated: Sat Mar 15 09:05:31 2003

Sun

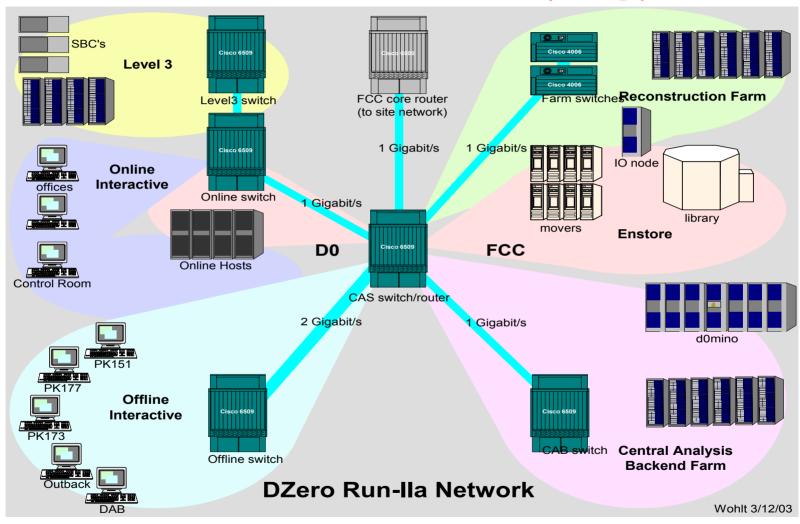
Versions of code/CDF

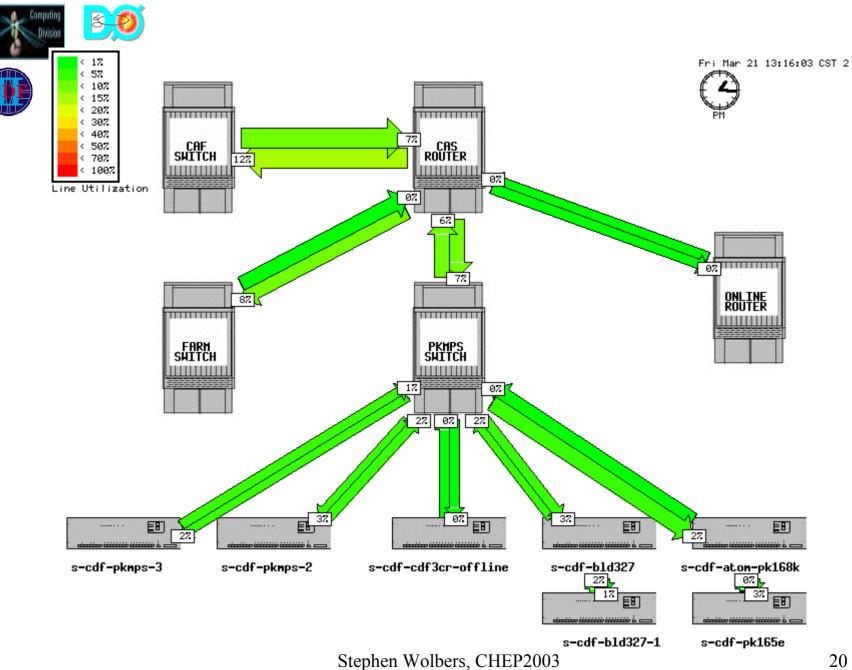
I (Commissioning)	3.11.0g	9,775,297	750 M	750 Million Events
I (Commissioning)	3.12.0	9,866,564	700 N	
II (1x8)	3.14.0	2,539,217		
III (36x36)	3.15.0c	5,113,927	GEO N	
III (36x36)	3.16.0	5.113.927	600 N	
IVa (June, 2001)	3.17.1	12,322,465	550 M	
IVb (June, 2001)	3.18.0	21,993,586	500 N	
V (August, 2001)	4.0.0i	9,882,486	450 N	
V (August, 2001)	4.1.0	38,857,497	2 400 M	
V (August, 2001)	4.2.0a	8,685,950		
VI (December, 2001)	4.2.0b	6,445,760	360 M	in the second
VI (December, 2001)	4.2.0c	26,944,076	300 H	
VI (December, 2001)	4.3.1	14,519,033	250 H	
VII (2002 data)	4.3.1b	10.369.500	200 H	
VII (2002 data)	4.3.2	10,109,874	150 M	
VII (2002 data)	4.3.2a	38,690,220		
VII (2002 data)	4.5.2	125,161,272	100 M	
VII (2002 data)	4.8.0	16,572,810	50 N	
VII (2002 data)(through Jan,2003 shutdown)	4.8.4a	257,886,088	23-jul-01 15-Sep events	UT 07-MKV-UT 3T-VEC-UT 23-YEB-UZ T3-987-UZ T3-987-UZ UB-MK9-UZ 23-589-UZ 20-MK7-UZ T3-981-U3 UB-MK7-U3
TOTAL		630.849.549		
				Includes
				D •

