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Good geometrical calibration is essential in the use of high resolution detectors. The individual sensors in the
detector have to be calibrated with an accuracy better than the intrinsic resolution, which typically is of the
order of 10 µm. We present an effective method to perform fine calibration of sensor positions in a detector
assembly consisting of a large number of pixel and strip sensors. Up to six geometric parameters, three for
location and three for orientation, can be computed for each sensor on a basis of particle trajectories traversing
the detector system. The performance of the method is demonstrated with both simulated tracks and tracks
reconstructed from experimental data. We also present a brief review of other alignment methods reported in
the literature.

1. INTRODUCTION

For full exploitation of high resolution position sen-
sitive detectors, it is crucial to determine the detec-
tor location and orientation to a precision better than
their intrinsic resolution. It is a very demanding task
to assemble a large number of detector units in a large
and complex detector system to this high precision.
Also, after assembly, the position determination of the
modules by optical survey has its limitations because
of detectors obscuring each other. Therefore the fi-
nal tuning of detector and sensor positions is made by
using reconstructed tracks.

In this paper we present an effective method by
which individual sensors in a detector setup can be
aligned to a high precision with respect to each other.
The basic idea is illustrated in Figure 1. Using a large
number of tracks, an optimum of each sensor position
and orientation is determined such that the track fit
residuals are minimized.
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Figure 1: Schematic illustration of the method to correct
the sensor position: using a large number of tracks
i, i = 1, . . . , N and measured hits on a detector, the
sensor is moved such as to minimize the residuals.

The outline of this paper is as follows: In Section
2 we briefly review published alignment methods. In
Section 3 we introduce the basic notations and coor-
dinate systems involved in our method. In Section
4 we present the detailed formulation of the method.

In Sections 5 and 6 we demonstrate the performance
of the method applied to a test beam setup and to
a simulated pixel vertex detector, respectively. The
CMS [1] Pixel detector is is used as a model in the
simulation.

2. BRIEF REVIEW OF ALIGNMENT
METHODS

Most HEP experiments equipped with precise
tracking detectors have to deal with misalignment is-
sues, and several different approaches for alignment
by tracks have been used and reported. Most meth-
ods are iterative with 5-6 parameters solved at a time.

Several papers concerning different aspects of align-
ment in the DELPHI experiment can be found in the
literature. For instance, Z0 → µ+µ− and cosmic
rays are used for the global alignment between sub-
detectors VD, OD and TPC [3]. The most detailed
DELPHI alignment paper deals with the alignment of
the Microvertex detector [4].

In the ALEPH experiment, alignment was carried
out wafer by wafer, and with 20 iterations and 20000
Z0 → qq̄ and 4000 Z0 → µ+µ− events an accuracy of
a few µm can be achieved [2].

A different, computationally challenging approach
is chosen in the SLD experiment, where the algorithm
requires simultaneous solution of 576 parameters lead-
ing to a 576 by 576 matrix inversion [5]. In the SLD
vertex detector, a recently developed matrix singular
value decomposition technique is also used for internal
alignment [6].

3. COORDINATE SYSTEMS AND
TRANSFORMATIONS

Our method is applicable to detector setups which
consist of planar sensors like silicon pixel or strip
detectors. For track reconstruction one convention-
ally uses the local (sensor) coordinate system and the
global detector system. The local system (u, v, w) is
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defined with respect to a detector module (sensor) as
follows: The origin is at the center of the sensor, the
w-axis is normal to the sensor, the u-axis is along
the precise coordinate and the v-axis along the coarse
coordinate. The global coordinates are denoted as
(x, y, z).

The transformation from the global to the local sys-
tem goes as:

q = R(r − r0) (1)

where r = (x, y, z), q = (u, v, w), R is a rotation and
r0 = (x0, y0, z0) is the position of the detector center
in global coordinates.

In the very beginning of the experiment the rota-
tion R and the position r0 are determined by detec-
tor assembly and survey information. In the course of
experiment this information will be corrected by an
incremental rotation ∆R and translation ∆r so that
the new rotation and translation become:

R → ∆RR (2)
r0 → r0 + ∆r. (3)

The correction matrix ∆R is expressed as:

∆R = RγRβRα (4)

where Rα,Rβ and Rγ are small rotations by
∆α,∆β,∆γ around the u-axis, the (new) v-axis and
the (new) w-axis, respectively. The position correc-
tion ∆r transforms to the local system as:

∆q = ∆RR∆r (5)

with ∆q = (∆u,∆v,∆w). Using (1-5) we find the
corrected transformation from global to local system
as:

qc = ∆RR(r − r0) − ∆q. (6)

where the superscript c stands for ’corrected’. The
task of the alignment procedure by tracks is to de-
termine the corrective rotation ∆R and translation
∆r or ∆q as precisely as possible for each individual
detector element.

