
Data Acquisition Software for CMS HCAL Testbeams
J. Mans and W. Fisher
Princeton University, Princeton, NJ 08544, USA

Although CMS will not start operation for several years, many subdetector groups have active testbeam pro-
grams involving final or near-final electronics. The high-bandwidth electronics require the development of new
DAQ systems including hardware and software. This paper presents the design and performance of the DAQ
software used for the summer 2002 HCAL testbeam at CERN. This system successfully acquired over 80M
testbeam events, running at rate of 200-1000 Hz. The paper also describes some of the developments made for
the 2003 testbeam, including the integration of the CMS xDAQ framework.

1. Introduction

The CMS experiment is a large general-purpose
high energy physics detector which will be used to
study proton-proton and heavy-ion collisions at the
Large Hadron Collider (LHC). Although the exper-
iment will not start operation for several years, the
groups developing portions of the experiment, or sub-
detectors, are actively testing the electronics which
will be used in the final experiment. The Hadron
Calorimeter (HCAL) group is well along in this
project, and the current testbeam program is focused
on evaluating the final designs for the electronics.

The HCAL testing program requires the develop-
ment of data acquisition software which can handle
the large number of channels and high data rate which
the final electronics can produce. This paper describes
the data acquisition software which was written for
the 2002 test beam carried out at CERN, as well as
describing the changes and extensions made for the
2003 program.

1.1. Review of the HCAL Data Chain

Before launching into the details of the testbeam
DAQ, it is worthwhile to briefly review CMS HCAL
and its the data readout chain. Here we describe the
setup used for the 2002 testbeam. The readout chain
is shown schematically in Figure 1.

The CMS HCAL is a sampling calorimeter consist-
ing of a brass absorber with plastic scintillator panels
inserted into the absorber. The scintillation light from
the panels is collected by wavelength-shifting fibers
and transported to a hybrid photodiode (HPD) which
converts the light into electrical charge. The charge
signal is measured and encoded into a non-linear digi-
tal scale by the Charge Integrator IC (QIE). The QIE
uses the LHC clock to divide time into regular bins
and measures the accumulated charge in each time
bin. Internally, the QIE uses capacitors to accumu-
late the charge and measure the voltage. There are
four such capacitors in each QIE, and the QIE uses
each capacitor in turn, discharging it for two clocks
before using it again. Thus each subsequent time sam-
ple comes from a different capacitor-id or CAPID. In

the final system, each time bin will be 25ns long, but
for the 2002 testbeam a slower clock was used, which
made each bin 33ns long.

The outputs of three QIE channels are digitally
combined onto a high-speed optical link and sent to
the HCAL Trigger/Readout (HTR) board [1]. The
2002 HTR board could accept eight fiber links, cor-
responding to twenty-four QIE channels. The HTR
board buffers the incoming digital data and transfers
it to the Data Concentrator (DCC) [2] when a Level
1 Accept (L1A) is received. Future revisions of the
HTR board will also calculate trigger primitives for
the trigger decision. The DCC is responsible for col-
lating data from up to eighteen HTRs and transferring
it on to the central DAQ. In the 2002 testbeam, the
DCC transferred the data over a 32-bit SLINK fiber
link to a PC.

Readout crates (in blockhouse)
Front End (on detector)

8 inputs
(24 channels)

QIE

Trigger (from H2 NIM crates for testbeam)

18 inputs
(up to 432 channels)

P
ho

to
di

od
e

H
yb

rid

HCAL
Trigger
Readout

DAQ PC

QIE

QIE

C
C

A
Concentrator
Data

Card

HCAL
Wedge

Figure 1: Schematic depiction of the HCAL Testbeam
2002 readout chain from HCAL wedge to DAQ PC. The
CCA and HTR are connected by a 1.4 Gbaud link
optical link. The HTR is connected to the DCC via a
10-conductor copper LVDS link. The DCC transmits
events to the DAQ PC over 32-bit SLINK (optical fiber).

