

DØ Online Monitoring and Automatic DAQ Recovery
A. Haas, D. Leichtman, G. Watts
Department of Physics, University of Washington, Seattle, WA 98195, USA
D. Chapin, M. Clements, S. Mattingly
Department of Physics, Brown University, Providence, RI 02912 USA
R. Hauser
Department of Physics, Michigan State University, East Lansing, MI 48824 USA

P. Padley
TW Bonner Nuclear Lab, Rice University, Houston, TX 77251 USA
B. Angstadt, G. Brooijmans, D. Charak, S. Fuess, A. Kulyavtsev, M. Mulders, D. Petravick, R.
Rechenmacher, D. Zhang
FNAL, Batavia, IL 60510, USA

The DZERO experiment, located at the Fermi National Accelerator Laboratory, has recently started the Run 2 physics program. The
detector upgrade included a new Data Acquisition/Level 3 Trigger system. Part of the design for the DAQ/Trigger system was a new
monitoring infrastructure. The monitoring was designed to satisfy real-time requirements with 1-second resolution as well as non-
real-time data. It was also designed to handle a large number of displays without putting undue load on the sources of monitoring
information. The resulting protocol is based on XML, is easily extensible, and has spawned a large number of displays, clients, and
other applications. It is also one of the few sources of detector performance available outside the Online System's security wall. A
tool, based on this system, which provides for auto-recovery of DAQ errors, has been designed. This talk will include a description
of the DZERO DAQ/Online monitor server, based on the ACE framework, the protocol, the auto-recovery tool, and several of the
unique displays which include an ORACLE-based archiver and numerous GUIs.

1. INTRODUCTION

In March 2001 the Fermilab Tevatron proton-anti-proton
collider started RunII with a center-of-mass collision energy
of 1.96 TeV. Both the CDF and DØ detectors and their
trigger/readout electronics underwent extensive upgrades to
take advantage of the increased center-of-mass energy and
luminosity. The DØ L3 Trigger/DAQ group designed and
implemented an Ethernet based L3 Trigger/DAQ system
(L3DAQ) capable of reading out the DØ detector at a rate of
1 kHz [1]. This paper details two projects that grew out of
the L3DAQ upgrade: a monitor data server and a DAQ auto
recovery tool.

All DAQ/Trigger systems must have close to 100%
uptime. A great deal of effort goes into a system design to
achieve this, but inevitably problems occur during operation.
Many times problems that stop an experiment’s DAQ system
are external to the DAQ itself – a digitizer card hangs, for
example. In order to quickly diagnose these problems a
responsive monitoring system containing complete status
data is required.

The monitor system must be able to display system data
for both experts and non-experts in a timely fashion to allow
for quick problem diagnosis as and debugging. The system
must be flexible enough to handle the dual tasks of
debugging and commissioning as well as production
running. It should minimally impact the performance of the
system and also be fairly simple to extend with new monitor
data as the need arises.

The monitor system described in this paper successfully
met these goals. It is easy to use and has been slowly
spreading beyond the L3DAQ project. It has spawned a large
range of monitor-data related tools, some of which are
described in section 2.4. The monitor system is described in

section 2. The program structure, communication protocols,
performance, and future directions are discussed.

One of the tools spawned from the monitor project is an
auto-recovery system called daqAI. This program gathers
monitor information from several different detector
components and makes a once-per-second decision about the
health of the system. A rule-based expert system the monitor
data to make the decision and informs the control room via a
text -to-speech synthesizer of a problem. In some cases
daqAI can also issue an init or reset to fix the problem. For
these classes of problems daqAI has dramatically reduced
the time to detect and resume from a problem.

The second section of this paper, section 3, describes this
tool, including the expert system, the programming model
and possible future modifications.

2. THE MONITOR SERVER

The L3DAQ system contains over 150 separate software
and hardware components. Understanding the health of the
system requires monitor data from all of them. In turn, we
have a large number of displays, many designed to address a
different audience – experts or shift personnel – or particular
tasks -- flagging a rare error condition.