4. DESCRIPTION OF THE ALIGNMENT
ALGORITHM

4.1. Basic Formulation

Since the alignment corrections are small, the fitted
trajectories can be approximated with a straight line
in a vicinity of the detector plane. The size of this
small region is determined by the alignment uncer-
tainty which is expected to be at most a few hundred
microns so that the straight line approximation is per-
fectly valid.

The equation of a straight line in global coordinates,
approximating the trajectory in a vicinity of the de-
tector, can be written as:

rs(h) = rx + h ŝ (7)

where rx is the trajectory impact point on the detec-
tor in question, ŝ is a unit vector parallel to the line
and h is a parameter. Equation (7) is for uncorrected
detector positions.

Using Eq. (6) the corrected straight line equation
in the local system reads:

qs(h) = Rc(rx + h ŝ − r0) − ∆q (8)

where Rc = ∆RR. A point qs = qs(hx) which lies
in the detector plane must fulfill the condition qs ·
ŵ = 0, where ŵ = (0, 0, 1) is normal to the detector.
From this condition we can solve the parameter hx

which gives the corrected impact or x-ing point on the
detector:

hx =
[∆q − Rc(rx − r0)] · ŵ

Rcŝ · ŵ . (9)

The corrected impact point coordinates qc
x in the local

system are then:

qc
x = Rc(rx − r0)+

[∆q − Rc(rx − r0)] · ŵ
Rcŝ · ŵ Rcŝ−∆q.

(10)
Since the uncorrected impact point is qx = R(rx−r0),
Eq. (10) can be written as:

qc
x = ∆Rqx +

(∆q − ∆Rqx) · ŵ
∆Rt̂ · ŵ ∆R t̂ − ∆q. (11)

where t̂ = Rŝ is the uncorrected trajectory direction
in the detectors local frame of reference. Eq. (11)
evaluates to:

qc
x = ∆Rqx + (∆w− [∆Rqx]3)

∆R t̂
[∆R t̂]3

− ∆q. (12)

This expression provides us with a ’handle’ by which
the unknowns ∆q and ∆R can be estimated by mini-
mizing a respective χ2 function using a large number
of tracks.

4.2. General χ2 Solution

We denote a measured point in local coordinates
as qm = (um, vm, 0). The corresponding trajectory
impact point is qc

x = (ux, vx, 0). For simplicity we
omit the superscripts c in the coordinates ux and vx.
In stereo and pixel detectors we have two measure-
ments, um and vm, and in non-stereo strip detectors
only one, um. In the latter case the coarse coordinate
vm is redundant. The residual is either a 2-vector:

ε =
(
εu

εv

)
=

(
ux − um

vx − vm

)
(13)
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or a scalar ε = εu = ux − um. In the following we
treat the more general 2-vector case. The scalar case
is a straightforward specification of the 2-vector for-
malism.

The χ2 function to be minimized for a given detec-
tor is:

χ2 =
∑

j

εT
j V−1

j εj (14)

where the sum is taken over the tracks j. Vj is
the covariance matrix of the measurements (um, vm)
associated with the track j. The alignment correc-
tion coefficients, i.e. the three position parameters
(∆u,∆v,∆w) and the three orientation parameters
(∆α,∆β,∆γ) are found iteratively by a general χ2

minimization procedure. At each step of the itera-
tion one uses the so far best estimate of the alignment
parameters in the track fit.

Let us denote these parameters as p =
(∆u,∆v,∆w,∆α,∆β,∆γ). Then, according to the
general χ2 solution, the iterative correction to p has
the following expression:

δp =


∑

j

JT
j V−1

j Jj




−1 
∑

j

JT
j V−1

j εj


 (15)

where Jj is a Jacobian matrix of εj(p):

Jj = ∇p εj(p). (16)

An adequate starting point for the iteration is a null
correction vector p=0.

In the general case of two measurements (um, vm),
Jj is a 6 × 2 matrix. In case of scalar ε, for single
sided strip detectors, Jj is a vector of 5 elements, be-
cause ∆v is redundant and cannot be fitted. It will
also be foreseen that only a sub-set of the 6 alignment
parameters would be fitted and the others kept fixed.
In this case the dimension of the Jacobian matrix re-
duces accordingly.