1.2. Requirements

The testbeam DAQ has several important require-
ments, which are not necessarily identical to the re-
quirements for the final DAQ.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1TUGT005 ePrint physics/0306093



• Interfacing with testbeam trigger – the
trigger electronics used for the 2002 testbeam
provide information to the DAQ through a
CAENV592 VME NIM register and require
feedback from the DAQ through a second
CAENV592.

• Readout of HCAL data input chain – the
HCAL data chain generates 976 bytes of data
per HTR per event or a total of 5856 bytes for
each testbeam event (with six HTRs running).
This data is dumped into a DMA buffer and the
DAQ must parse and store it.

• Readout of testbeam subdetectors – the
testbeam setup for the HCAL in 2002 includes
several additional subdetectors such as a seven-
by-seven crystal ECAL mock-up readout with
CAENV792 QADCs and two wire chambers
readout with a CAENV767 TDC. A schematic
showing the relationship between the subdetec-
tors and their readout electronics is shown in
Figure 2.

• Flexible design – the testbeam DAQ should
be flexible enough to function without the test-
beam trigger system for special runs or testing
away from the H2 testbeam area at CERN. Only
minor configuration changes should be required
to enable data taking with different sets of sub-
detectors or trigger sources.

• Radioactive source calibration – the DAQ
must also be able to handle data from the ra-
dioactive source calibration, where the HTRs
produce histograms of data from the different
QIEs and transmit them at a regular rate with-
out triggers. The DAQ must sift through the
DMA buffers and find them.

2. Structure of the DAQ Software

2.1. Modules

The DAQ software is written in C++ and runs un-
der Linux kernels 2.2 and 2.4. The DAQ is divided
into a set of modules, each of which is a separate
thread of execution, running under the pthreads[3]
multi-threading library. The communication between
the threads and services such IP sockets are provided
by a custom C++ library wrapping the underlying
C-based services.

A module may handle the readout for a specific sub-
detector or it may analyze completed events for data
quality monitoring or it may provide a more periph-
eral service like logging messages to disk or providing
a interface between an external GUI and the DAQ

CAEN v767
TDC QADC (2)

CAEN v792 CAEN v513
Register (2)

HCAL Readout
Chain

TDCReadout H2ManagerECALReadout HCALReadout

PhaseD
ata

W
ireC

ham
ber...

E
C

A
L

D
ata

E
C

A
L

C
om

m
...

T
riggerD

ata

H
C

A
L

D
ata

Figure 2: Schematic layout of the subdetectors used in
the HCAL 2002 Testbeam. The dark rectangles represent
S1, S2, and S3 trigger scintillator counters and the muon
counter. The rounded rectangles represent the wire
chambers, while the dark gray rectangles represent the
ECAL and the wedge the HCAL. Each subdetector is
linked to the electronics used to read it out. Each group
of electronics is coupled to the software module which
acquires the data from the electronics. The tags at the
bottom of the diagram indicate which final data streams
are produced by which software readout modules.

core. The two most important modules in the DAQ
are the EventBuilder and the RunManager, each of
which is described in more detail below.

Each module has a state variable which may be in
one of four major states: LOAD (just loaded), INIT
(initializing, or initialized), RUN, or STOP (stopping
data acquisition or stopped). Each of these states
has substates which indicate whether the process is
ongoing (such as INIT/RUN), it has completed suc-
cessfully (such as STOP/OK), or it has failed (such
as INIT/FAIL). Transitions between these states are
triggered by broadcast messages.

The most important method which modules use to
communicate is broadcast messages. Any module can
broadcast a very simple message (one integer number
in the range 0-255) to all modules. Messages in the
range (0-31) can be ignored (masked off) if a module
is not interested in them. In practice, only a small
fraction (16/256) of the range of possible broadcast
message codes was used.

A module can register one of its parameters as pub-
licly accessible by assigning a string name and descrip-
tion to the parameter. Other modules can query a
given module for its list of defined parameters and

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2TUGT005 ePrint physics/0306093



their current values. They may also change parame-
ters, if the exporting module has allowed this. Within
the DAQ, the set of parameters which were established
when the INIT message was last broadcast are the set
which are active for any data acquisition.