Reprocessing



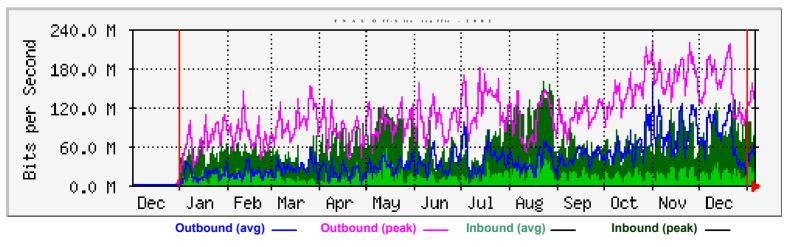
Stephen Wolbers, CHEP2003


Networks



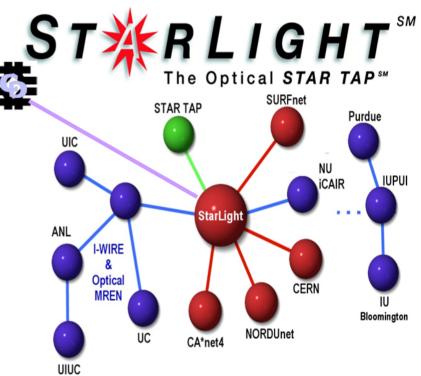
- · LAN
 - Very large and growing LAN for both experiments:
 - Connection of central systems.
 - · Desktops.
 - Data movement drives the requirements ever higher.
 - A tremendous success.
 - Issues of scaling need to be solved.
 - Especially switch-to-switch.

DO Run-II Network Topology



Wide Area Networking

- This is an area which is becoming ever more important (widely distributed computing, grid, data exchange)
- ESNet upgrade to 622 Mbps December, 2002.
- Long-term increase in data rates have been seen.



Stephen Wolbers, CHEP2003

Upgrades to WAN

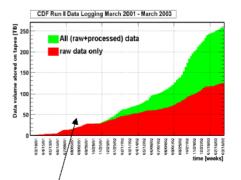
- Increased capacity for offsite connections is very important for Run 2 (and CMS and others).
- One possibility: Connect to Starlight (dark fiber leased from ComEd).
- Investigating many ways to increase bandwidth.

Starlight: optical networking interconnection point downtown Chicago (*710 Lake Shore drive*)