The derivatives of the Jacobian matrix can be com-
puted to a good precision in the small correction angle
approximation (see below). The elements of the ma-
trix J for a given track are then:

J =




−1 0
0 −1

tanψ tanϑ
vxtanψ vxtanϑ
uxtanψ uxtanϑ
vx −ux




(17)

The quantities tanψ and tanϑ are defined in the next
section.

4.3. Linearized Solution with the Tilt
Formalism

We call ”tilts” the angle corrections x which are
small enough to justify the approximations cosx � 1

and sinx � x. In this approximation the correction
matrix ∆R reads:

∆R =


 1 ∆γ ∆β

−∆γ 1 ∆α
−∆β −∆α 1


 (18)

Using Eq. (18) we linearize Eq. (12) and get the fol-
lowing expressions for the corrections of the impact
point coordinates as a function of the alignment cor-
rection parameters:

∆ux = −∆u+ δ tanψ + ∆γ vx (19)
∆vx = −∆v + δ tanϑ− ∆γ ux (20)

where δ = ∆w + ∆β ux + ∆α vx. The quantity ψ is
the angle between the track and the vw−plane and
ϑ is the angle between the track and the uw−plane:
tanψ = t̂1/t̂3, tanϑ = t̂2/t̂3.

With this approximation the residuals (13) depend
linearly on all 6 parameters. Hence the χ2 minimiza-
tion problem is linear and can be solved by standard
techniques without iteration.

5. ALIGNMENT OF A TEST BEAM SETUP

From Eqs. (19) and (20) we can estimate the contri-
butions of various misalignments to the hit measure-
ment errors. For example the contribution of a mis-
alignment ∆α around the u-axis to the v-coordinate
is:

∆v � v∆α tanϑ. (21)

The error is small near normal incident angles, but
grows rapidly as a function of ϑ. At ϑ = 45o and near
the edge of the sensor (v = 3 cm) the error goes as
30000µm ∆α so that for only 1 mrad error in ∆α the
systematic error in the v-coordinate is 30µm.

Tilt Angle

Plane 5

Plane 3

Plane 1
Plane 0

Plane 7

Plane 2

Plane 6

Plane 4

Beam

Figure 2: Helsinki Si Beam Telescope in the CERN H2
beam.

The silicon detector team of Helsinki Institute of
Physics made a precision survey of detector resolution
as a function of the angle of incidence of the tracks [8].
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The study was made in the CERN H2 particle beam
with a setup described in Figure 2. One of the silicon
strip detectors was fixed on a rotative support which
allowed the tracks to enter between 0 and 30 degrees
of incident angle. The angular dispersion of the beam
was about 10 mrad and the hits covered the full area
of the test detector.

In order to obtain reliable results it was extremely
important to calibrate the tilt angle to a very high
precision. Our algorithm was used in the alignment
calibration. In Table I we show the result of the align-
ment demonstrating the precision obtained by about
3000 beam tracks.

Table I Alignment parameters obtained by the algorithm

Parameter At 0 degrees At 30 degrees
∆u(µm) 186.0±0.1 -264.7±0.1
∆w(µm) 200±20 -131±6

∆α(mrad) 5.6±0.7 12.9±0.9
∆β(mrad) 5.8±0.9 32.59±0.04
∆γ(mrad) -14.12±0.01 -15.86±0.01

With the precise alignment we have been able to
determine the optimal track incident angle which min-
imizes the detector resolution [8].

6. MONTE CARLO SIMULATION

6.1. Simulated Detector

A Monte Carlo simulation code was written to test
the alignment algorithm. High momentum tracks
were simulated and driven through a set of detector
planes. The simulated hits were fluctuated randomly
to simulate measurement errors. Gaussian multiple
scattering was added quadratically using the Highland
[9] approximation. The algorithm involves misalign-
ment of a detector setup in order to simulate a realistic
detector.

The experimenters’ imperfect knowledge of the true
position of the detector planes is simulated by recon-
structing the trajectories in the ideal (not misaligned)
detector. This means that in the transformation from
local to global coordinate system one uses the ideal
positions of the detector planes. The full algorithm in
brief is as follows:

1. Creation of an ideal detector setup with no mis-
alignments

2. Creation of a misaligned, realistic detector

3. Generation of the particles and hits in the mis-
aligned detector simulating the real detector

4. Reconstruction of the particle trajectories in
the nominal (ideal) detector thus using slightly
wrong hit positions. This simulates the realistic
situation in which the detector alignment is not
yet performed.