The monitor system’s initial design was based on the
following requirements. Many of these were based on our
RunI experience:

• The addition of new data types to the system
must be easy.

• Arbitrarily complex data types must be permitted.
• Allow many copies of the same source object

(i.e., 67 readout-crates, 82 nodes, etc.).
• Allow a large number of displays all querying for

data.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint physics/0306195TUGP011, THGT004

• Do not make excessive requests for the same data

from the same monitor source in short periods of
time. In particular if several copies of the same
display are running, they should share similar
data.

2.1. Monitor System Design

We choose to base our system around a Monitor Server.
Figure 1 is a block diagram of the system. Clients furnish
data, and Displays request the data. The Monitor Server
(MS) sits between the two. The displays do not make direct
connections to the clients. All requests in the system are
driven by the displays. If a particular client’s monitor data is
not requested, then the Monitor Server will never request it
from a client.

Figure 1 : A high level diagram of the monitor
system. Monitor data flows from left to right, and requests
for particular monitor data from right to left. The Monitor
Server (MS) caches replies from the clients.

Monitor data is indexed by three keys: the machine name ,
the monitor type , and the item name. The machine name is
the DNS name of the source machine. The monitor type is
the class of monitor client – for example a l3xnode is a
collection of items from a L3 Trigger farm node. Finally, the
item name refers to a particular data item. The data returned
for an item is arbitrary, and be as large or small as desired
(see below). However, the finest grained monitor data
request is a monitor item.

The MS stores the most recent reply from each client in a
data cache. When a display requests data the MS first checks
the cache. If there is a match, the cached data is returned
instead making a new request to the client. The display’s
request may optionally specify a staleness time. If the cache
data is older than the staleness time the cache is refreshed
with a request to the client. If no staleness time is specified
in the request a default time of one second is used.

All communication between monitor system components
is over TCP/IP sockets. We use the ACE framework for all
sockets programming [2]. This has the added benefit of
making the code cross platform (the MS is designed to run
on both Windows and Linux).

We have also taken advantage of ACE’s multithreaded
programming paradigms (see section 2.2). The threading
was specifically added to take care of timeouts in the clients
with minimal extra programming work. While this will hang

a single display’s request for data, it will not hang other
display’s requests.

All connections to the MS are persistent. This avoids
overhead involved in setting up new connections. There
exists a web-accessible deamon that acts as a go-between to
the MS for displays that require a short-lived connection (see
section 2.4.2).

The system is designed to recover from crashes and power
outages. The protocol requires both the displays and clients
initiate their connections to the MS. If the connection is
dropped for any reason, the display or client immediately
tries to reconnect. It is possible for a TCP/IP connection to
be broken without being closed. This occurs most frequently
when the MS suffers a power outage. A ping message is sent
by the MS to the client every 10 seconds if there has been no
data request to the client. If the client doesn’t see a ping
message every 25 seconds, the connection is dropped.
Without this feature all clients would have to be restarted in
case of a MS failure.

2.1.1. Data Format
All data between the MS and the clients and displays are

XML based. The XML structure is shown in Figure 2. At its
core, the XML consists of a monitor item name as the XML
tag. The reply from the client contains the data as the
contents of the tag. We do not maintain a DTD.

Figure 2 : Sample client XML request and reply. The
upper block contains the XML query sent by the MS to the
client, and the lower block represents the reply from the
client with the data fields filled in.

The data format has been extremely helpful in debugging
and commissioning the system: one can easily read the text
that comes back from a monitor item request from a python
program or similar.

Each monitor item can contain arbitrary data. The client
programmer is encouraged to provide the data in a XML
format, but that is certainly not a requirement. While binary
data is not legal, it is possible to include almost any arbitrary
character using the CDATA XML construct.

All TCP/IP messages are a 32-bit network ordered length
word followed by the contents of the XML in ASCII. No
binary data is sent in either direction.