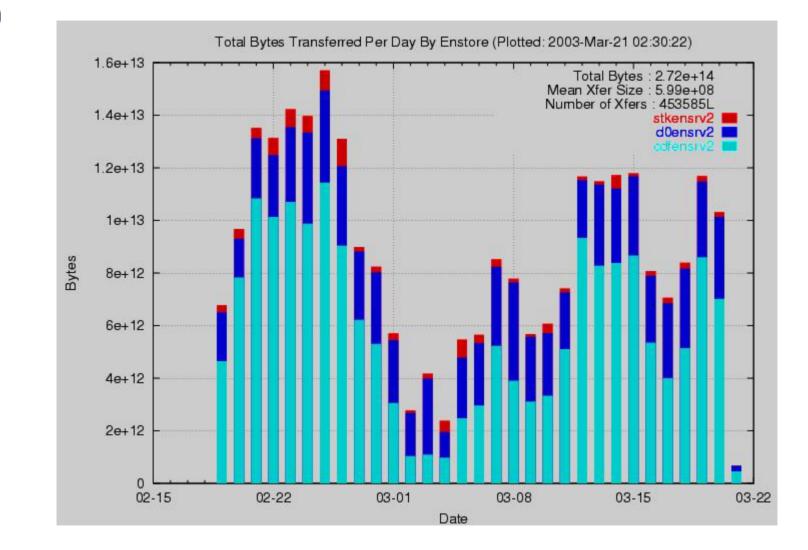
Owned by Northwestern University

Stephen Wolbers, CHEP2003

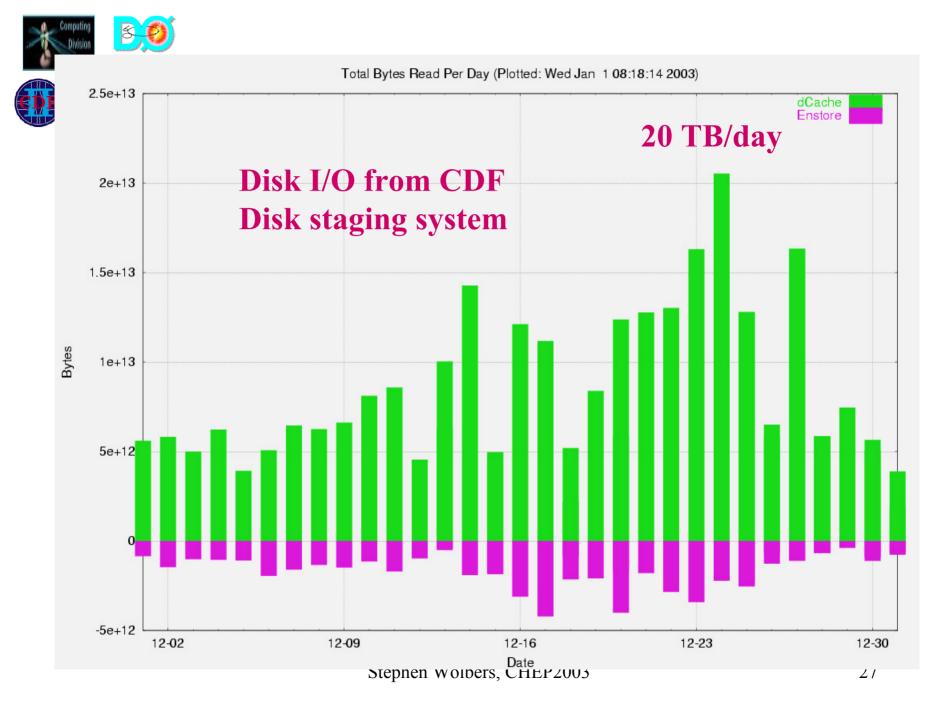
Mass Storage



Mass Storage

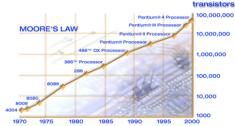

- Mix of STK 9940a (60 Gbyte cartridges) and LTO 1 (100 Gbyte cartridges).
 - Allows competition no single vendor.
- Currently migrating to STK 9940b (200 Gbyte cartridges) and investigating LTO 2.
- Software layer Enstore.
- Total Run 2 data on tape : 554 Tbyte.
 - Grows by ~2 TB/day.
 - Sometimes shrinks.
 - Older farms output.

Don Petravick 54 Thyte



Total Tape I/O per day

Stephen Wolbers, CHEP2003


Reviews

- Reviews are good! (up to a limit)
- They allow for:
 - Organization and coordination of plans/thinking.
 - Collection of important planning information.
 - Outside/new look at computing issues.
 - BaBaR, JLAB, CERN, DESY, other
 - Access to new resources.
 - Attention of the Directorate/other higher level people.

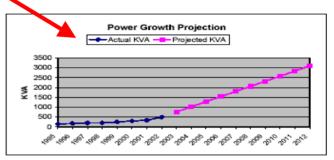
Moore's Law

- Moore's Law is essential to modern HEP computing capabilities.
 - We heavily rely on it.
- It is not a substitute for:
 - More efficient, faster code.

- 50% more CPU not the same as faster code, same amount of CPU
- Smaller datasizes.
- Thinking before doing.
- The increased computing drives the science and viceversa.
- Everyone would benefit from optimizing wherever possible.
- (Except those that give CHEP talks and need to show pictures of large amounts of computing stuff.)

What did not work (or needed change)?

- Mass storage.* •
- SMP and Analysis computing.* •
- Scaling systems too quickly. ٠
 - * More Details


- Commodity PC and Disk.* •
 - Hard to get and keep something that really works.
 - Linux kernels, large disk systems, RAID systems.
 - Disks
 - Same issues as with PCs or most commodity equipment.
- Windows NT/2000/Commercial Software. ٠
 - KAI (soon to be gone), analysis tools.
- Fibrechannel/SAN.

