
 
 

 
 

 

DIAL: Distributed Interactive Analysis of Large Datasets 
D. L. Adams 
Brookhaven National Laboratory, Upton NY 11973, USA 

DIAL will enable users to analyze very large, event-based datasets using an application that is natural to the data format. Both 
the dataset and the processing may be distributed over a farm, a site (collection of farms) or a grid (collection of sites). Here we 
describe the goals of the project, the current design and implementation, and plans for future development. DIAL is being 
developed within PPDG to understand the requirements that interactive analysis places on the grid and within ATLAS to 
enable distributed interactive analysis of event data. 

 

1. INTRODUCTION 

Modern HEP (high energy physics) experiments collect, 
generate and reconstruct tremendous amounts of data. 
LHC [1] experiments are expected to produce 1-10 pB 
each year for tens of years. In principle, the data for each 
experiment is available to all scientific members of the 
collaboration which builds and operates the detector. In 
practice, it is a challenge to provide data access to the 
more than 2000 globally-distributed physicists that 
collaborate on each of the largest experiments. 

Few, if any, scientists or institutions can afford to store 
or process all the data for one of these experiments. 
Instead, the storage and processing are distributed 
throughout the collaboration. The initial processing, called 
production, is done in a well-regulated manner and the 
results are shared by all. Final physics measurements and 
direct searches for new physics are done by individuals or 
small groups of physicists in a more chaotic process 
known as analysis. 

A typical analysis uses a small fraction of the production 
results as input and them performs selections and other 
data manipulations to arrive at a conclusion about the 
existence or properties of a physical process.  Much of the 
analysis is done interactively, i.e. the scientist submits a 
request to process a dataset, receives a response in seconds 
or minutes, and then submits another request. The size of 
the input dataset is often limited by the requirement of 
interactive response. 

For large datasets, the response time can be improved by 
distributing the processing. This helps in two ways. First, 
it enables multiple processors to work on the problem at 
the same time. Second, because the data itself is 
distributed, there is  the possibility to send the process to 
the data rather than moving the data. Thus, distributed 
processing allows more physicist queries over larger 
datasets. This decreases the likelihood that features of the 
data will be overlooked and enhances the discovery 
potential of an experiment. 

1.1. Grid computing 

The emerging computing grid [2] infrastructure 
promises to standardize the worldwide distribution of both 
data and processing. This standardization will make  it 
easier for diverse users to contribute to and make use of a 
common pool of storage and processing resources. 

Experiments adopting the grid model can consequently 
expect more resources to be available to their 
collaborations. They can also expect a fairer allocation of 
the use of these resources. Both the experiment as a whole 
and the individual contributors will have a voice in this 
allocation. It will also be easier to share resources with 
other HEP experiments and with non-HEP activities. 

Although most of the work so far done on computing 
grids assumes a batch-oriented mode of operation, the 
extension to interactive use is very attractive. An 
interactive user typically makes a request and then pauses 
to study this result before generating the next request. This 
leads to low average resource usage but high peak demand 
while the user waits for a response. The large resource 
pool available on a grid is a natural match. The compute 
cycles between requests can be consumed by other 
interactive or batch users. 

2. GOALS 

DIAL (Distributed Interactive Analysis of Large 
datasets) [3] is a project to investigate HEP distributed 
interactive analysis. It has three primary goals: 

1. Demonstrate the feasibility of distributed analysis 
of large datasets  

2. Set corresponding requirements for grid 
components and services  

3. Provide the ATLAS [4] experiment with a useful 
distributed analysis environment 

The first goal can be restated as evaluating how large a 
dataset can be analyzed interactively. This  includes limits 
imposed both by the available resources and by the 
scalability of the distributed computing model. 

The second reveals our expectation that the data and 
processing will be distributed over a computing grid and 
that scaling to the largest datasets will take advantage of 
this. This work is done in as part of the interactive analysis 
group (CS-11) of the PPDG (Particle Physics Data Grid) 
collaboration [5]. 

The third goal is intended to keep us in the real world. 
ATLAS is one of the large LHC experiments and if the 
model we develop is not applicable there, then it is likely 
not of much value. It would be useful to add another 
experiment to demonstrate that the model is generic (see 
the following). 

The first and last goals imply that we will deliver a 
concrete environment for distributed analysis; not just a 
proposal or design. This environment will be generic and it 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1TULT005 ePrint hep-ph/0305093



 
 

 
 

will, to the greatest extent possible, be layered on top of 
existing or expected components and services. 

By generic, we mean that the bulk of what we develop 
or identify can be used by different experiments with 
minimal constraints imposed on the format in which the 
data is stored. We will not develop the front-end analysis 
environment but will provide a system that is easily 
integrated into and accessed from existing and future 
environments. Ideally, the model will not be restricted to 
HEP. 

