
BOA: Framework for Automated Builds
N. Ratnikova
FNAL, Batavia, IL 60510, USA

Managing large-scale software products is a complex software engineering task. The automation of the software
development, release and distribution process is most beneficial in the large collaborations, where the big number
of developers, multiple platforms and distributed environment are typical factors.
This paper describes Build and Output Analyzer framework and its components that have been developed in
CMS to facilitate software maintenance and improve software quality.
The system allows to generate, control and analyze various types of automated software builds and tests, such
as regular rebuilds of the development code, software integration for releases and installation of the existing
versions.

1. Introduction

The Compact Muon Solenoid, CMS, detector on the
Large Hadron Collider, LHC, is one of the largest in-
ternational scientific collaborations. It unites almost
2 thousand scientists and engineers from 159 insti-
tutes in 36 countries of Europe, Asia, the Americas
and Australasia.

CMS has a massive software development going on.
Over 300 public software releases were produced dur-
ing last 15 months [2]. This is a result of work of many
developers world-wide. CMS has a well-developed
software infrastructure based on the Software Con-
figuration, Release and Management tool SCRAM [1],
which has being adopted by the LHC Computing Grid
project LCG at CERN at the end of last year.

CMS SCRAM-managed Object Oriented projects
currently include CMSToolBox, COBRA, FAMOS,
Geometry, IGUANA, ORCA, and OSCAR. Projects
release schedules and frequencies are flexible. Ev-
ery project establishes release procedures, that are
most convenient for the developers. Due to cross-
dependencies between projects and a big number of
required external products and tools, considerable ef-
forts are consumed to provide the consistency of the
configuration requirements. The resulting system has
a big number of configuration parameters, which may
differ from site to site. Maintenance and support of
the CMS software installations and domain specific
configuration information becomes more and more
challenging task.

Goal of this project is to facilitate the software
maintenance and help to improve software quality in
the areas of software development, release manage-
ment, software distribution and installation processes
with the aids of automated builds.

The proposed Build and Output Analyzer frame-
work BOA is intended to systematize available tools
and components of the existing CMS software infras-
tructure and make them all to work together in a
highly automated fashion.

2. Case Study

CMS applies ongoing efforts in developing and cus-
tomizing available automated tools and infrastructure
for the software management.

Whereas manual operations are still inevitable,
most of repeatedly performed actions could be auto-
mated. Software build procedures are substantially
automated with the aids of SCRAM native build sys-
tem. A centralized system of CVS repositories pro-
vides source code versions management and distribu-
tion. Software release events are automatically moni-
tored by the ProjectWatch [2] system. WarningFilter
[3] tool allows to process software builds output and
to publish statistics on the Web. Finally, software val-
idation tool Oval [4] has been developed for the detec-
tion of unexpected changes in the software behavior
and control over its physics performances.

Cross dependencies between projects are handled
through the SCRAM configuration mechanisms. Each
project has a list of required tools, the number varying
from a few to several dozens of tools. Tool configura-
tion files are stored in a common repository. CMS con-
figuration releases provide consistent sets of tool ver-
sions for integration of the dependent projects. CMS
software is supported for multiple computing plat-
forms, including a range of versions of the operating
system, and alternative compilers. Platform specific
parameters contribute to overall configuration picture.

Participating Regional Centers often do not have
all required external products and versions available.
Users or local librarians need to install and maintain
a big number of supporting software packages and
tools along with the proper CMS software projects.
At the same time they have to comply with the lo-
cal administrative policies. Our experience shows,
that site-specific configuration management involves
most tedious, and error-prone manual operations.
The software infrastructure and requirements are con-
stantly evolving. The CMS baseline configuration tool
SCRAM currently undergoes active development in
order to provide improvements and extensions for the
growing users base.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.SE/0306080TUJT005



Figure 1: BOA framework architecture corresponds to the Basic Expert System Architecture.

Note, that complex project dependencies, a big
number of configurable parameters and frequent
changes are intrinsic characteristics of the software
process in any large HEP collaboration.

