
Extending the code generation capabilities of the Together CASE tool to
support Data Definition Languages

M. Marino
LBNL, Berkeley, CA 94720, USA

Together is the recommended software development tool in the Atlas collaboration. The programmatic API, which provides the
capability to use and augment Together's internal functionality, is comprised of three major components - IDE, RWI and SCI.
IDE is a read-only interface used to generate custom outputs based on the information contained in a Together model. RWI
allows to both extract and write information to a Together model. SCI is the Source Code Interface, as the name implies it
allows to work at the level of the source code. Together is extended by writing modules (java classes) extensively making use
of the relevant API. We exploited Together extensibility to add support for the Atlas Dictionary Language. ADL is an
extended subset of OMG IDL. The implemented module (ADLModule) makes Together to support ADL keywords, enables
options and generate ADL object descriptions directly from UML Class diagrams. The module thoroughly accesses a Together
reverse engineered C++ project - and/or design only class diagrams - and it is general enough to allow for possibly additional
HEP-specific Together tool tailoring.

1. INTRODUCTION
The ATLAS (see atlas.web.cern.ch/Atlas) Dictionary

Language (ADL) [1] is a platform independent extended
proper subset of the Interface Definition Language (IDL
2.0) from Object Management Group (see
www.omg.org). ADL was developed as part of ATLAS
continuing efforts to enhance and customize its software
architecture and to provide support for object description
and integration in Athena [2], the ATLAS off-line
analysis framework.

The ADL description of data objects is used in the
context of a general Data Dictionary (DD) facility and
constitutes the input to compiler-based utilities (DD).

Figure 1: ADL description example

The utilities provided by the DD and based on ADL
description [3] of objects can be as diverse as possible:
data tools integration, semi-automatic persistency,
schema evolution, multi-language support, component
independence, stability and robustness, coding rules
enforcement, etc.

In the late phase of ADL development one of the
“would be nice if” envisaged evolution was the
integration of ADL with Together CASE tool. The
integration would have been an ideal solution to achieve
the semi-automatic description of Even Data Model
objects already developed and maintained within the
collaboration. What was initially just a pure speculation
became a reality after initial study of the open API of
Together.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1TUJP004 ePrint cs.SE/0303013

Figure 2: The ADL-Together integration

1.1. Together
Together [4] Control Center constitutes a complete

environment covering the various aspects of the software
development process: analysis, design, implementation
and deployment. Together encompasses UML modeling
with an integrated development environment (IDE)
achieving a full synchronization between design and
implementation. A characteristic of Together tool is its
integrated dual view of the model: object oriented
diagrams and the actual code constitute essentially a
view of the same modeled information. Changes in the
design can be reflected in the code nearly in a real time
basis. This synchronization also occurs in the code editor
so that changes in the implementation are automatically
reflected in the model diagrams.

Together supports a wide range of platforms:
Windows 95/98/NT/2000/XP, Sun Solaris, Linux, HP-
UX, and Compaq Tru 64. Borland Enterprise Studio for
Java supports Windows NT/2000/XP, Solaris, Linux,
and Mac OS X. Together comes pre-integrated with
common development tools for versioning, configuration
management, requirements management, as well as an
open API for integrating third party tools.

Together evaluation [5] took place within the Atlas
collaboration in 2000 and it is the recommended

lightweight CASE tool for development of C++ and Java
programs [6].

2. THE OPEN API AND MODULES

2.1. Together Extensibility
Together Control Center comes with an open API

composed of a three-tier interface that enables varying
degrees of access to the native infrastructure. The top tier
represents the highest degree of constraint and the lowest
tier the least degree of constraint. The interfaces are very
simply named:

• IDE
• Read-Write Interface (RWI)
• Source Code Interface (SCI

2.1.1. IDE
This is the API used to generate custom outputs based

on information contained in a Together model. It is a
read-only interface. IDE group provides the functionality
related to the model representation in Together
development environment and interaction with the user.

Each package composing the IDE group has a
description highlighting its areas of applicability

• com.togethersoft.openapi.ide package and its sub-
packages

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2TUJP004 ePrint cs.SE/0303013

2.1.2. RWI
This API enables to go deeper into the Together

architecture. One can both extract information from, and
write information to the model and - to some extent =
enhance Together capabilities.

