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The DZERO experiment, located at the Fermi National Accelerator Laboratory, has recently started the Run 2 physics program. The 
detector upgrade included a new Data Acquisition/Level 3 Trigger system. Part of the design for the DAQ/Trigger system was a new 
monitoring infrastructure. The monitoring was designed to satisfy real-time requirements with 1-second resolution as well as non-
real-time data. It was also designed to handle a large number of displays without putting undue load on the sources of monitoring 
information. The resulting protocol is based on XML, is easily extensible, and has spawned a large number of displays, clients, and 
other applications. It is also one of the few sources of detector performance available outside the Online System's security wall. A 
tool, based on this system, which provides for auto-recovery of DAQ errors,  has been designed. This talk will include a description 
of the DZERO DAQ/Online monitor server, based on the ACE framework, the protocol, the auto-recovery tool, and several of the 
unique displays which include an ORACLE-based archiver and numerous GUIs. 

 

1. INTRODUCTION 

In March 2001 the Fermilab Tevatron proton-anti-proton 
collider started RunII with a center-of-mass collision energy 
of 1.96 TeV. Both the CDF and DØ detectors and their 
trigger/readout electronics underwent extensive upgrades to 
take advantage of the increased center-of-mass energy and 
luminosity. The DØ L3 Trigger/DAQ group designed and 
implemented an Ethernet based L3 Trigger/DAQ system 
(L3DAQ) capable of reading out the DØ detector at a rate of 
1 kHz [1]. This paper details two projects that grew out of 
the L3DAQ upgrade: a monitor data server and a DAQ auto 
recovery tool. 

All DAQ/Trigger systems must have close to 100% 
uptime. A great deal of effort goes into a system design to 
achieve this, but inevitably problems occur during operation. 
Many times problems that stop an experiment’s DAQ system 
are external to the DAQ itself – a digitizer card hangs, for 
example. In order to quickly diagnose these problems a 
responsive monitoring system containing complete status 
data is required. 

The monitor system must be able to display system data 
for both experts and non-experts in a timely fashion to allow 
for quick problem diagnosis as and debugging. The system 
must be flexible enough to handle the dual tasks of 
debugging and commissioning as well as production 
running. It should minimally impact the performance of the 
system and also be fairly simple to extend with new monitor 
data as the need arises. 

The monitor system described in this paper successfully 
met these goals. It is easy to use and has been slowly 
spreading beyond the L3DAQ project. It has spawned a large 
range of monitor-data related tools, some of which are 
described in section 2.4. The monitor system is described in 

section 2. The program structure, communication protocols, 
performance, and future directions are discussed. 

One of the tools spawned from the monitor project is an 
auto-recovery system called daqAI. This program gathers 
monitor information from several different detector 
components and makes a once-per-second decision about the 
health of the system. A rule-based expert system the monitor 
data to make the decision and informs the control room via a 
text -to-speech synthesizer of a problem. In some cases 
daqAI can also issue an init or reset to fix the problem. For 
these classes of problems daqAI has  dramatically reduced 
the time to detect and resume from a problem. 

The second section of this paper, section 3, describes this 
tool, including the expert system, the programming model 
and possible future modifications. 

 

2. THE MONITOR SERVER 

The L3DAQ system contains over 150 separate software 
and hardware components. Understanding the health of the 
system requires monitor data from all of them. In turn, we 
have a large number of displays, many designed to address a 
different audience – experts or shift personnel – or particular 
tasks -- flagging a rare error condition.  

The monitor system’s initial design was based on the 
following requirements. Many of these were based on our 
RunI experience: 

• The addition of new data types to the system 
must be easy. 

• Arbitrarily complex data types must be permitted. 
• Allow many copies of the same source object 

(i.e., 67 readout-crates, 82 nodes, etc.). 
• Allow a large number of displays all querying for 

data. 
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• Do not make excessive requests for the same data 

from the same monitor source in short periods of 
time. In particular if several copies of the same 
display are running, they should share similar 
data. 

 

2.1. Monitor System Design 

We choose to base our system around a Monitor Server.  
Figure 1 is a block diagram of the system. Clients furnish 
data, and Displays request the data. The Monitor Server 
(MS) sits between the two. The displays do not make  direct 
connections to the clients. All requests in the system are 
driven by the displays. If a particular client’s monitor data is 
not requested, then the Monitor Server will never request it 
from a client.  