2.2. Program Design

The block diagram for the MS is shown in Figure 3. The
TCP/IP connection handlers are based on ACE’s

Client

Client
Client

Monitor
Server

Display

Display

Display

<luminosity>
 <d0l3mon2>
 <d0_luminosity/>41.3</d0_luminosity>
 <beam_energy/>1960</beam_energy>
 <pbar_stack_size/>33.1</pbar_stack_size>
 <outside_temperature/>78</outside_temperature>
 <store_number/>1567</store_number>
 </d0l3mon2>
</luminosity>

<luminosity>
 <d0l3mon2>
 <d0_luminosity/>
 <beam_energy/>
 <pbar_stack_size/>
 <outside_temperature/>
 <store_number/>
 </d0l3mon2>
</luminosity>

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint physics/0306195TUGP011, THGT004

ACE_Svc_Handler object. This object manages a TCP/IP
stream and dispatches data to an input queue as it arrives.
There is an individual thread that picks off the data and
processes it.

Display Handler Display Handler Display Handler

Client Handler Client Handler Client Handler

C
ache

C
ache

C
ache

To Client To Client To Client

Dispatcher

Data To Displays

Figure 3 : Block diagram of the MS’s object
structure. The display handlers feed requests to a processing
queue. The dispatcher takes the requests off the queue,
parses them, and sends them to the clients for processing.
Once all the data has been received back by the dispatcher,
the data is sent back to the displays.

The display handlers, dispatcher, and receiver parts of the
client handlers all have an associated thread. The display
requests are linearly queued. The dispatcher removes them
one at a time from the queue and parses the XML. As it
parses the display’s request, the dispatcher builds a request
for each client. Once built, the requests are handed off to the
client handlers. After the client handlers have assembled all
the requested data and handed it back to the dispatcher, the
dispatcher builds the complete reply message and sends it
directly back to the waiting display. If the client can’t find
the data in the cache, it will request it directly from the
client. Most requests take less than 150 ms to complete,
much less if they involve only cache hits.

All components of the monitor system make connections
to the MS. If the MS is not available the client or display
will keep attempting to reconnect.

The protocol for the display is very simple. After making
the connection to the MS, XML formatted requests are sent,
similar to Figure 2. After the MS retrieves the data from its
cache or requests it from the clients, it returns a similarly
formatted XML document that contains both the data and
also all the machines that are of that monitor type. If the data
requested is from a machine type with many copies – like a
l3xnode – then a copy of the data will be returned for each
machine. Data from a specific machine can be requested.

The client communication protocol is very similar. The
MS will send the client an XML request very similar in
format to the display’s request. The XML is designed such
that the client can just fill in the monitor items one at a time
and reply with that information (using the XML Document
Object Model (DOM)).

There are numerous timeouts in the system to keep it well
behaved even when a client or display misbehaves. If the
request cannot be queued by the display handler the display
gets an error message. If the request sits on the internal
queue longer than one second a timeout message is sent back
to the display. A client has 3 seconds to reply to a request for
data. If it fails to reply 10 times in a row within 3 seconds, it
is disconnected. The dispatcher thread allows 2 seconds for
all clients to return their data, and if a client is busy
processing the previous request when it starts, it will mark
that client as having timed out in the display’s reply.

In order to correctly put monitor data in the cache the MS
must parse the reply from the client. This is done with a
high-speed, zero-copy, hand coded parser.

2.3. Client and Display Design

It was recognized early in the monitor system project that
simple interfaces would make for wider adoption. The
TCP/IP client and display protocols were designed with this
in mind: we have also written API’s and libraries to
implement the protocols. We currently have API’s
implemented in C++ and python for the client-side protocol,
and implementations in C++, python, java, and C# for the
display-side protocol.

When a client first connects it advertises its type and
machine name by sending an initial XML message. Clients
must have a thread listening to the port for incoming
messages and must serve them as fast as possible. If the
client takes longer than 3 seconds to respond, the MS will
flag an error. Repeated failure to respond in time will cause
the MS to drop the client’s connection.