What did not work (2)?

*More Details

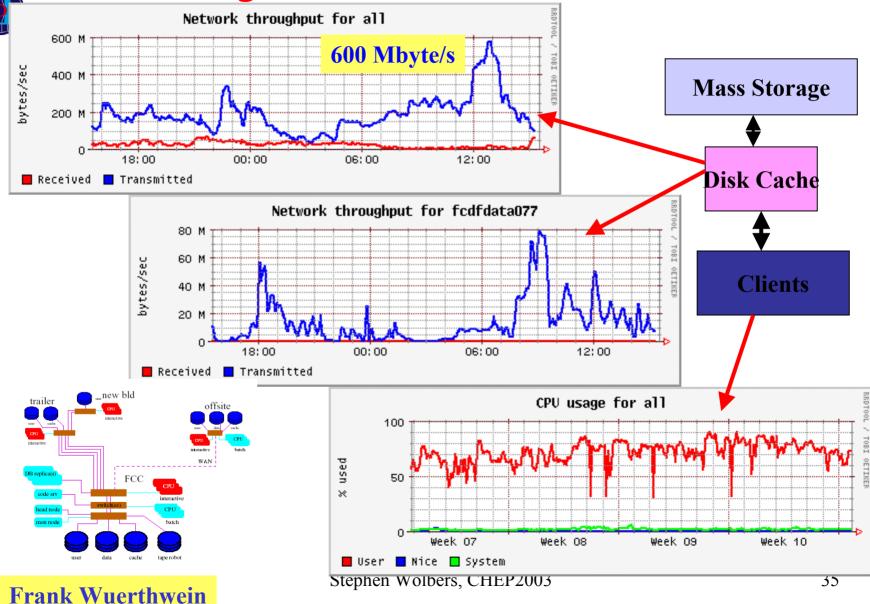
- Data handling (CDF).*
- Power and cooling of computer centers.
- Database performance.
- Reconstruction code speed.
- Lack of adequate monitoring.
- Procurement latency.
- wbs project management.

Mass Storage

- 8mm tape and flexible robots were chosen as Run 2 mass storage systems.
 - Many reasons for this, all correct at the time.
- Significant problems with performance, robustness and capabilities of 8mm tape and its integration into ADIC robots.
- <u>Solution</u>: STK/9940 and ADIC/LTO, coupled to the Enstore mass storage software (and Dcache).
 - Rapid deployment, building modifications.
 - Successful major modification in mid-project.
- Technology and competition gave us a solution.

Analysis Computing/SMP/PC

- Analysis Computing in Run 2 is rapidly moving from big SMPs to PC based systems.
 - Driven by cost, performance, capabilities.
 - SMPs remain as fileservers and common shared environments.


Analysis Computing

- Tough problem: Many clients, unpredictable behavior, short timescales (conferences), large peaks of load.
- Last problem to be addressed DA, online, production, Monte Carlo all dealt with first.
- In addition, analysis computing normally competes to some extent with production activities:
 - Tapedrives
 - Network
 - Staging systems
- Analysis is distributed worldwide should be integrated in the design.
- In the end the analysis computing is where the physics results happen Very Important!

Moving a lot of data on CDF CAF

E-

Commodity Computing

- Commodity computing is a challenge.
 - Much variety, constant change.
 - Even within individual purchases.
- Attempt to solve:
 - Common evaluation of equipment.
 - Common specification of configurations.
- Likely to remain an issue.
- This can be a huge effort!

Data handling/CDF

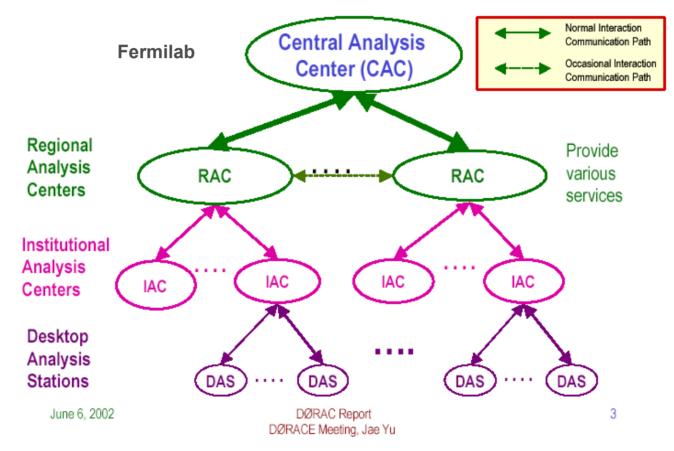
- CDF data handling model became unsupportable.
 - Direct attached tapedrives.
 - SMPs.
 - Fibrechannel/SAN.
 - Staging software.
- Solution: move to common CD/CDF/D0 tools.
 - Enstore/STK/9940.
 - Dcache.
 - PC analysis systems (CAF).
 - SAM/grid.