Modules which are directly involved in the high-
bandwidth data-stream also exchange memory blocks
containing event fragments or complete events as de-
scribed below in the description of the EventBuilder.

2.2. Configuration

When the DAQ application starts up, it reads a con-
figuration file which specifies the modules to load and
gives initial parameter values for the modules. Only
the EventBuilder, Reporter, and RunParamManager
modules are loaded into the DAQ by default. All other
modules are loaded at run-time based on the config-
uration file. The configuration file is coded in XML
and the DAQ uses the libxml2[4] XML parser from
the Gnome project.

The XML configuration file contains two sections.
The first section, “<Modules>”, contains a list of
modules to load. For each module, the name of the
module within the DAQ is specified first, then the
class name, and the name of the shared library con-
taining the class. The DAQ code uses a standard
mechanism for loading classes and provides a prepro-
cessor macro to create the necessary stub code.

The second section of file, “<Parameters>”, con-
tains a list of modules and provides initial values for
registered parameters in the module. Any registered
parameter which is not read-only can be set using the
parameter file. The DAQ framework is responsible for
parsing the XML file and setting all the parameters
specified in the relevant modules before sending the
LOAD broadcast command.

2.3. The EventBuilder

The EventBuilder module is responsible for collect-
ing all the event fragments from the subdetector read-
out modules and assembling complete valid events.
The EventBuilder defines streams of data associated
with specific data blocks, such as the normal HCAL-
Data block produced during beam data running or
the WireChamberData block which contains the data
from the wire chambers. The EventBuilder must be
configured to know which blocks to expect in a given
run. Only events with all the configured blocks are
considered good.

The EventBuilder has a configurable property
which is the number of event buffers to allocate. All
readout modules read this parameter to decide how
many event fragment buffers they should locally al-
locate. This is the upper bound to how many events

can be acquired within a spill. The EventBuilder allo-
cates this many structures containing empty pointers
for the readout streams. As readout modules receive
triggers, they pass a pointer to the data for each event
to the EventBuilder which organizes the pointers by
data stream and event number.

Once the end of spill is signaled by the RunMan-
ager, the EventBuilder starts trying to assemble com-
plete events. If all readout modules have completed
(returned to the state RUN/RUN from RUN/BUSY),
and there are still events which do not have all re-
quired fragments, the spill is declared bad and all
events are thrown away. This behavior is required
since not all subdetectors have reliable event counters
and this eliminates the possibility of event data mis-
match.

If the spill is good, the events are distributed to
the “listeners”. These are threads (not full mod-
ules, but threads of a specific form set by the Event-
Builder) which have registered themselves with the
EventBuilder to receive all good events. The Writer
module which stores the events to disk uses such a
listener thread. Once all listeners have finished with
the data blocks, the EventBuilder sends a broadcast
message to all readout modules indicating that the
event buffers are released and they can be reused for
the next spill.

2.4. The RunManager

The RunManager class is responsible for provid-
ing the TriggerData stream to the EventBuilder,
for generating Readout and End-Of-Spill broadcast
messages, and for logging completed runs into the
database. The base RunManager class handles the
database logging, but the other tasks are left to de-
rived RunManager classes. These derived classes gen-
erate trigger messages in different ways depending on
the physical setup required.

The main beam-data manager is the H2Manager
class, which interfaces to the H2 trigger using two
CAENV513 NIM register VME boards. The external
trigger system signals the DAQ when triggered data
should be read out and the H2Manager signals back to
the trigger when the DAQ is ready for the next event.
The trigger system also signals the manager when the
spill is over and the manager broadcasts the message
through the DAQ.

Other RunManagers of note include the SourceM-
anager which is used for taking radioactive source cal-
ibration data and the BenchManager which is used
for LED pulser runs with the special pulser setup in
H2 or for generating triggers via software through the
TTCvi module.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3TUGT005 ePrint physics/0306093



2.5. HCAL Readout and Radioactive
Source Data Taking

The HCAL readout module is the most complicated
of the readout modules. There are usually six or more
HTRs in the readout crate, but not all HTRs are
needed at any given time. The HCALReadout module
allows different HTRs to be enabled or disabled and
handles the proper initialization for both the HTRs
and the DCC.