DIAL is  identifying the components and services 
required for distributed processing, especially those 
relevant to the grid. It makes use of existing components 
where they exist and expresses requirements where they 
do not. In the latter case we will look to other projects to 
deliver the required functionality although we may deliver 
simple prototypes to cover the period before these 
components appear. 

3. EVENT PARALLELISM 

One important assumption is made about the data. It is 
assumed to be organized into events that are processed 
independently. When a dataset is processed, each event in 
the dataset is processed in the same way and the results 
generated by the processing of each event are concatenated 
to produce the overall result. The value of the latter does 
not depend significantly on the ordering of the processing. 

This structure of the data allows for event parallelism 
where different events are processed in different jobs 
which may be run on different compute nodes, different 
types of nodes, and even at different sites. 

3.1. Outside HEP 

Realms outside of HEP may not use the word event but 
often have an equivalent record which forms an analogous 
processing unit. Even within HEP, one may wish to 
choose a different processing unit such as tracks, jets or 
calibration or alignment measurements. Our primary 
interest is HEP event data but the DIAL model applies 
equally well to these other realms with the word event 
interpreted accordingly. 

This generalization is important to keep in mind 
especially in our grid discussion because we would like to 
identify components and services with a wide range of 
applicability. 

4. DESIGN 

DIAL uses event parallelism to distribute the processing 
of a dataset over multiple jobs. A user working inside an 
interactive analysis environment gives DIAL a request to 
process a dataset in a given response time. DIAL then 
creates one or more processing jobs, concatenates their 
results and returns the overall result to the user. This 
structure is illustrated in figure 1. 

Interactive analysis
e.g. ROOT, JAS, ...

DIAL

Distributed (data-specific) processing

Dataset Scheduler AAAJob

 

Figure 1. DIAL (center) provides the connection between 
a user in a interactive analysis environment (top) and 
distributed processing (bottom). 

4.1. Front and back ends 

There are a number of interactive analysis environments 
that have been developed inside and outside the context of 
HEP. Examples within HEP include PAW [6], ROOT [7] 
and JAS [8]. These systems often define a native data 
format (such as the PAW ntuple or ROOT tree) and 
experiments wishing to use the environment traditionally 
store summary data in that format to provide easy access 
to the data from the analysis framework. 

However, the bulk of an experiment’s data is often in 
one or more other formats that are more natural to the 
applications used to simulate or reconstruct the data. The 
design of DIAL explicitly recognizes the existence of 
these different formats and allows the back-end 
application used to process the data to differ from the 
front-end analysis framework. Of course a user has the 
option of using the same application for both front and 
back ends. 

When the processing is distributed, it is the back-end 
application that is replicated in multiple jobs. The user 
interacts with a single instance of the front-end framework 
and the parallel nature of the back-end processing is 
hidden. 

4.2. Major components 

Figure 2 shows the interactions between the major 
components of DIAL. A user sitting inside an analysis 
framework identifies a scheduler that will be used to 
control the processing. The user then identifies the back-
end application, the processing task to be carried out on 
each event, and the dataset to which it is to be applied. The 
user submits the application, task and dataset to the 
scheduler which splits the dataset along event boundaries 
and creates and runs a job for each sub-dataset. Each job 
produces a result and the scheduler concatenates these 
results and returns the overall result to the user.  

 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2TULT005 ePrint hep-ph/0305093



 
 

 
 

 

Dataset 1 Dataset 2

Dataset

User
Analysis

Application Task

Result Code

7. create

4. select

2. select 3. create or select

Scheduler

1. create or locate
5. submit(app,tsk,ds)

Result 1

Result 2

Job 1

Job 2

8. run(app,tsk,ds1)

8. run(app,tsk,ds2)

9. fill

9. fill

10. gather
6. split

 
 
Figure 2. DIAL components and their interactions. 

 
More detail on each of the components is provided in 

the following sections. 

4.3. Application 

The application specifies the back-end executable used 
to process the data. This  specification includes the name, 
version and possibly a list of shared libraries. It is the 
responsibility of the scheduler to locate the appropriate 
executable and libraries on the machine(s) where the jobs 
are run. In the present implementation, ChildScheduler, 
the data required to make this mapping is found in files on 
the target node. The files are found in locations specified 
by a combination of environment variables and application 
name and version. 

The application executable provides a loop over events 
and applies a user-supplied task to each event. The user 
typically specifies this task as a snippet of programming 
code, for example in C++. The scheduler is responsible for 
compiling this code and linking it into the executable. In 
the same present implementation, the instructions for 
compiling and linking are again found on the target node 
indexed by application. The code and its library are also 
stored there with a similar indexing convention. 