- Gabriele Garzoglio, Fedor Ratnikov Rob Kennedy, Dmitry Litvintsev
- Effort to change was not small.
 - Tape copying.
 - Software modifications.
 - System tuning.

What was not expected?

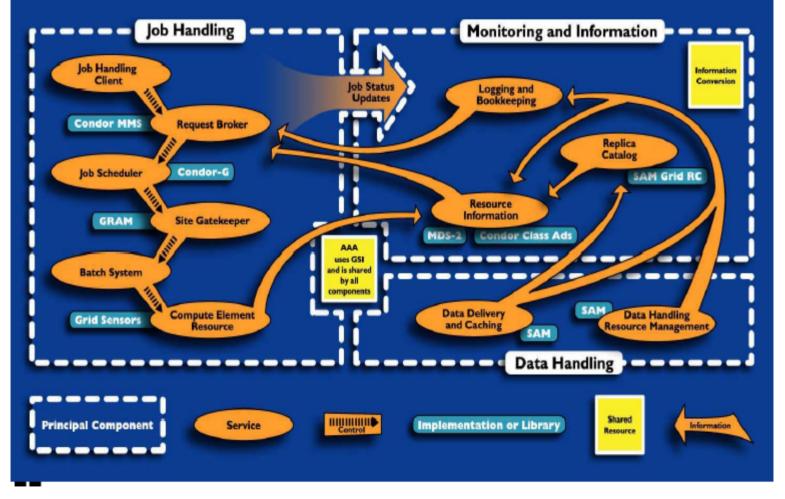
- Distributed computing, the grid.
- Really cheap PCs and disks and Linux.
- Long ramp up of the collider.
- Commissioning of the detectors and triggers.
- Duration of Run 2.
- Timescales for finishing software projects.

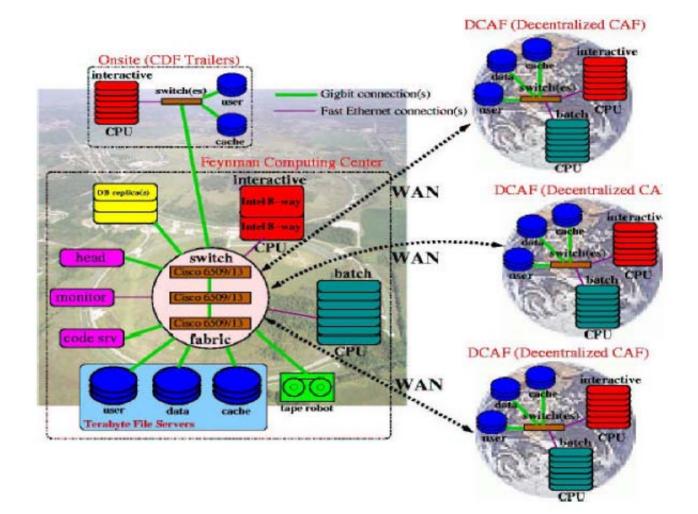
Distributed Computing and the grid


- CDF and DO are both highly distributed collaborations, with many physicists and computing resources.
- Making use of that potential has been an issue from the start for DO (Monte Carlo generation) and for CDF more recently.
- These efforts are going to grow.
- The SAM data handling system, used from the beginning by DO and recently by CDF, is being used/modified for grid/distributed computing.