We have clients in the system that implement the TCP/IP
and XML protocol directly. We also have a collection of
objects that will take care of all required XML parsing and
data conversion. In fact, it is possible to declare an arbitrary
instance of a data type to be monitored. Using the common
C++ template traits technique the underlying code will
render the data to XML whenever a request for the data
arrives. Integer counters, for example, can be declared as a
template and then used as normal integer in most cases. We
have also written a python compiled module that uses a
simple name-value pairing to set monitoring variables. The
servicing of monitor requests from the MS is invisible to the
user. Both API implementations use the xerces XML parser
[3].

We have created a similar set of libraries for the display
writer. The request to the MS is usually part of the display’s
main program loop. Various displays often vary what MS
items they are requesting depending upon the view the user
has chosen to display. The libraries all incorporate XML
parsing of one sort or another, though further parsing of
complex monitor data item is left entirely up to the display
writer. The package most appropriate to the language the
user is using is generally used.

A small set of monitor displays are also clients. These
frequently collate large amounts of information and publish
it back in a collated form. This reduces the amount of data
that has to be sent over the wire especially to a display on

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint physics/0306195TUGP011, THGT004

the other end of a low-end DSL line. The daqAI auto
recovery program, described in Section 3, is one such
display/client combination.

2.3.1. Security
Fermilab is a National Lab, and, as such, all computer

systems critical for the operation of the accelerator and the
taking of data must be protected by a firewall. The MS is no
exception, and thus there is no way to directly contact the
MS from outside the firewall. Early on it was recognized
that this made the system less useful for remote debugging if
displays could not connect. We have received permission to
open a single port to a specific machine across the firewall.
This second machine receives MS requests and relays them
to the MS, and relays the answers back. The relay contains
no intelligence, but does do careful buffer length checks,
illegal character checks, etc. The relay system is a Windows
XP system. All clients must be inside the firewall.

2.4. Monitor Displays and Clients

This section contains a brief description of a number of
the monitor displays and clients we have running in
production.

2.4.1. Monitor Clients
The L3DAQ’s readout crates contain a Single Board

Computer (SBC) that runs the VME readout. The system
supplies monitor information on the readout state of each
crate, CPU usage statistics, and data transmission failures.
The statistics furnished by the SBC to the monitor system
requires traversing fairly complex data structures in the
program. We have had to use a fast mutex to protect
modification by the main SBC program while the monitor
data is being collected. Performance of the SBC is not
noticeably affected by the locking because the caching
feature in the MS reduces the monitor requests to about two
per second.

The Level 3 farm nodes are another component for which
CPU is a valuable resource. Currently information on
incomplete events and CPU usage are generated. There are
plans to convert trigger pass statistics and physics
performance from another monitor system to the one
described in this paper.

The DØ trigger framework (TFW), a non-L3DAQ system,
also generates extensive information. This includes all the
scalars for the Level 1 and Level 2 triggers and configuration
information.

There are also a number of monitor repeaters. For
example, we have one system that monitors a web page
generated by the accelerator division and scrapes the CDF
and DØ luminosity, anti-proton stack size, and even the
temperature.

2.4.2. Monitor Displays
The principle shift monitor displays for the L3DAQ are

written in Java. The designs are based upon the principles
outlined in Tuffte’s books on the display of graphical
information [4]. The main L3DAQ display, uMon, contains
a relatively large amount of densely packed information
arranged for interpretation by both experts and non-experts.
In general we find that though non-expert shifts require

about a week to familiarize themselves with the display, they
can diagnose a large range of L3DAQ and other subsystem
problems with just a glance. Figure 4 shows a portion of the
uMon display. A similar display for the L3 CPU farm also
exists. The displays were carefully prototyped with simple
paint programs and handed around to a small group of
experts and non-experts before programming began
(PowerPoint, xfig). The displays’ designs and usability
benefited from this process. This set of displays run on both
Linux and Windows.

Figure 4 : A small portion of the uMon shifter-
monitor display. Each large box represents a single readout
crate. The % shows the incomplete event rate for the crate
and below it is the status of the L3DAQ route and event
queues (on the left, in the white area). The yellow area
shows the status of every connection the SBC maintains
(there are three farm nodes down). The white area on the
right is a rate plot; one small downtime is visible as an
inverse white spike.