4.4. Result 

The data produced during processing that is returned to 
the user is called the result. The user specification for a job 
includes an empty result which is a collection of named 
empty products. These products are analysis objects which 
are filled each time an event is processed. An event 
selection (list of selected events), a histogram and an 
ntuple are examples of products. 

Typically, each sub-job is started with an empty result 
which is filled when the job is run and the results from the 
sub-jobs are concatenated to create to overall result. This 
is done by independently concatenating each of the 
products in the result. It is conceivable that a sub-job to 
could be started with a result that has already been filled 
by one or more other sub-jobs or that a result that could be 
shared by more than one job. The management of jobs and 

results including concatenation to form the overall result is 
the responsibility of the scheduler. 

4.5. Task 

Before a job is submitted, the empty result and the code 
required to fill the result are bundled together to form a 
task. The code must be written in a language that is 
suitable for the back-end application. 

4.6. Dataset 

The dataset specifies the input data for processing, i.e. 
which events and which data for each event. This very 
important component is discussed in detail in a later 
section. 

4.7. Job 

A job is specified by a task, an application to run the 
task and an input dataset. A job has a status indicating 
whether and when it was started or stopped, how many 
events have been processed and its result. It may be 
possible to obtain a partial result while the job is being 
processed. 

A job is submitted to a scheduler and it is that scheduler 
that is queried to obtain the status of or result from a job. 

4.8. Scheduler 

The scheduler is the heart of DIAL. Users submit jobs to 
a scheduler which may run the job directly or pass the 
request on to another scheduler. The scheduler may divide 
the dataset into sub-datasets, create a new job for each of 
these and then run or submit each new job. The scheduler 
provides means to submit a job, kill a running job and 
query the status and result for a running or completed job. 

Although the user typically interacts with a single 
scheduler, we envision a hierarchy of schedulers 
corresponding to the hierarchy of computing resources 
over which the job may be distributed. One possible 
hierarchy is illustrated in figure 3 wh ich show a grid 
scheduler using site schedulers which use farm schedulers 
which use node schedulers. The latter have the 
responsibility of running the job with the application 
executable. A user can enter this hierarchy at any level: 
submitting a job to a single node, to the grid or to any level 
in between. 

This hierarchy of schedulers makes it possible to 
distribute jobs over compute nodes that may not be visible 
to the scheduler receiving the original submission. Client 
and server schedulers are envisioned to provide the means 
to pass requests over a network. 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3TULT005 ePrint hep-ph/0305093



 
 

 
 

Grid
Scheduler

Client
Scheduler

Site
Scheduler

Client
Scheduler

Server
Scheduler

Farm
Scheduler

Client
Scheduler

Server
Scheduler

Child
Scheduler

Server
Scheduler

Server
Scheduler

Grid portal Site gateway Farm gateway Farm node

User

Client
Scheduler User  chooses

any one of these

 

Figure 3. Scheduler hierarchy. 

4.9. Exchange format 

Schedulers communicate by exchanging DIAL objects 
including jobs, results, applications, and datasets. It is 
natural to introduce an exchange format to facilitate 
communication over a network or between different 
processes on a compute node. We have adopted XML for 
this purpose and the XML definitions for our components 
specify the data associated with each. This makes it 
possible for the analysis framework, each of the schedulers 
and the back-end application to be implemented in 
different programming languages. 

5. OTHER DESIGN CONSIDERATIONS 

There are a number of concepts that are missing from 
the above discussion and our current design and 
implementation. We list a few of these for completeness. 

5.1. Authentication and authorization 

Authentication and authorization must be taken into 
account especially where the processing is to be done at 
one or more remote sites. Certificates likely are the way to 
handle this on the grid. 

5.2. Resource allocation 

Schedulers need policy and enforcement for allocating 
the resources to which they have access. This includes 
balancing multiple requests from multiple users and 
negotiating with other systems (e.g. batch queues ). 

5.3. Resource estimation 

Allocation requires an estimate of the required resources 
including CPU cycles, disk space and network bandwidth. 
These estimates might be constructed by comparing 
information provided by the application and task with the 
capabilities of the sites, farms or nodes under 
consideration. 

The information can be obtained or at least refined by 
processing a subset of the requested events . The 
requirement of interactive response will probably preclude 

doing this for every job and appropriate predictive data 
should be stored and associated with the task and 
application. 

5.4. Response time 

Interactive will have different meanings for different 
users and so a mechanism should be provided to enable 
users to specify the desired response time. This might be a 
characteristic of the scheduler or, more likely, part of the 
job submission. 

5.5. Matchmaking 

Implied by all the above is a means to do matchmaking, 
i.e. decide on the appropriate division of the input dataset 
and then assign the corresponding sub-jobs to other 
schedulers or real processes. 