 
Figure 1 : A high level diagram of the monitor 
system. Monitor data flows from left to right, and requests 
for particular monitor data from right to left. The Monitor 
Server (MS) caches replies from the clients. 

Monitor data is indexed by three keys: the machine name , 
the monitor type , and the item name. The machine name is 
the DNS name of the source machine. The monitor type is 
the class of monitor client – for example a l3xnode is a 
collection of items from a L3 Trigger farm node. Finally, the 
item name refers to a particular data item. The data returned 
for an item is  arbitrary, and be as large or small as desired 
(see below). However, the finest grained monitor data 
request is a monitor item. 

The MS stores  the most recent reply from each client in a 
data cache. When a display requests data the MS first checks 
the cache. If there is a match, the cached data is returned 
instead making a new request to the client. The display’s 
request may optionally specify a staleness time. If the cache 
data is older than the staleness time the cache is refreshed 
with a request to the client. If no staleness time is specified 
in the request a default time of one second is  used. 

All communication between monitor system components 
is over TCP/IP sockets. We use the ACE framework for all 
sockets programming [2]. This has the added benefit of 
making the code cross platform (the MS is designed to run 
on both Windows and Linux). 

We have also taken advantage of ACE’s multithreaded 
programming paradigms  (see section 2.2). The threading 
was specifically added to take care of timeouts in the clients 
with minimal extra programming work. While this will hang 

a single display’s request for data, it will not hang other 
display’s requests. 

All connections to the MS are persistent. This avoids 
overhead involved in setting up new connections. There 
exists a web-accessible deamon that acts as a go-between to 
the MS for displays that require a short-lived connection (see 
section 2.4.2). 

The system is designed to recover from crashes and power 
outages. The protocol requires both the displays and clients 
initiate their connections to the MS. If the connection is 
dropped for any reason, the display or client immediately 
tries to reconnect. It is possible for a TCP/IP connection to 
be broken without being closed. This  occurs most frequently 
when the MS suffers a power outage. A ping message is  sent 
by the MS to the client every 10 seconds if there has been no 
data request to the client. If the client doesn’t see a ping 
message every 25 seconds, the connection is dropped. 
Without this feature all clients would have to be restarted in 
case of a MS failure. 

2.1.1.  Data Format 
All data between the MS and the clients and displays are 

XML based. The XML structure is shown in Figure 2. At its 
core, the XML consists of a monitor item name as the XML 
tag. The reply from the client contains the data as the 
contents of the tag. We do not maintain a DTD. 

 
Figure 2 : Sample client XML request and reply. The 
upper block contains the XML query sent by the MS to the 
client, and the lower block represents the reply from the 
client with the data fields filled in. 

The data format has been extremely helpful in debugging 
and commissioning the system: one can easily read the text 
that comes back from a monitor item request from a python 
program or similar. 

Each monitor item can contain arbitrary data. The client 
programmer is encouraged to provide the data in a XML 
format, but that is certainly not a requirement. While binary 
data is not legal, it is possible to include almost any arbitrary 
character using the CDATA XML construct. 

All TCP/IP messages are a 32-bit network ordered length 
word followed by the contents of the XML in ASCII. No 
binary data is sent in either direction. 

2.2. Program Design 

The block diagram for the MS is shown in Figure 3. The 
TCP/IP connection handlers are based on ACE’s 

Client 

Client 
Client 

Monitor 
Server 

Display 

Display 

Display 

<luminosity> 
  <d0l3mon2> 
    <d0_luminosity/>41.3</d0_luminosity>  
    <beam_energy/>1960</beam_energy> 
    <pbar_stack_size/>33.1</pbar_stack_size> 
    <outside_temperature/>78</outside_temperature> 
    <store_number/>1567</store_number> 
  </d0l3mon2> 
</luminosity> 
 

<luminosity> 
  <d0l3mon2> 
    <d0_luminosity/>  
    <beam_energy/> 
    <pbar_stack_size/> 
    <outside_temperature/> 
    <store_number/> 
  </d0l3mon2> 
</luminosity> 
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ACE_Svc_Handler object. This object manages a TCP/IP 
stream and dispatches data to an input queue as it arrives. 
There is an individual thread that picks off the data and 
processes it. 