For the simulated detector type we choose a vertex
detector which is a simplification of the CMS Pixel
barrel detector [1, 10] with two layers. The setup is
illustrated in Figure 3. There are 144 sensors in layer
1 and 240 sensors in layer 2. The distance of the layer
1 from the beam line is about 4 cm and the layer 2
about 8 cm.

10 cm 

Figure 3: Illustration of the simulated vertex detector in
the alignment study.

In the simulation we used the following conditions:

1. Misalignment of chosen sensors: The shifts
∆u,∆v,∆w were chosen at random, each in the
range ±100µm and the tilts ∆α,∆β,∆γ were
chosen at random each in the range ±20 mrad.

2. Beam and vertex constraints: The vertex posi-
tions were Gaussian fluctuated around the cen-
ter of the beam diamond with σx = σy = 20µm
and σz = 7 cm and the tracks were fitted with
the constraint to start from one point, i.e. from
the primary vertex.

In the following we consider two different cases of mis-
aligned detectors:

I. All sensors in layer 2 fixed, all sensors in layer 1
misaligned.

II. Only one sensor in layer 2 fixed, all remaining
383 sensors misaligned.

In case I the total number of fitted parameters is
6 × 144 = 864 and we used about 2 × 105 tracks.
The case I appears to be an ’easy’ one with which
the algorithm copes very well, as we see below. The
second case we call ’extreme’ since the alignment is
based on one reference sensor which covers only about
0.26 % of the detector setup area. The total number
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Iteration of 6 alignment parameters for a Pixel sensor
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Iteration of 6 alignment parameters for a Pixel sensor
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Figure 4: The six plots on the left show the rate of convergence in case I for the alignment parameters of one sensor
(circular spots). The solid line shows the true parameter value. The six plots on the right are for the case II.

of fitted parameters in this case was 6 × 383 = 2298.
In the following sectios we show perfomance results of
the algorithm in these two cases.

6.2. Convergence of the Algorithm

The convergence rate of the alignment procedure as
a function of the iteration cycle is shown in Figure 4.
It appears that the convergence is fast in the ’easy’
case (the 6 plots on the left) where more than 60 %
of the sensors provide the reference. The convergence
takes place after a couple of iterations.

In the case where only one sensor is taken as a ref-
erence (plots on the right of the figure), the situation
is different. It appears that the number of iterations
needed varies between 20 and 100 from parameter to
parameter. It is also seen that the converged parame-
ter values are somewhat off from the true values, but
the precision is reasonable.

6.3. Comparison of Fitted and True
Parameters

The precision of the fitted parameters in compari-
son with the true values is shown in Figure 5 on the
left for the case I. The correlations are very strong.
The typical deviation of the fitted parameters from

the true value is less than 1µm for the offsets and
a fraction of a milliradian for the tilts. The preci-
sion appears to be better than actually needed in this
case, indicating that a smaller statistics would give a
satisfactory result.

In case II (the plots on the right of the figure) a good
correlation is observed, but the precision is somewhat
more modest. For example the error in ∆w (the shift
normal to the sensor plane) is still in most cases below
10µm.

7. CONCLUSIONS

We have developed a sensor alignment algorithm
which is mathematically and computationally simple.
It is based on repeated track fitting and residuals op-
timization by χ2 minimization. The computation is
simple, because the solution involves matrices whose
dimension is at most 6 × 6. The method is capable of
solving simultaneously all six alignment parameters
per sensor for a detector setup with a large number of
sensors.

We have successfully applied the method in a
precision survey of silicon strip detector resolution
as a function of the tracks incident angle. Further-
more, we have demonstrated the performance of
the algorithm in case of a simulated two-layer pixel
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Fitted versus true parameters - all misaligned sensors
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Fitted versus true parameters - all misaligned sensors
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Figure 5: The scatter plot of fitted versus true alignment parameters. There are 6 × 144 entries in the plots on the left
(case I) and 6 × 383 entries in the plots on the right (case II).

barrel vertex detector. The method performs very
well in the case where the outer layer is taken as
a reference and all inner sensors are to be aligned.
The algorithm performs reasonably well also in the
extreme case where only one sensor, representing
some 0.26 % of the total area, is taken as a reference
for the alignment.
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