The L3DAQ also has an expert display based on the
freeware version of Qt [5]. This display has a fairly simple
main window from which further dialog boxes can be
opened. The drill down approach has worked will for getting
progressively more detailed information. The display alters
its monitor data requests to suit the information it needs to
show. Thus it can request detailed, expensive-to-generate
information for one or two particular monitor system clients.
This display also runs on both Linux and Windows.

We also have written a small Windows systray monitor.
This puts a small 32x32 pixel icon in the Windows taskbar
that displays the system’s health continuously. It has only a
rate meter and two green/red circles that indicate general
system health. Moving the mouse pointer over the icon will
display a small popup with further information. This small
display was inspired by Quite Computing principles and has
proved useful a useful way for experts to watch L3DAQ
while doing other work.

The systray monitor is often run on a portable, which isn’t
always connected to the internet. It is more convenient to use
an http based interface for this monitor tool. There is a web
site that acts as a front-end for the monitor server. The web
site, called l3mq , also allows developers debugging the
system to issue monitor queries without having to write
code. It is also possible to store a query and reissue it by
accessing a single URL. Finally, the web site collects
statistics from the MS about which items have been
requested and maintains a database. The Web Site user can
then add documentation. In the future this will automatically

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint physics/0306195TUGP011, THGT004

be turned into a manual of all monitor items available in the
system.

We also have an archiver program which issues a query
once every 15 seconds and writes the results to a large data
file. A web interface allows one to make time-based queries
and plots online. The format was originally a root file, but
indexing proved difficult. The database was converted to
Oracle, but the amount of stored data proved to be too large
for the system. We are planning to switch to a mixed system:
root to store the raw data, and Oracle to store the index
information.

2.5. Performance

The MS has been in operation for almost 2 years. The
monitor system currently runs on a dual 1.2 GHz CPU Linux
based system with 0.5 GB of RAM. Typical usage has it
querying clients for 0.5 MB/sec and replying to displays
with 1-2 MB/sec of data. The CPU is usually 25% busy. The
display typically has 150 clients connected and over 70
displays.

The data format is ASCII and not compressed. During our
initial running we had a system-wide query that was
delivering 1 MB/sec to each copy of a particular display
type. We developed an ASCII encoding to compress the data
so that less than 100 KB was delivered to each display.

The MS can have more than 100 threads executing at a
time. We have not noticed degradation in the CPU or the
performance as a function of the number of threads running
on the machine.

Our original implementation of the MS used Xerces to
parse the replies from the clients. This proved to be a CPU
bottleneck. Since the MS doesn’t care about the contents of
the data item, it didn’t make sense to spend CPU cycles
parsing it. We wrote our own custom parser that takes
advantage of the known format of the XML replies. This
reduced the CPU utilization by an order of magnitude.

2.6. Future Directions

The MS is a stable product and rarely crashes or has
modifications made to its source base. We have altered some
of the communication timeouts as the rest of the system
grows more stable (lengthening them).

In future we may desire to have more monitor displays or
clients. One possibility is to make a hierarchy of caching
monitor servers. Each MS queries the MS below for
information. This is particularly attractive if you have a large
number of a particular client with a fairly stable query.

It is also possible to run with multiple MS, each one
devoted to a particularly large sub-system. The
implementation for this is a matter of configuring what
machines/ports the MS runs on.

3. THE DAQAI AUTO RECOVERY UTILITY

There are small classes of DAQ problems in a large
experiment like DØ that are easy to recover but cause
significant downtime. For example, DØ had a bug in some
readout crate code. The programmer was unable to fix the

bug immediately because they were stuck outside the
country (visa difficulties, post 9/11). The result was 30-120
seconds of downtime every 10 minutes. The length of
downtime was a strong function of the wakefulness of the
shift personnel. The problem was easily recognizable and
also easy to recover from: a single init command needed to
be issued.