Display Handler Display Handler Display Handler

Client Handler Client Handler Client Handler

C
ache

C
ache

C
ache

To Client To Client To Client

Dispatcher

Data To Displays

 
Figure 3 : Block diagram of the MS’s object 
structure. The display handlers feed requests to a processing 
queue. The dispatcher takes the requests off the queue, 
parses them, and sends them to the clients for processing. 
Once all the data has been received back by the dispatcher, 
the data is sent back to the displays. 

The display handlers, dispatcher, and receiver parts of the 
client handlers all have an associated thread. The display 
requests are linearly queued. The dispatcher removes them 
one at a time from the queue and parses the XML. As it 
parses the display’s request, the dispatcher builds a request 
for each client. Once built, the requests are handed off to the 
client handlers. After the client handlers have assembled all 
the requested data and handed it back to the dispatcher, the 
dispatcher builds the complete reply message and sends it 
directly back to the waiting display. If the client can’t find 
the data in the cache, it will request it directly from the 
client. Most requests take less than 150 ms to complete, 
much less if they involve only cache hits.  

All components of the monitor system make connections 
to the MS. If the MS is not available the client or display 
will keep attempting to reconnect. 

The protocol for the display is very simple. After making 
the connection to the MS, XML formatted requests are sent, 
similar to Figure 2. After the MS retrieves the data from its 
cache or requests it from the clients, it returns a similarly 
formatted XML document that contains both the data and 
also all the machines that are of that monitor type. If the data 
requested is from a machine type with many copies – like a 
l3xnode – then a copy of the data will be returned for each 
machine. Data from a specific machine can be requested. 

The client communication protocol is very similar. The 
MS will send the client an XML request very similar in 
format to the display’s request. The XML is designed such 
that the client can just fill in the monitor items one at a time 
and reply with that information (using the XML Document 
Object Model (DOM)). 

There are numerous timeouts in the system to keep it well 
behaved even when a client or display misbehaves. If the 
request cannot be queued by the display handler the display 
gets an error message. If the request sits on the internal 
queue longer than one second a timeout message is sent back 
to the display. A client has 3 seconds to reply to a request for 
data. If it fails to reply 10 times in a row within 3 seconds, it 
is disconnected. The dispatcher thread allows 2 seconds for 
all clients to return their data, and if a client is busy 
processing the previous request when it starts, it will mark 
that client as having timed out in the display’s reply. 

In order to correctly put monitor data in the cache the MS 
must parse the reply from the client. This is done with a 
high-speed, zero-copy, hand coded parser. 

2.3. Client and Display Design 

It was recognized early in the monitor system project that 
simple interfaces would make for wider adoption. The 
TCP/IP client and display protocols were designed with this 
in mind: we have also written API’s and libraries to 
implement the protocols. We currently have API’s 
implemented in C++ and python for the client-side protocol, 
and implementations in C++, python, java, and C# for the 
display-side protocol. 

When a client first connects it advertises its type and 
machine name by sending an initial XML message. Clients 
must have a thread listening to the port for incoming 
messages and must serve them as fast as possible. If the 
client takes longer than 3 seconds to respond, the MS will 
flag an error. Repeated failure to respond in time will cause 
the MS to drop the client’s connection. 

We have clients in the system that implement the TCP/IP 
and XML protocol directly. We also have a collection of 
objects that will take care of all required XML parsing and 
data conversion. In fact, it is possible to declare an arbitrary 
instance of a data type to be monitored. Using the common 
C++ template traits technique the underlying code will 
render the data to XML whenever a request for the data 
arrives. Integer counters, for example, can be declared as a 
template and then used as normal integer in most cases. We 
have also written a python compiled module that uses a 
simple name-value pairing to set monitoring variables. The 
servicing of monitor requests from the MS is invisible to the 
user. Both API implementations use the xerces XML parser 
[3]. 