RwiElement entities can represent more than
packages, classes and members. In a RWI model they
may represent different diagrams (class diagrams, use
case diagrams, sequence diagrams and others), links,
notes, use cases, actors, states, etc.

• com.togethersoft.openapi.rwi package and its sub-
packages

2.1.3.SCI
As the name implies the Source Code Interface takes

the developer down to the source code level. An SCI
model is a set of sources (for Java, class files are
allowed) organized into packages. The SCI packages
represent the Java packages (which can be stored even in
.zip or .jar files) or directories for other languages. SCI
model can contain parts written in different languages.

SCI allows to work with the source code almost
independently of the language being used. For example,
a SciClass object can represent a class in both Java and
C++.

• com.togethersoft.openapi.sci package and its sub-
packages

2.1.4.Modules
Together comes with several pre-existing modules to

extend its capability to integrate with other applications
and tools. Modules are sets of Java classes that
implement the IdeScript or the IdeStartup interface (or
both) from the Together API. The ADL module makes
use of the first two API groups.

3. THE ADL MODULE
This section will look at details of the ADL

Generation module with code snips. Code snips will
make explicit the exploitation of the open API and the
relative little effort to achieve the desired – although
visually complex – results.

The module development started with the InsertTags
sample module in the Together tutorial – that is called
plagiarism in literary circles, in the software industry it's
called reuse.

The sample module provides the skeleton to traverse a
Together model and add javadoc tags as it goes. It looks
at classes, interfaces, and their members.

The ADL module builds on this and while traversing
the Together project it extracts relevant information from
selected classes in order to generates the ADL
description file for each of them.
For this the module creates a new main Property
Inspector tab - simply labeled ADL - in the Together
GUI.

Figure 3: ADL tab in the Property Inspector

From the tab featured commands the user may select
options on the ADL properties for the classes in the
current diagram.

Selected options trigger the addition of relevant
javadocs to the class declaration reflecting the selections
made by the user on ADL properties.

The module operates into two phases: the first occurs
at Together startup to configure the enhanced Property
Inspector and read the configurations to properly run the
ADL module, the second to gather the context of the
opened Together project when the user selects classes in
the current diagram and operate on the ADL options at
class, method and attribute level as supported by the
module itself.

Figure 4: Select from classes in the model

3.1. Startup and Context Verification
There is not much in here apart instructing Together

on where to look for the ADL module configuration
file(s). Together will load any configuration file present
in the config directory of the ADL module.

This allows for easy management as all different
configurations can then be kept separated by their target,
e.g., Property Inspector, diagrams, etc.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3TUJP004 ePrint cs.SE/0303013

Figure 5: ADL module configuration example

When the ADL module is first invoked it makes sure
that there is a project and diagram open, and issues a no
action error message if there isn't:

if
(IdeProjectManagerAccess.getProjectManager().getActi
veProject() == null)
{
IdeMessageManagerAccess.printMessage
(IdeMessageType.ERROR_MODAL, "No open
project");
return;
}
IdeDiagramManager diagramManager =
IdeDiagramManagerAccess.getDiagramManager();
if (diagramManager.getActiveDiagram() == null)
{
IdeMessageManagerAccess.printMessage
(IdeMessageType.ERROR_MODAL, "No open
diagram");
return;
}

Having assured that there is an opened project and
diagram providing the module context, next task is to get
the array of items (classes, methods, or attributes) that
are selected. If nothing is selected, there is nothing to do
and so the module returns with a no valid selection
message:

RwiElement[] selectedRwiElements =
context.getRwiElements();
if (selectedRwiElements == null ||
selectedRwiElements.length == 0)
{
IdeMessageManagerAccess.printMessage
(IdeMessageType.ERROR_MODAL, "No selection was
made.");
return;
}

Figure 6: Error message

If the module execution gets past this far there is a
valid selection. Each item in the selection is then
processed using a Visitor pattern [7]:

ADLOutVisitor adlVisitor = new ADLOutVisitor();
[…]
if

(RwiShapeType.CLASS.equals(selectedRwiElement.get
Property(RwiProperty.SHAPE_TYPE))) {
//working with the selection
 selectedRwiElement.accept(adlVisitor);
}

3.2. ADLOutVisitor
This is the class that does the real work. It is an

instance of the Visitor pattern. It recursively visits each
element in the tree rooted at the current selection(s).