Igor Terekov, Stefan Stonjek, Fedor Ratnikov, Lee Lueking

D0 regional analysis centers


Proposed DØRAM Architecture



SAM-Grid Architecture

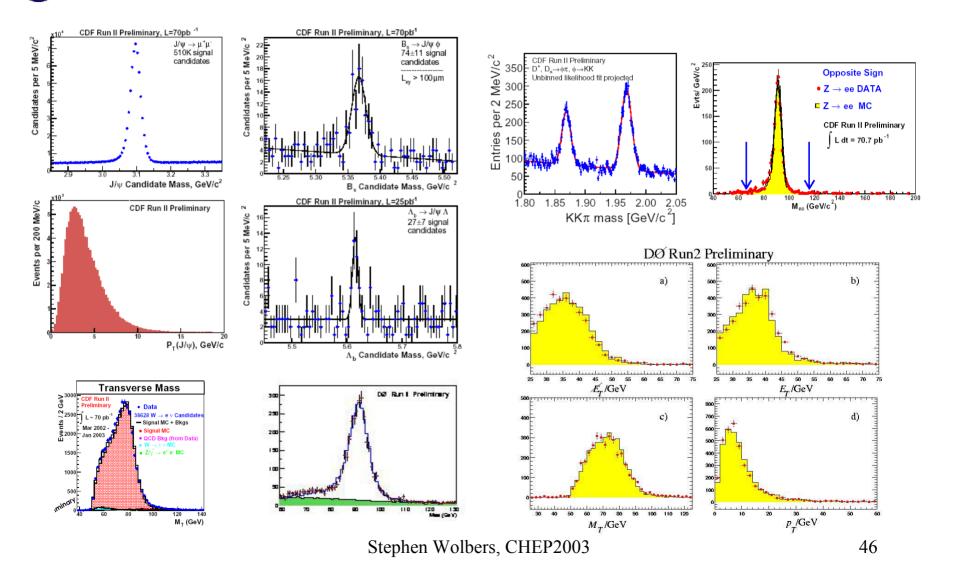
Future CDF Direction

Lessons

- Plan for change, don't be afraid to make major modifications.
- Make realistic requirements estimates, taking into account experience as well as wishes.
- Optimize as much as possible.
 - Hardware can make up for excesses.
 - But it is easier to run less stuff and/or get things done more quickly and easily and with less storage, memory, etc.
- Don't buy too early.
- Test but be prepared for many surprises.
- Scale systems carefully and slowly.
- Be flexible, even late in the process.
 - But in 10-20 year experiments it is not clear when "late" is.

Lessons (2)

- Since all development (H/W and S/W) cannot be provided at one time, choose a path that gives necessary features and performance at any given time without impacting the overall system development (easy to say!)
 - This may require unoptimized systems at first, maturity coming later.
- Have a core group be responsible for infrastructure.
 - But be sure they are listening to the collaboration and others.
- Make good use of reviews.
 - Focus the project.
 - Get attention of management.
 - Get resources.



Lessons (3)

- Joint projects are hard, but worth it.
 - Require coordination with (many) other parties.
 - But the long-term support and features are worth it.
- Two coordinators/leaders are better than one.
 - Complementary strengths.
 - Better coverage.
 - Ideas can be bounced off of each other.
- Databases are very important.
 - They connect everything.
 - Provide some reward for working on them.
 - Use freeware DB?

Physics!

On to the future

- Run 2 is ramping up, has a long life.
 - Code maintenance.
 - Hardware upgrades and increments.
 - Technology changes.
- BaBar, RHIC, JLAB, LHC, others all facing similar issues.
- Grid is happening.
- The temptation (often the necessity) is to solve only our own problems.
 - It makes sense to try to align efforts to provide maximum effort and sharing.
 - It is somewhat difficult to align running experiments with LHC experiments.

Stephen Wolbers, CHEP2003

Summary

- Run 2 Computing is a great success.
- This was a large effort, involving many people over many years.
- The data has been processed and analyzed quickly to produce physics results.
- But the computing systems aren't perfect:
 - Entire systems were replaced.
 - Development had to (and has to) be consistent with data-taking and data-analysis needs.
- There is a huge amount of data on the way.
 - The luminosity continues to increase.
 - The data rate will increase in Run 2b.
 - The physics demands it and the technology allows it.

Thanks

I wish to thank many many people who worked on Run 2 computing over the years. It was truly a large and distributed effort.

I also wish to thank those who gave me suggestions and ideas for the talk - Wyatt Merritt, Amber Boehnlein, Heidi Schellman, Liz Buckley-Geer, Rob Harris, Frank Wuerthwein, Liz Sexton, Don Petravick, Ruth Pordes, Matthias Kasemann + many others who have worked on Run 2 over the past many years.