We have created a similar set of libraries for the display 
writer. The request to the MS is usually part of the display’s 
main program loop. Various displays often vary what MS 
items they are requesting depending upon the view the user 
has chosen to display. The libraries all incorporate XML 
parsing of one sort or another, though further parsing of 
complex monitor data item is left entirely up to the display 
writer. The package most appropriate to the language the 
user is using is generally used. 

A small set of monitor displays are also clients. These 
frequently collate large amounts of information and publish 
it back in a collated form. This reduces the amount of data 
that has to be sent over the wire especially to a display on 
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the other end of a low-end DSL line. The daqAI auto 
recovery program, described in Section 3, is one such 
display/client combination. 

2.3.1.  Security 
Fermilab is a National Lab, and, as such, all computer 

systems critical for the operation of the accelerator and the 
taking of data must be protected by a firewall. The MS is no 
exception, and thus there is no way to directly contact the 
MS from outside the firewall. Early on it was recognized 
that this made the system less useful for remote debugging if 
displays could not connect. We have received permission to 
open a single port to a specific machine across the firewall. 
This second machine receives MS requests and relays them 
to the MS, and relays the answers back. The relay contains 
no intelligence, but does do careful buffer length checks, 
illegal character checks, etc. The relay system is a Windows 
XP system. All clients must be inside the firewall. 

2.4. Monitor Displays and Clients 

This section contains a brief description of a number of 
the monitor displays and clients we have running in 
production. 

2.4.1. Monitor Clients 
The L3DAQ’s readout crates contain a Single Board 

Computer (SBC) that runs the VME readout. The system 
supplies monitor information on the readout state of each 
crate, CPU usage statistics, and data transmission failures. 
The statistics furnished by the SBC to the monitor system 
requires traversing fairly complex data structures in the 
program. We have had to use a fast mutex to protect 
modification by the main SBC program while the monitor 
data is being collected. Performance of the SBC is not 
noticeably affected by the locking because the caching 
feature in the MS reduces the monitor requests to about two 
per second. 

The Level 3 farm nodes are another component for which 
CPU is a valuable resource. Currently information on 
incomplete events and CPU usage are generated. There are 
plans to convert trigger pass statistics and physics 
performance from another monitor system to the one 
described in this paper. 

The DØ trigger framework (TFW), a non-L3DAQ system,  
also generates extensive information. This includes all the 
scalars for the Level 1 and Level 2 triggers and configuration 
information. 

There are also a number of monitor repeaters. For 
example, we have one system that monitors a web page 
generated by the accelerator division and scrapes the CDF 
and DØ luminosity, anti-proton stack size, and even the 
temperature. 

2.4.2.  Monitor Displays 
The principle shift monitor displays for the L3DAQ are 

written in Java. The designs are based upon the principles 
outlined in Tuffte’s books on the display of graphical 
information [4]. The main L3DAQ display, uMon, contains 
a relatively large amount of densely packed information 
arranged for interpretation by both experts and non-experts. 
In general we find that though non-expert shifts require 

about a week to familiarize themselves with the display, they 
can diagnose a large range of L3DAQ and other subsystem 
problems with just a glance. Figure 4 shows a portion of the 
uMon display. A similar display for the L3 CPU farm also 
exists. The displays were carefully prototyped with simple 
paint programs and handed around to a small group of 
experts and non-experts before programming began 
(PowerPoint, xfig). The displays’ designs and usability 
benefited from this process. This  set of displays run on both 
Linux and Windows. 

 
Figure 4 : A small portion of the uMon shifter-
monitor display. Each large box represents a single readout 
crate. The % shows the incomplete event rate for the crate 
and below it is  the status of the L3DAQ route and event 
queues (on the left, in the white area). The yellow area 
shows the status of every connection the SBC maintains 
(there are three farm nodes down). The white area on the 
right is a rate plot; one small downtime is visible as an 
inverse white spike. 

The L3DAQ also has an expert display based on the 
freeware version of Qt [5]. This display has a fairly simple 
main window from which further dialog boxes can be 
opened. The drill down approach has worked will for getting 
progressively more detailed information. The display alters 
its monitor data requests to suit the information it needs to 
show. Thus it can request detailed, expensive-to-generate 
information for one or two particular monitor system clients. 
This display also runs on both Linux and Windows. 