5.6. Adaptive scheduling 

A strategy of simply distributing a dataset over multiple 
jobs and then waiting for all to complete has the serious 
drawback that the completion time can be no shorter than 
the time required to process the slowest job. It must be 
possible to identify stopped or slow jobs and resubmit 
them or create an equivalent collection of jobs with 
different granularity. 

At some levels it may be appropriate to start processing 
with a fraction of the data and then submit new jobs where 
the old jobs complete. This allows an automatic balancing 
of resources. The ROOT parallelism system PROOF takes 
this approach. 

In some circumstances, it might be appropriate to use 
aggressive scheduling where the same data is processed on 
multiple nodes and results from the slower system are 
discarded. 

6. DATASETS 

The success of an interactive analysis system depends 
critically on the organization of the input data. It is often 
the case that the response time is determined more by the 
time required to access the data rather than the processing 
time. In this case, performance can be enhanced by only 
accessing the data of interest and bringing the application 
to the data rather than moving the data. In a distributed 
processing system, this implies that the data itself is 
distributed. 

In the following paragraphs, we identify some of the 
features required of datasets  used as the input for a 
distributed interactive analysis system like DIAL. Many of 
the comments are relevant to other types of analysis and to 
batch-oriented production and selection. 

6.1. Events 

In order to use event parallelism, the dataset must be 
organized into events  or their equivalent. Each event 
should have a unique identifier (unique at least within the 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4TULT005 ePrint hep-ph/0305093



 
 

 
 

 

context of the dataset) so that the processing can be 
tracked. Events that have been processed or selected can 
be specified by a list or range of event identifiers. There 
must means to obtain the list of identifiers for the events in 
a dataset. 

6.2. Content 

An event in a dataset is characterized by its content, i.e. 
the kind of data that the event holds. In the HEP world, 
examples include raw data, jets, tracks, electrons, etc. It is 
often useful to specify the content by more that just type: 
an event may hold electromagnetic and hadronic jets or a 
collection of jets with cone size 0.5 and another with the 
value 0.7. 

It is sensible to require that a dataset be consistent, that 
is that each of its events has the same content. In this case 
we can speak of the content of the datas et. It may be 
desirable to relax consistency slightly and allow some 
content to be missing from some of the events. 

Specification of content is important because we should 
ensure that a dataset has the required content before 
processing. Also if we recognize that a dataset has content 
that is not needed, we may be able to speed processing by 
not replicating that part of the data, not moving it across 
wide-area or local networks, or not reading it into 
memory. 

6.3. Data object location 

The preceding sections suggest that a dataset is a 
collection of events each holding a collection data objects 
indexed by content. Although this  is a sensible logical 
view, it should not be taken too literally. The natural 
means to access the data depends on the format in which 
the data is stored and is not part of the dataset 
specification. What is required is that there are means to 
locate the data associated with any included event and 
content. In particular, it should be possible to efficiently 
iterate over all the events in the dataset. 

6.4. Files 

For simplicity and because of its relevance to grid 
processing, we assume the data associated with a dataset 
resides in a unique collection of files. These may be 
logical files, i.e. identifiers that can be used with a replica 
catalog to locate one or more physical instantiations of 
each file. Each of these files holds some of the data for 
dataset and all of the files are required to access all the 
data in the dataset. The uniqueness of this file collection 
may be lost if object replication is allowed. This is 
discussed later. 

Figure 4 shows an example of a dataset and its mapping 
to files. Events  are along the horizontal axis and content 
along the vertical. 

 

Raw

Clusters

Tracks

Jets

Electrons

AOD

C
on

te
nt

Event File Data object  

Figure 4. Dataset with mapping to files. 

6.5. Content selection 

We may perform content selection on a dataset, i.e. 
choose a subset of the content and ask for only the data 
associated with the restricted content. Clearly the resulting 
collection of data is also a dataset and the set of files 
associated with the new dataset is a subset of those 
associated with the original. 

Figure 5 shows the effect of one content selection on the 
dataset in figure 4. The selected data objects and files are 
highlighted. 

 

Raw

Clusters

Tracks

Jets

Electrons

AOD

C
on

te
nt

Event File Data objectSelected file  
Figure 5. Dataset with content selection. 
 

This example illustrates that content selection can 
reduce the number of files. It also shows that the extent to 
which unwanted data is filtered out depends on the 
original placement of the data. Distributing content over 
many files can enhance the fraction of data that is useful at 
the price of increasing the complexity of locating and 
delivering data when more content is required. It also 
increases the number of files required to view all the data 
for a single event. 

6.6. Event selection 

Distributed analysis requires means to divide a dataset 
along event boundaries, i.e. to do event selection. It is 
clear again that the data obtained by selecting a subset of 
the events from dataset is another dataset. Again the files 
in the new dataset are a subset of those in the original. 

Figure 6 shows the effect of an event selection on the 
content-selected dataset in figure 5. The selected sub-
dataset holds two files and only the data of interest. 