This experience and several other similar ones were
daqAI’s genesis. The utility is designed to recognize a
number of specific problems, and, if possible, recover the
DAQ system to continue taking data without shifter
intervention. The daqAI utility also informs the control room
via a text -to-speech interface what it is doing and what
problem it has found and keeps a shift summary. It is
important that the control room be informed of daqAI’s
actions other wise the shifter and the program could work at
odds.

The system is designed around a fact-based embeddable
expert system, CLIPS [6]. The system is built around a rule-
inference system. Monitoring data is collected from the MS
and converted to facts. The facts drive the rule engine, which
will in turn execute embedded subroutines and functions or
define new facts which will, in turn, cause more rules to
execute. Functions are defined that can effect the desired
changes. Figure 5 shows a high level architectural diagram
of the system.

Figure 5 : The daqAI architecture. A C++ shell
mediates the actions and inputs of the CLIPS script and all
components external to the system. Connections to the
Logger, Run Control, the text -to-speech synthesizer, and the
monitor server are all by TCP/IP.

daqAI is both a MS client and display. It uses the display
features to gather the data it uses to make its decisions, and
the client features to publish its internal state, actions, and
log.

3.1. Program Structure

daqAI, the C++ program, is a shell. Embedded in the shell
is the CLIPS system. At runtime a CLIPS rule script is
loaded and run thus allowing us to change its behavior
without having to rebuild the system. Figure 5 shows the
general design.

3.1.1. The C++ Shell
daqAI is designed around a loop that executes forever.

The loop is repeated approximately once per second. The

Logger

Run
Control

Speaker

MS

daqAI
C++
Shell

CLIPS

daqAI
CLIPS
Script

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint physics/0306195TUGP011, THGT004

loop first makes a MS request to gather the monitor data.
The system then resets the CLIPS system to its cleared state
and defines facts corresponding to the monitor data. The
translation algorithm is a fairly simple text based one. The
CLIPS inference engine is then run. During the engine
execution rules make callbacks into the daqAI shell to
request logging output or request an init of the L3DAQ
system. The daqAI shell does nothing during the callbacks
other than to mark they have occurred. Once the inference
engine has run to completion, the daqAI shell examines the
DAQ init requests, log requests, text -to-speech requests, etc.,
for new ones that weren’t present on the previous iteration.
The new requests are acted upon, the old ones ignored. Any
requests that were made last iteration but not the current
iteration are so noted, though no external action is taken.
Finally, monitor variables and information are generated and
published for any MS requests. The loop then repeats.

The CLIPS rule engine is started fresh for each iteration
through the main loop. All previous knowledge is erased
from the engine at the start of the loop. Thus, the system
arrives at the same set of conclusions each time through the
loop as long as the inputs remain the same. Of course, if a
problem occurs requiring a reset to be issued, one would
expect the system to issue a reset each time through the loop.
As shown in Figure 5, daqAI C++ is a shell around the
CLIPS system. It watches the requests that are made by the
CLIPS system and takes action only when it observes a
change. So the first time a reset request is made, the shell
will actually issue the reset. If the same request is made on
the next iteration, no reset will be issued to the DAQ system.
This pattern is followed for all actions.

The system could have been designed to remember facts
from iteration-to-iteration. A facts based system is well
suited to noticing a set of facts in combination and flagging
them. However, the code to recognize that this set of
conditions no longer exists, but did just before is not clear or
easy to write. The problem domain is also well suited to the
idea of a fresh start each iteration: this version of the system
isn’t designed to watch for patterns in the time -domain: just
the presence of a set of condition.

There are situations that require some memory from
previous iterations. A number of monitor variables tend to
give false reading for a very short period of time , for
example . daqAI must make sure the monitor variable is out
of range for an extended period of time. daqAI contains a
number of useful constructs give the script crude model of
time. There are timers that will count up as long as a special
function is called each iteration. If it isn’t called, the timer
resets to zero. The timer is available as an input for rules as a

fact. There are also counters and even arbitrary facts that can
be set and thus remembered from iteration to iteration.