The HCALReadout module uses the SLINK driver
developed by the University of Hawaii [5]. The module
configures the driver to put the data acquired during a
spill into a single DMA block in memory. As the HTRs
receive triggers and push the data on to the DCC, the
DCC forwards the data over the SLINK to the PC
where it appears in the DMA buffer. At the end of
a spill, the HCALReadout module picks through the
buffer and finds the event fragments from each HTR.
The DCC does not wrap the events with a header or
trailer, so the DAQ simply takes “one block from each
HTR” as a complete event. If two blocks appear from
one HTR before one from another, a warning message
is issued.

During data taking with the radioactive source, no
triggers are generated. Instead, the HTRs build his-
tograms and forward them to the DCC at a fixed
rate. Within the DAQ, each set of histograms is taken
as “one event”. Since the RunManager and Event-
Builder need to know how many events were taken,
the HCALReadout module counts how many it sees
in the DMA buffer when it receives a special broadcast
message.

The special message is sent by the SourceManager,
which receives information about the position of the
source and whether the run is complete via DIM (see
below). The SourceManager then asserts that the
number of events which the HCALReadout saw oc-
curred. Since the reel position data arrives at a dif-
ferent rate than the histograms, the SourceManager
then must map the reel data onto the same number of
events as the histograms. For this purpose the Source-
Manager uses the time-stamp which is sent along with
the reel data from the source control computer.

2.6. Other Standard Modules

Besides the major modules, there are many other
modules which can be loaded into the DAQ. The
ECALReadout module reads out the 7x7 ECAL ma-
trix using a pair of CAENV792 VME QADCs. The
TDCReadout module reads out the wire chambers
and other timing measurements using a CAENV767
VME TDC. The RunParamManager module provides
central repository for information to be stored in the
RunData section of the files. The module allows
new parameters to be created inside itself and all the

parameters defined in the module are automatically
stored into the RunData header by the Writer. Some
of the information is also put into the Runs Database.
Finally, the Writer module is responsible for storing
the completed events in a ROOT file.

2.7. The Java GUI

The DAQ process does not itself provide any mech-
anism for a user interface to control the run. Such
an interface can provided by a module, and multi-
ple modules could be written to control the DAQ
using different communication techniques. During
normal operations, the DAQ was controlled using a
Java application which communicated with the DAQ
through a custom remote-procedure-call (RPC) proto-
col. The RPC protocol is transported using the stan-
dard TCP/IP transport, so the GUI program does not
have to be run on the same machine as the DAQ. The
Java GUI used the services of the ExternalInterface
module.

The protocol allows the GUI to obtain the state
of the system in the form of an XML document
which has the same format and structure as the
“<Parameters>” section of the configuration file. The
GUI parses this XML document to determine the state
of all the registered parameters. The protocol also al-
lows the GUI to change the values of parameters and
to send broadcast command messages. The Java GUI
also incorporates a plotting package which can ac-
cess the histograms exported by the StatsMan module
through the HistoExporter class. These histograms
are available on an IP port in text form, and the GUI
can plot these online monitoring histograms.

2.8. Interaction with DIM

The Distributed Information Management System
software [6] has emerged as a powerful, general, and
freely-distributable tool for exporting and accessing
structured data and sending commands. Heavy use
of DIM will be made at CMS and LHC, not least
because of the DIM↔PVSS gateway which has been
developed. The current version of the DAQ does not
include a module to allow direct control of the DAQ
through DIM, but it does use DIM to gather several
important types of data.