 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5TULT005 ePrint hep-ph/0305093



 
 

 
 

Raw

Clusters

Tracks

Jets

Electrons

AOD
C

on
te

nt

Event File Data object

Selected file

Selected events

 
Figure 6. Dataset with content and event selections. 
 

Note that the dataset in this example is split along file 
boundaries. Clearly this is a desirable feature especially at 
higher scheduler levels where effort is likely to be 
expended to move files or locate sites, farms or nodes with 
the files of interest. At low levels, it may be advantageous 
to further divide the dataset if file replicas are easily 
accessed from more than one CPU. 

6.7. Completeness 

It is often the case that the some of the data objects for 
an event are derived from others in the same event. E.g. 
tracks are constructed from clusters which are constructed 
from raw data. We say that a dataset is complete if it 
includes all the data from which any data object in the 
event is derived. In our example the content selections 
raw, raw+cluster and raw+cluster+tracks all correspond to 
complete datasets. Datasets with content tracks alone, 
clusters alone or cluster+track are all incomplete. 

Typically a user doing analysis is thinking in terms of a 
complete dataset (the data of interest and the data from 
which it is derived) but the analysis program only needs 
access to selected content which is expressed as an 
incomplete dataset. Results generated by the analysis on 
the incomplete dataset apply equally well to the complete 
version. For example, a user might use an incomplete 
dataset (tracks alone) to select events with one or more 
tracks meeting some kinematic criteria and then apply this 
event selection to the corresponding complete dataset 
(raw+cluster+tracks) to define the input for refitting these 
tracks. 

7. DATA PLACEMENT 

The dataset view described in the preceding section 
enables the DIAL scheduler (or the analogous component 
in any distributed analysis system) to take advantage of the 
placement of the data. In this section we describe a few 
data placement strategies that can be employed to improve 
access time and thus improve interactive response. 

7.1. Content distribution 

Almost any analysis task will only make use of a small 
fraction of the content in each event. If the content of 
interest is contained in files distinct from those containing 
the remainder, then access time (and thus analysis 
response) time may be greatly improved by ignoring the 
files with unwanted data. 

In its simplest incarnation, this is a standard feature of 
existing HEP experiments. Data read from the detector 
(raw data) is processed to create reconstructed data and 
then summary data is  extracted from that. The raw, 
reconstructed and summary data are stored in different 
collections of files and often in different formats. The 
summary data is often in a format natural to the anticipated 
analysis framework, e.g. PAW or ROOT ntuples. The 
computing models for the LHC experiments are similar 
with AOD (Analysis Oriented Data) playing the role of the 
summary data. 

The early plans for most experiments  call for keeping a 
very small amount of summary data for each event so that 
it can be processed quickly. However there are inevitably 
users who find the data they need is missing and there is 
pressure to include more and more information because 
the complete reconstructed data is  difficult to access.  

Subdividing the content of both reconstructed and 
summary data can allow users to more precisely specify 
the content required for a particular analysis. Distributing 
the placement of this content over dis tinct file sets can 
then allow fast access for users requiring minimal content 
while still providing easy (but slower) access to users 
requiring more content. 

7.2. Exclusive event streaming 

Analysis users are only interested in data for a small 
fraction of the events in the data store. Typically the data 
of interest are chosen by apply a series of event selection 
algorithms on a global dataset to obtain increasingly 
smaller datasets. The selection criteria depend on the 
physics channel of interest. If the final dataset is small, 
then the data can be replicated. However, there may be 
many large datasets for which this is not feasible. 

It is desirable to place the data so one can access the 
data for these large datasets without accessing all the files 
in the global dataset. This can be accomplished without 
replication by exclusive event streaming, i.e. identifying 
selection criteria, assigning exclusive bins in these criteria 
and then assigning a stream for each bin. Each stream 
corresponds to a dataset with a distinct set of files. All 
events meeting the bin criteria are stored in the 
corresponding dataset. 

If the bin criteria are chosen appropriately, then typical 
analysis datasets can be constructed by merging a small 
subset of these streams. Larger datasets require more 
streams. 

HEP selection criteria include the acquisition trigger 
type and reconstructed features such as the missing 
energy, number of jets and number of leptons. Because of 
the large number of dimensions, one must be judicious in 
defining the bins and there may be a “none of the above” 
category for leftover events. 

7.3. Object replication 

With or without with event streaming, after a few 
selections, datasets often become sparse, i.e. only a small 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6TULT005 ePrint hep-ph/0305093



 
 

 
 

 

fraction of the data in the dataset files is included in the 
dataset. If the dataset is not too large, then it becomes 
affordable to replicate the included data objects, i.e. copy 
them to a new set of files. 