The main loops plug-in architecture allows for
communication to an arbitrary set of external devices.
Currently these include the main DØ Run Control program,
log files, a control room text -to-speech synthesizer, the
official control room logbook, and email. Each time daqAI
identifies an error it will assign it a name. Once a downtime
condition has been resolved a complete report is added to the
official online logbook, where it can be viewed by any
member of DØ. At the end of each shift daqAI reports what
errors occurred and their total downtime. This gives an
accurate accounting of downtime at DØ.

3.1.2. The CLIPS Language
CLIPS rules are stored as a text file. The structure of the

script is completely up to the programmer. The language is
rich containing not only rule constructs but also objects. The
daqAI script makes use only of the rule style. For complete
documentation see references [6]; this section contains a
very brief introduction to rule based programming in CLIPS.

The runtime environment contains a list of active facts.
Each fact has a name and an arbitrary number of arguments.
For example (daq_rate 33) might indicate the L3DAQ rate is
currently running at 33 Hz, and (bad_muon_roc) might
indicate that a muon readout crate has gone bad. In the
daqAI program, the C++ shell defines a list of facts that are a
direct translation of the monitor data.

The CLIPS program is a list of rules. Rules have
preconditions and actions. A rule fires when the
preconditions are met. Preconditions are usually pattern
matches involving facts. Figure 6 is a simple example. This
rule will fire only if the daq_rate is less than 50 Hz. In this
case, this rule will assert a new fact: (b_daq_rate_low 33)
given the initial presence of the (daq_rate 33) fact.

Very powerful programs can be built out of this simple set
of constructs. Facts represent the current environment and
rules represent the knowledge.

3.1.3. The CLIPS daqAI Script
The daqAI CLIPS script is the heart of daqAI. Its rules

contain the hand coded knowledge of the problems it
recognizes and the actions it should perform upon their
recognition.

The layout of the script is in several tiers, each tier feeds
the next . The lowest tier contains the facts that are directly
converted to facts by the daqAI C++ shell. The second tier
contains very basic inferences from the raw data. For
example, it contains a rule testing for a low L3DAQ event
rate. The third tier contains problem recognition rules and
often involves several second tier inputs. The third tier also

(defrule b_daq_rate_low "Is rate too low?"
 (daq_rate ?rt&:(< ?rt 50))
 =>
 (assert (b_daq_rate_low ?rt))
)

Figure 6: A simple CLIPS rule. This rule will assert a new fact, b_daq_rate_low if the fact (daq_rate x) is present
and x is less than 50.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint physics/0306195TUGP011, THGT004

insures that the existence of a problem is worrisome. This
prevents daqAI from trying to control the system during
commissioning, for example. The fourth tier contains the
action rules. These issue commands to run control, log
messages, send text to the speech synthesizer (and old
DECTalk DTC01 machine).

3.2. Performance

The current version of daqAI has been in operation for
almost a year without major modifications. When the daqAI
program first started running the DØ DAQ system had a
number of problems that daqAI was able to fix much faster
and more consistently than most shifters. The result was data
taking efficiency went from about 75% to 85%. Currently, in
June of 2003, the DØ DAQ system is much more stable and
as a result daqAI’s direct impact is less. One of its more
important functions now is to create the shift summaries and
list the individual downtimes.

The current version of the daqAI CLIPS script uniquely
recognizes 8 different problems, in addition to the general
Unknown downtime. For 4 of them there are established
automatic recovery procedures. The unknown problem
classification indicates a problem that daqAI doesn’t
explicitly recognize.

One key to a system like daqAI’s success is the wealth of
monitor information available to it. Adding new data sources
to our MS system only increases the potential of a tool like
daqAI.

3.3. Comments on Usage

Though daqAI has proved quite useful, it is not without its
problems. In particular, the amount of work required to
identify a common problem and implement an automated fix
can be daunting. Especially when it is considered that in a
system as complex as the DØ DAQ the same symptoms can
mean different problems over time.