The DAQ includes a module called InfoGrabber
which allows the DAQ to pull information from sev-
eral DIM servers. From the BeamInfoDataServer,
the DAQ can learn the beam energy, beam settings,
and the particle type. From the TableDataServer,
the DAQ can learn the position of the movable ta-
ble on which the HCAL and ECAL are mounted.
Other servers provide temperature measurements of
the ECAL matrix, and allow configuration commands
to be sent to the QIEs and other front-end chips from

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4TUGT005 ePrint physics/0306093



a Windows machine. DIM is also used during source
data taking to obtain the reel position and other data
from the source control computer.

2.9. Persistent Data Format

The data is stored in a ROOT Tree format, where
each event is represented by an object of type Test-
BeamData, which may contain pointers to other data
blocks. Each of the data blocks is placed onto its own
ROOT branch. A C++ library is provided for users
to access and reconstruct the data in the ROOT files.
Complete documentation for this library can be found
in reference [9].

2.10. Runs Database

Basic configuration data and statistics for each
saved run are stored in a runs database. The database
consists of a set of XML files which contain entries for
a range of run numbers. This database is cached in
AFS space and also is available for querying on the
web. More information about the runs database can
be found at [10] and the main DAQ website [7].

3. Performance of the DAQ Software

The DAQ Software worked well for the 2002 test-
beam. During the summer running, 3,081 runs
were taken covering some 53,182 spills and contain-
ing 100,655,201 events. The data volume recorded
into the central data recording was 280GB, with an
average compression ratio (from ROOT) of 2.1:1. On
average, the DAQ was run at rate of 1700 events per
spill or 350 Hz, but when the beam intensity was in-
creased the readout rate reached 4720 events per spill
or 960 Hz. The data acquired has proved extremely
useful in understanding the performance of the final
system and testing the calibration and resolution of
the calorimeter.

After the summer testbeam, the DAQ software was
used at Fermilab to evaluate new QIE boards for the
2003 test beam and to acquire data on radiation dam-
age of QIEs at the Indiana Cyclotron Facility.

The testbeam program for the HCAL will continue
in 2003, and the DAQ software is changing to ap-
proach the final software structure which will be used
in CMS. The custom base library will be replaced

by the xDAQ library [11], while the configuration
management will be significantly updated to support
increasing complicated configurations. The custom
XML-based runs database will be transferred into a
standard SQL server form, which will improve the
stability of the system. The goals for 2003 include
structured beam running for the barrel part of the
calorimeter, a first look at the endcap sections with
the final electronics, and study and calibration of the
forward hadron calorimeter. It will be challenging to
acquire and process the required data volumes, but
the results will be bring the CMS HCAL closer to op-
erational status.

References

[1] T. Grassi. “CMS HCAL Trig-
ger/Readout working page.”
http://tgrassi.home.cern.ch/tgrassi/hcal.

[2] E. Hazen. “CMS HCAL Data Concentrator work-
ing page.” http://ohm.bu.edu/ hazen/hcal.

[3] B. Nichols, D. Buttlar, and J. Farrell. Pthreads
programming, Nutshell handbook.

[4] Daniel Veillard. “The XML C library for Gnome.”
http://xmlsoft.org.

[5] S. Isani, Canada-France-Hawaii Telescope group.
http://software.cfht.hawaii.edu/sspci.

[6] DIM, a Portable, Light Weight Package for
Information Publishing, Data Transfer and
Inter-process Communication (pdf) Presented
at: International Conference on Computing in
High Energy and Nuclear Physics (Padova, Italy,
1-11 February 2000),
DIM working site.
http://dim.home.cern.ch/dim.

[7] HCAL 2002 Testbeam working page.
http://cern.ch/cms-testbeamh2.

[8] J. Mans. “HTBDAQ.”
http://flywheel.princeton.edu/ jm-
mans/HTBDAQ.

[9] J. Mans. “HTBDAQ Data Library.”
http://flywheel.princeton.edu/ jm-
mans/HTBDAQ Data.

[10] J. Mans. “HTBDAQ RunsDB Library and Util-
ities.” http://flywheel.princeton.edu/ jm-
mans/HTBDAQ rundb.

[11] xDAQ working page. http://cern.ch/xdaq/ .

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5TUGT005 ePrint physics/0306093