The new dataset is equivalent to the original in that it 
has the same events, the same content and the same data 
for each event and content. It points to a different 
collection of (logical) files but any analysis performed on 
the new dataset is expected to give the same result as one 
carried out on the original. 

Note that object replication is distinct from file 
replication where an entire physical file is replicated but 
retains its original logical identity. File replication has 
already been described by introducing logical files and 
their replica catalog. 

One important consideration for object replication is the 
management of references to data objects. If the reference 
is expressed as a logical file plus a position in that file, can 
the replicated object be recognized as satisfying this 
reference? This can be handled with a global object table 
but there are serious scaling problems with large numbers 
of objects as in the LHC event stores. 

A more scalable solution is to include a mapping in each 
file holding replicated objects and consolidate this 
information in each of the datasets which include this file. 

7.4. Placement within a file 

In addition to limiting the number of files and their 
sparseness, it is also important that the data within a file be 
organized in a manner that allows rapid access. Data that 
are likely to be used together or in succession should be 
grouped together. Whether to group first by content and 
then by event or vice versa depends on expected usage 
patterns. Similarly event iteration should be in a natural 
access order, e.g. the order in which the events were 
written, rather than ordered by event identifier. 

It is for all these reasons that the dataset does not specify 
how to access its data, only that there are means to gain 
access. 

8. DIAL STATUS 

DIAL makes use of another system simply known as 
dataset [9]. Both have been developed at BNL 
(Brookhaven National Laboratory). Here we give a brief 
report on their status. 

8.1. Existing code 

The most recent releases of both DIAL and dataset are 
numbered 0.20. All the components of DIAL have been 
implemented but the only scheduler is a simple node 
scheduler called ChildScheduler that carries out processing 
as a single job. 

The dataset components are also in place but the only 
concrete implementation of a dataset is the ATLAS 
AthenaRoot file. These files hold Monte Carlo generator 
information. Most of ATLAS simulated and reconstructed 

data can only be stored in zebra files and ATLAS will 
soon abandon this format. 

Both DIAL and dataset are implemented in C++ with 
methods to read and write XML descriptions of all classes 
describing object that can be exchanged between DIAL 
schedulers. 

8.2. Front end 

ROOT may be used as the front-end analysis framework 
for DIAL. All DIAL and dataset classes have been 
imported into ROOT using the ROOT ACLiC facility. 
This means that all DIAL and dataset classes and functions 
can be accessed from the ROOT command prompt. A 
script in the package dial_root can be used to fill the 
ROOT dictionary and load the DIAL and dataset libraries. 
Only preliminary testing has been done. 

In order for ROOT histograms to be used as DIAL 
analysis objects (i.e. to be included as products in results), 
it is necessary to add the corresponding DIAL adapters. 
This has not been done yet but would require only a small 
amount of effort. 

8.3. Back end 

The only back-end application that has been integrated 
into DIAL is the test program dialproc which is included 
as a part of the DIAL release. This is the major missing 
piece that must be provided to make DIAL a useful tool 
for local processing. ATLAS candidates for back-end 
applications are PAW and ROOT to view summary data 
and athena [10] for reconstructed data. 

9. DEVELOPMENT PLANS 

Here we list some future activities that will enable DIAL 
to become a useful tool both for studying distributed 
analysis and for distributed analysis  of ATLAS data. 

9.1. Client-server schedulers 

The present expectation in DIAL is that schedulers will 
carry out most of the network using a client-server 
mechanism. A server scheduler manages and provides 
access to one or more destination schedulers on its 
compute node. This server might run as a daemon or web 
service. A client scheduler embedded in a source 
application (analysis framework or scheduler) on another 
machine would provide the means to communicate with 
the server over the network. This is illustrated in figure 3. 

Implementing this functionality will enable network 
communication and thus be an important step in building a 
distributed system. 

9.2. Farm scheduler 

The farm scheduler will make use of the client-server 
mechanism to communicate with node schedulers on a 
collection of farm nodes. It will split an input dataset and 
distribute processing over multiple nodes. 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7TULT005 ePrint hep-ph/0305093



 
 

 
 

9.3. Site and grid schedulers 

Further in the future is the development of site and grid 
schedulers to complete the hierarchy shown in figure 3. 
These will bring up many new issues including 
authentication, authorization, dataset and file catalogs, and 
other grid integration issues. 

9.4. Concrete datasets 

Useful analysis will require that DIAL be able to access 
interesting data. Starting this summer, ATLAS event data 
will be stored in LCG POOL [11] event collections. 
Expressing these collections in terms of datasets will both 
provide access to ATLAS data and provide important 
feedback about the evolving POOL collection model. 

ATLAS summary data is presently stored in PAW 
ntuples. We may use these to construct datasets or convert 
them to ROOT ntuples and then provide a dataset interface 
for the latter. 