Finding a new problem isn’t difficult. daqAI leaves behind
enough logging information to make this easy. A key
indication is if the Unknown category of downtime is quite
large. Log file investigations and some time in the control
room on shift will quickly point out the class of problems.
Unfortunately, the symptoms for the problem are often
duplicated during normal running and it can often take a few
days of testing to get the rules just right. Once that is
correctly implemented an automated fix can be added. It was
often found that what looked like single problems were , in
fact, two types and required different fixes. This process can
take again several days to sort out correctly.

In the long term the inability of the script to respond to
changing conditions can lead to problems. If the underlying
problem is fixed, but daqAI’s script is not changed it can
introduce dead time into the system by issuing run control
commands where they are not required.

Lastly, we were perhaps naïve thinking that the sociology
of the experiment was not something we would have to deal
with. Many detector groups were reluctant to have anything

but a shifter control their detector. daqAI quickly gained
acceptance as a tool to identify problems, but took a longer
before people were comfortable with it sending direct
commands and manipulating the system.

3.4. Future Directions

There are two possible improvements to daqAI based on
current experiences: sensitivity to the time domain, and
automatic run-condition classification.

daqAI is not sensitive to the sequence in which things
happen without resorting to the timer-counters mentioned
above. The symptoms for a problem often evolve over time,
or the differentiating fact is what happens in the initial 10
seconds after the data rate begins to fall. Some of the
monitor data has only course time resolution – more than 5
seconds – but much of it has 1 second resolution.

The second improvement addresses the most time
consuming aspect of daqAI problem identification. There are
many automatic classification schemes for physics variables
based on various figures of merit. Something similar could
be designed for a daqAI like system. One could imagine
adding the ability to monitor shifter actions. When the shifter
took an action that clearly changed the state of the system it
would be recorded along with the current system state.
Enough statistics and the system may be able to being a
model.

Both of these approaches, though interesting, would
require a good deal of effort. Their implementation schedule
has not yet been decided.

4. CONCLUSIONS

The monitor system based on a caching monitor server has
proved to be a simple, robust, and easy to use monitor
system for the DØ DAQ and other parts of the DØ online
system. The key to its adoption by the rest of DØ was the
easy with which one could communicate. The protocol was
designed to be as simple as possible and thus gained the
acceptance that other monitor systems didn’t as readily. We
believe it is important to have as few monitor systems in an
experiment as possible as the monitor system is only as
powerful as the data it is serving.

Many clients and displays were discussed in this paper. In
particular, the daqAI auto recovery program has proved to be
a unique use of this monitor data. When first implemented it
helped DØ gain over 10% data-taking uptime, and in that
sense was very successful. It correctly identified and fixed
the most vexing problems. It continues to function, though
DØ’s DAQ system is much more stable that before and thus
makes use of daqAI auto-recovery feature less frequently.

The most important lesson learned by our group during the
design and implementation of thes e projects was the key to
having monitor information easily and quickly available.
The design allowed us to quickly add new monitor items in
even some of the busiest environments. Rich and prompt
monitor data is a good start to better experiment uptimes.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint physics/0306195TUGP011, THGT004

References

[1] B. Angstadt G. Brooijmans D. Chapin D. Charak
M. Clements S. Fuess A. Haas R. Hauser D.
Leichtman S. Mattingly A. Kulyavtsev M. Mulders
P. Padley D. Petravick R. Rechenmacher G. Watts
D. Zhang , “The Run 2 DZERO DAQ/Level 3
Trigger System”, CHEP 2003, PSN MOGT002.

[2] D. Schmidt, S. Huston, The Adaptive
Communication Environment (ACE).
http://www.cs.wustl.edu/~schmidt/ACE.html

[3] More information on the Xerces XML parser can be
found at http://xml.apache.org/

[4] E. Tuftee’s, The Visual Display of Quantitative
Information, Graphics Press; 2nd edition

[5] More information about the freeware version of Qt
can be found at http://www.trolltech.com/

[6] More information about CLIPS can be found at
http://www.ghg.net/clips/CLIPS.html

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8 ePrint physics/0306195TUGP011, THGT004