3. BOA Solutions

The solutions discussed in this paper are mainly fo-
cused on the automation of the management of the
CMS software domain configuration and workflow.
This includes distribution and installation of the ex-
ternal products and tools, configuration and build of
the CMS software projects, analysis and validation
tests of the build results.

BOA model is based on the invariants, common to
any complex software system. It uses the concepts
of DOMAIN, PLATFORM, PROJECT, VERSION,
INSTALLATION, and a range of related ACTIONS.

This top-to-bottom approach allows to abstract the
system structure from its functionality, and the func-
tionality of the system from the particular implemen-
tation.

BOA framework accumulates and systematizes the
knowledge base for various operations, required for
the software installation, successful software builds,
and tests. In particular, the system keeps track of
the current Domain configuration and the status of
all builds. It provides standard interfaces to the un-
derlying components and tools. In addition it allows
to reuse common utilities, and the information avail-
able in the Domain.

4. Architecture and Components

BOA design exploits the Object Oriented approach,
main conceptual components being presented by fol-
lowing classes:

• DOMAIN is on the top of BOA structure. It
contains site dependent information and keeps a
list of software Projects and Platforms. Domain
takes care of installation and availability of the
required tools, such as SCRAM, Pacman[5].

• PROJECT carries information about a particu-
lar software product. BOA currently supports
two types of projects: “scramified” and “pac-
manized”. The former specifies SCRAM man-
aged projects installed via scram native boot-
strap mechanisms and then built from sources.
The latter specifies products distributed via
Pacman caches. Pacman provides a convenient
way for installation of the required external
tools. Project contains list of available versions,
and other project specific information, such as
CVS repository or Pacman cache.

• VERSION is responsible for the configuration
requirements and installation specific informa-
tion and algorithms. Versions keep track of the
current status of the installations.

Entire domain information is stored persistently in
the database. Framework can manipulate several do-
mains at the same time. It can also work with different
database instances.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.SE/0306080TUJT005



Figure 2: Versatile automated services and tools are already available in CMS.

5. Features and Implementation Status

One can work interactively in BOA environment,
or run a predefined scenario without manual inter-
vention.

For the execution part BOA provides the Session
class, which allows flexible control of the workflow.
This is different from the widely used approach of
generating scripts for the subsequent execution. The
instance of the Session class opens a new OS shell pro-
cess, where commands, defined in the framework, are
consecutively executed.

The output and exit status of the commands are
intercepted and can be analyzed. Depending on the
results, program can choose the next step and execute
it in the same environment. The requirement of un-
broken environment is essential for most of software
builds and test procedures, for instance the runtime
environment needs to be set prior the execution. Ses-
sion keeps log of all actions.

It is appropriate mention here, that the above ap-

proach is not applicable to the commands, that expect
direct user’s input. This special case should be han-
dled differently. In general tools used in autonomous
mode should be able to accept input as arguments.

BOA interface is written it Python, and it is con-
stantly evolving. Development includes a series of
functioning prototypes, providing desired features and
functionality bit by bit. Every micro-release passes
a test suite. Unit tests are provided as well. New
commands are documented through the built-in help
feature.
6. Conclusions

Described approach allows to address efficiently a
wide complex of tasks of the software librarian. At
the same time proposed system does not dictate any
specific implementation, and successfully adopts tools
chosen by the Collaboration.

BOA framework implementation offers a convenient
solution for individuals responsible for configuring,
upgrading, and supporting CMS software domain.

References

[1] http://cmsdoc.cern.ch/Releases/SCRAM/current/cgi/scrampage.cgi.
[2] http://computing.fnal.gov/cms/scram projects.
[3] http://cmsdoc.cern.ch/cms/Releases/ORCA/WarningFilter/doc/html/.
[4] http://polywww.in2p3.fr/cms/software/oval/.
[5] http://physics.bu.edu/ youssef/pacman/.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.SE/0306080TUJT005