This class extends RwiVisitorAdapter, a class defined
in the Together API specifically for writing model
visitors.

Note in the previous code snip that elements have an
accept(RwiVisitorAdaptor) method. The accept method
then calls into the RwiVisitorAdaptor, passing itself as
an argument. The method that is called depends on what
the element being visited is.

The methods that ADLOutVisitor implements are:

public Object visitPackage(RwiPackage package){
return visitContainer(package); }
public Object visitDiagram(RwiDiagram diagram){
return visitContainer(diagram); }
public Object visitNode(RwiNode node){
return visitContainer(node); }
public Object visitMember(RwiMember member){
return visitElement(member); }

We need to provide methods for visiting each type of
element we are interested in during the process of
generating ADL descriptions.

3.2.1.Visiting Packages
ADLModule assumption is that the user works on

element of the project being opened, i.e., we do not want
to work on imported elements or components. Making
use of the concept of Property in the RWI API, we may
ask questions about the identity and details of every
element in the model.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4TUJP004 ePrint cs.SE/0303013

The set of properties may also be extended. This
allows the ADLModule to define and set in the GUI –
namely the Property Inspector – its own specific ones
which are extensively used in the code.

In this particular case we check the value of the
Together RWI property MODEL_PART so to verify that
the selected package is indeed part of the project:

if
(rwiPackage.hasProperty(RwiProperty.MODEL_PART)

Having ascertained that, we recursively visit each node
in the supplied package:

while (rwiNodeEnumeration.hasMoreElements()) {
RwiNode nextRwiNode =
rwiNodeEnumeration.nextRwiNode();

// Work only with enabled model elements
 if ("Model" !=
nextRwiNode.getProperty(RwiProperty.MODEL_PART
)) {
visitNode(nextRwiNode);
 }
}

Next we visit every subpackages retrieving them with:

RwiPackageEnumeration subpackages =
rwiPackage.subpackages();

Visiting diagrams is the same as visiting packages. We
recursively visit the enclosed nodes & packages:

visitPackage(diagram.getContainingPackage());

Note that we do nothing to packages or diagrams being
visited but get to their nodes, i.e., the singles classes
therein described instead. The next method is where
information relevant to ADL description generation is
collected at class level.

3.2.2.Visiting Nodes
As before we only look at non-imported items, further

we only want to look at class and interface nodes:

 if
(RwiShapeType.CLASS.equals(rwiNode.getProperty(R
wiProperty.SHAPE_TYPE))) {comment =
(rwiNode.hasProperty(RwiProperty.INTERFACE)) ?
"interface" : "class";
 // Get the writer of the ADL output file
 createAdlFileWriter(className);

At this point in the ADLModule we are inspecting a
selected class. The createAdlFileWriter is responsible for
attaching a new ADL file as <ClassName>.adl to an
output streamer available to all methods in the module
during the parsing of the details of each selected class:

public void createAdlFileWriter(String className) {
try {
 // Open new ADL file
IdeMessageManagerAccess.printMessage
(IdeMessageType.INFORMATION, "ADL generation
for class "+ className);
File adlOutFile = new File(className + ".adl")
 // Attach Streamer
FileOutputStream adlOutStreamer =
new FileOutputStream(adlOutFile);
 // Create ADL file writer
this.adlWriter = new PrintWriter(adlOutStreamer, true);
 }
catch (FileNotFoundException e) {
 System.err.println("*** ERROR(Text): can't handle
adl file for class " + className + " " + e);
 }
 }

At this point we are in the process of parsing the class
and writing the corresponding ADL declarations:

// Analyze Node
String adlInterface =
rwiNode.getProperty("ADLINTERFACE");
// ADL Class declaratio
generateADLClassDeclaration(className, adlInterface,
rwiNode);
// ADL includes
generateADLIncludes(className,adlInterface,rwiNode);
// Javadoc
[…]

We next visit in detail the class and each member.
This includes both attributes & operations:

// Analyze members
RwiMemberEnumeration members =
rwiNode.members();
while (members.hasMoreElements()) {
visitMember(members.nextRwiMember());
 }

3.2.3.Visiting Members
Method visitMember takes care of parsing attributes

and methods for the selected class. Together API
distinguishes them via the SHAPE_TYPE property:

if (RwiShapeType.OPERATION.equals
(member.getProperty(RwiProperty.SHAPE_TYPE))) {
[…]
 visitOperation(member);
} else if (RwiShapeType.ATTRIBUTE.equals
(member.getProperty(RwiProperty.SHAPE_TYPE))) {
[…]
 visitAttribute(member);
}

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5TUJP004 ePrint cs.SE/0303013

The visitAttribute method extracts the attribute NAME
and TYPE. Then determines its visibility, thence the
ADL persistent and read-only properties, thence it writes
the information on the <classname>.adl file and repeats
the process for each attribute. In the module these ADL
specific properties are Booleans:

name = member.getProperty(RwiProperty.NAME);
t ype = member.getProperty(RwiProperty.TYPE);
[...]
// Determine attribute persistent/readonly proeprties
if (member.hasProperty("ADLREADONLY"))
adlAttrDecl = "readonly " + adlAttrDecl;
if (member.hasProperty("ADLPERSISTENT"))
adlAttrDecl = "persistent " + adlAttrDecl;
[...]
adlWriter.println(adlAttrDecl);

ADL properties selection from the Property Inspector
are updated on the fly on the class source code with
relevant Javadocs so to have immediately a visual clue of
the selections being made from the GUI.

The GUI – Property Inspector – is independent of
running the ADLModule: ADL properties selection are
applied to the final ADL declaration output file when the
module is actually run on the selected class(es).

The visitOperation method does several things to the
javadocs of the class, subsequentely the parameters are
processed for ADL generation. The return value of all
methods is checked: An action is only valid if there is a
return type (i.e. constructors don't have one and do not
have an ADL description) and it is not null:

if (member.hasProperty(RwiProperty.RETURN_TYPE))

In visitOperation we make use of RWIPropertyMap to
pull the property values from each method parameter. At
this point we have gathered and stored all required
information to generate a meaningful ADL description
for the class:

// Completed ADL
writeADL(className);

Acknowledgments
This work would have never been realized if it was not

for the support of the whole ADL Team [1]. I am
especially grateful to Philippe Ghez who was my very
first early adopter and provided me with enough
criticisms to fill up my agenda and support and praises to
keep me actually working on the module. The best carrot
& stick ever!

The entire ADL team has also been invaluable in all
discussions concerning the ADLModule, its scope and
purposes: they allowed me to stay focused rather then
evolving the ADLModule into an mp3 tuner.

Finally, to all users which have reported bugs and
suggestions: Thanks! You made me feel I was not
working in a white tower.

References
[1] A. Bazan, T. Bouedo, P.Ghez, M.Marino,

C.E.Tull, “The Athena Data Dictionary and
Description Language”, 2003 Computing in High
Energy and Nuclear Physics (CHEP03), La Jolla,
CA, USA, 2003

[2] “Athena, The ATLAS Common Framework”, vs
2.0.2, August 2001,
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTW
ARE/OO/architecture/General/Tech.Doc/Manual/
2.0.0-DRAFT/AthenaUserGuide.pdf

[3] A. Bazan, T. Bouedo, P.Ghez, C.E.Tull, “ADL
Language Reference Manual”, Release 1.0 – May
2002,
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTW
ARE/OO/architecture/DataDictionary/Documenta
tion/Standard/Documents/index.html

[4] Together Control Center, Borland,
http://www.togethersoft.com

[5] “Together for Atlas”,
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTW
ARE/OO/tools/case/Together/

[6] S. Fisher, “Practical use of Together/Enterprise in
ATLAS’,
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTW
ARE/OO/tools/case/Together/use.html

[7] E. Gamma, R.Help, R.Johnson, J.Vlissides,
“Design patterns: Elements of reusable object-
orientedsoftware”, Reading, MA, Addison-
Wesley, 1995

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6TUJP004 ePrint cs.SE/0303013