9.5. Back-end 

The natural way to access ATLAS reconstructed data is 
with athena, the event-loop framework used to create the 
data. Athena will be made available as a back-end 
application for DIAL with a special algorithm to call the 
DIAL code used to fill an analysis result. Event data in 
athena is normally found in a transient data store called 
StoreGate. Summary data might be accessed by finding a 
mechanism to put it in StoreGate or by reading it directly 
from the PAW or ROOT ntuples. 

Either PAW or ROOT may also be implemented as a 
back-end application for summary data. This would 
require embedding an event loop in the application. 

9.6. Front end 

As indicated earlier, ROOT has already been included as 
a front-end analysis framework for DIAL. The LCG SEAL 
project [12] is developing a Python-based interactive 
framework that might eventually include analysis tools 
and thus be a sensible candidate for use with DIAL. We 
will wait and see how this project evolves. 

JAS is a java-based analysis framework that is another 
possible candidate. Extra effort would be required to 
provide a java implementation or binding to the existing 
DIAL code written in C++. 

9.7. ATLAS 

The above plans cover different realms and time scales. 
The items required to deliver a useful tool for ATLAS are 
the client-server schedulers, the farm scheduler, a dataset 
interface to ATLAS POOL collections and integration of 
an athena back end. 

10. GRID COMPONENTS AND SERVICES 

One of the important goals of DIAL is to provide a tool 
that can be used to evaluate the requirements that 

interactive analysis places on grid computing. This 
includes identification of components and services that can 
be shared with other distributed analysis systems (such as 
PROOF and JAS), the distributed batch systems being 
developed by HEP experiments (such as ATLAS) and 
non-HEP event-oriented processing systems . 

Some possible candidates for shared components and 
services follow. DIAL is developing the minimum needed 
to deliver an end-to-end system but would prefer to 
incorporate shared solutions where available. 

10.1. Dataset 

The desires to use event parallelism and optimize data 
access lead to the dataset model described earlier. The 
essential features include organization into event and 
content with a mapping to logical files. Means are 
provided to select both content and events. 

10.2. Job 

An analysis user expresses a query or request for data in 
the form of a job. Parallelis m is obtained by splitting the 
job along event boundaries into sub-jobs until the desired 
response time can be obtained. The specification of the job 
includes the input dataset, the application, and the task to 
run with the application. 

10.3. Application 

An application specifies the executable used to process a 
job and the required runtime environment including shared 
libraries. There must be a means to locate the executable 
and libraries on whatever target node is selected to process 
the job. If the executable and environment are not 
available, there might be an automatic system to install 
them. 

10.4. Result 

The output of a job is a result, i.e. the result carries the 
response to the user query. It must be possible to merge 
the results from sub-jobs to obtain the overall result. The 
result is a collection of analysis data objects. The AIDA 
(Abstract Interfaces for Data Analysis) [13] project has 
proposed a standard interface for analysis classes. These 
might be relevant. 

10.5. Scheduler 

A scheduler is a service that accepts a job submission 
and makes use of other services to locate computing 
resources and input data and then do matchmaking 
between these. It divides the job into sub-jobs and then 
runs these jobs or submits them to another scheduler. It 
gathers and concatenates results when these jobs complete. 

The scheduler must also monitor the progress of jobs 
and take corrective action if jobs fail or progress slowly. 
And it provides means for users to query the status of 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8TULT005 ePrint hep-ph/0305093



 
 

 
 

 

existing jobs including concatenating and returning partial 
results. 

10.6. Authentication and authorization 

There must be means for users to identify themselves so 
that their requests can be authorized. This authentication 
must be distributed along with the job processing so that 
authorization and allocation can be performed at each 
level. 

10.7. Resource location and allocation 

The scheduler will make use resource location services 
to find computing resources and then negotiate with 
allocation services to gain access to the required compute 
resources. This will be done in competition with other 
DIAL schedulers and with schedulers or their equivalent 
for other systems , both interactive and batch. 

11. INTERACTIVE GRID 

The above components and services are not unique to 
interactive analysis but are also needed for data production 
and batch-oriented analysis. Here we discuss some 
requirements that are most relevantt to an interactive 
system. 

11.1. Latency 

The fundamental difference between batch and 
interactive systems is the low latency required by the 
latter. An interactive system should provide the user with a 
means to specify the maximum acceptable response time 
and then distribute the job in a manner that satisfies this 
constraint. This time includes the time to locate data and 
resources, do matchmaking, split datasets and jobs, submit 
jobs, execute these jobs, and gather and concatenate 
results. 

11.2. Job caching 

An analysis user often processes the same dataset many 
times in succession. A user may be willing to tolerate a 
slow response to the first request to process a dataset 
because of the time required to locate data and resources, 
determine how to distribute the request, and move data 
that is not already in place. In subsequent passes over the 
same dataset, the user reasonably expects the scheduler to 
remember and make use of the configuration from earlier 
passes. 

11.3. Dynamic job scheduling 

An interactive scheduler must closely monitor the 
progress of its jobs. Like a batch system, it must recognize 
and resubmit when a job fails or hangs. An interactive 
scheduler should closely track the progress of its jobs and 
verify that they will complete within the specified 
response time. If not, the scheduler might request more 

resources for those jobs, move them to different location, 
or subdivide and resubmit. 

11.4. Resource allocation 

Interactive response imposes requirements on resource 
allocation. In addition to requesting a number of CPU 
cycles, one needs to request that these be delivered in a 
specified clock time. This may require restricting the 
search to fast processors or those that are lightly loaded. It 
may require guaranteeing that additional loads are not 
imposed on the processor while the interactive request is 
active. The interactive job may have to be pushed to the 
front of a queue ore even preempt running jobs. A 
reservation system might be imposed to guarantee the 
desired response. 

11.5. Progress and partial results 

Inevitably the analysis user will make requests which 
cannot be fully processed in a time deemed to be 
interactive. In this case the user will want to monitor the 
progress of the job and know the fraction of events 
processed, the estimated time to complete and to obtain a 
partial result, i.e. some or all of the result for those events 
that have been processed thus far. 

12. SHARING RESOURCES 

Of course many of the requirements imposed by an 
interactive system could be met by providing interactive 
users (or, even better, each interactive user) with dedicated 
resources. However there is considerable fluctuation in the 
demand for interactive analysis depending on the time of 
day, time to the next conference and the discovery of an 
interesting data feature. Thus, at least for analysis of large 
datasets, it is likely desirable to share resources with 
activities such as data reconstruction and Monte Carlo 
production that require many CPU cycles but do not 
impose strict constraints on latency. 

13. CONCLUSIONS 

The DIAL project has been established to demonstrate 
the feasibility of interactively analyzing large datasets, to 
set requirements for grid components and services, and to 
provide ATLAS with a useful distributed analysis system. 

The design allows a user to independently select an 
analysis framework and a data-processing application and 
then carry out interactive analysis  by submitting a series of 
jobs to a DIAL scheduler. Each job produces a result 
which is a collection of analysis objects that can be 
manipulated (displayed, fitted, etc.) in the analysis 
framework. DIAL will provide a hierarchy of schedulers 
to distribute the processing in a transparent manner. An 
important component of this design is the data view 
provided by datasets. 

We expect the grid to deliver the compute resources 
required to access and process very large datasets. Some of 
the relevant grid components and services have been 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

9TULT005 ePrint hep-ph/0305093



 
 

 
 

described with emphasis on the requirements imposed by 
an interactive analysis system. DIAL will continue to 
identify these components and services and will provide 
schedulers for farm, site and grid operation. 

Acknowledgments 

The author wishes to thank members of the ATLAS 
database group, the PPDG interactive analysis group, the 
LGG POOL group and the PAS (Physics Application 
Software) group at BNL for many useful discussions that 
have led to the formulation of the design described here. 

This research is supported by the LDRD (Laboratory 
Directed Research and Development) program at BNL and 
by the ATLAS and PPDG projects at BNL through the 
Division of High Energy Physics under DOE Contract No. 
DE-AC02-98CH10886. 

References 

[1] The LHC (Large Hadron Collider) is described at 
http://public.web.cern.ch/public/about/future/whatis
LHC/whatisLHC.html. 

[2] The grid is described in “The GRID Blueprint for a 
New Computing Infrastructure,” ed. I. Foster and C. 
Kesselman, Morgan Kauffman Publishers (1999). 

[3]  The DIAL home page is 
http://www.usatlas.bnl.gov/~dladams/dial. 

[4] ATLAS (A Toroidal LHC ApparatuS) is described 
at http://atlas.web.cern.ch/Atlas. 

[5] The PPDG (Particle Physics Data Grid) home page 
is at http://www.ppdg.net. 

[6] PAW (Physics Analysis Workstation) is described 
at http://wwwinfo.cern.ch/asd/paw. 

[7] ROOT is described at http://root.cern.ch. 
[8] JAS is described at http://jas.freehep.org 
[9] The datasets used in DIAL are described at 

http://www.usatlas.bnl.gov/~dladams/dataset. 
[10] The ATLAS reconstruction framework athena is 

described at 
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWA
RE/OO/architecture/General/index.html . 

[11] The LCG (LHC Computing Grid) POOL (POOL Of 
persistent Objects for LHC) project is described at 
http://lcgapp.cern.ch/project/persist. 

[12] The LCG SEAL project is described at 
http://seal.web.cern.ch/seal 

[13] AIDA is described at http://aida.freehep.org. 

 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

10TULT005 ePrint hep-ph/0305093