We also have written a small Windows systray monitor. 
This puts a small 32x32 pixel icon in the Windows taskbar 
that displays the system’s health continuously. It has only a 
rate meter and two green/red circles that indicate general 
system health. Moving the mouse pointer over the icon will 
display a small popup with further information. This small 
display was inspired by Quite Computing principles and has 
proved useful a useful way for experts to watch L3DAQ 
while doing other work. 

The systray monitor is often run on a portable, which isn’t 
always connected to the internet. It is more convenient to use 
an http based interface for this monitor tool. There is a web 
site that acts as a front-end for the monitor server. The web 
site, called l3mq , also allows developers debugging the 
system to issue monitor queries without having to write 
code. It is also possible to store a query and reissue it by 
accessing a single URL. Finally, the web site collects 
statistics from the MS about which items have been 
requested and maintains a database. The Web Site user can 
then add documentation. In the future this will automatically 
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be turned into a manual of all monitor items available in the 
system. 

We also have an archiver program which issues a query 
once every 15 seconds and writes the results to a large data 
file. A web interface allows one to make time-based queries 
and plots online. The format was originally a root file, but 
indexing proved difficult. The database was converted to 
Oracle, but the amount of stored data proved to be too large 
for the system. We are planning to switch to a mixed system: 
root to store the raw data, and Oracle to store the index 
information. 

2.5. Performance 

The MS has been in operation for almost 2 years. The 
monitor system currently runs on a dual 1.2 GHz CPU Linux 
based system with 0.5 GB of RAM. Typical usage has it 
querying clients for 0.5 MB/sec and replying to displays 
with 1-2 MB/sec of data. The CPU is usually 25% busy. The 
display typically has 150 clients connected and over 70 
displays. 

The data format is ASCII and not compressed. During our 
initial running we had a system-wide query that was 
delivering 1 MB/sec to each copy of a particular display 
type. We developed an ASCII encoding to compress the data 
so that less than 100 KB was delivered to each display. 

The MS can have more than 100 threads executing at a 
time. We have not noticed degradation in the CPU or the 
performance as a function of the number of threads running 
on the machine. 

Our original implementation of the MS used Xerces to 
parse the replies from the clients. This proved to be a CPU 
bottleneck. Since the MS doesn’t care about the contents of 
the data item, it didn’t make sense to spend CPU cycles 
parsing it. We wrote our own custom parser that takes 
advantage of the known format of the XML replies. This 
reduced the CPU utilization by an order of magnitude. 

2.6. Future Directions 

The MS is a stable product and rarely crashes or has 
modifications made to its source base. We have altered some 
of the communication timeouts as the rest of the system 
grows more stable (lengthening them). 

In future we may desire to have more monitor displays or 
clients. One possibility is to make a hierarchy of caching 
monitor servers. Each MS queries the MS below for 
information. This is particularly attractive if you have a large 
number of a particular client with a fairly stable query. 

It is also possible to run with multiple MS, each one 
devoted to a particularly large sub-system. The 
implementation for this is a matter of configuring what 
machines/ports the MS runs on. 

3. THE DAQAI AUTO RECOVERY UTILITY 

There are small classes  of DAQ problems in a large 
experiment like DØ that are easy to recover but cause 
significant downtime. For example, DØ had a bug in some 
readout crate code. The programmer was unable to fix the 

bug immediately because they were stuck outside the 
country (visa difficulties, post 9/11). The result was 30-120 
seconds of downtime every 10 minutes. The length of 
downtime was a strong function of the wakefulness of the 
shift personnel. The problem was easily recognizable and 
also easy to recover from: a single init command needed to 
be issued. 

This experience and several other similar ones were 
daqAI’s genesis. The utility is designed to recognize a 
number of specific problems, and, if possible, recover the 
DAQ system to continue taking data without shifter 
intervention. The daqAI utility also informs the control room 
via a text -to-speech interface what it is doing and what 
problem it has found and keeps a shift summary. It is 
important that the control room be informed of daqAI’s 
actions other wise the shifter and the program could work at 
odds. 

The system is designed around a fact-based embeddable 
expert system, CLIPS [6]. The system is built around a rule-
inference system. Monitoring data is collected from the MS 
and converted to facts. The facts drive the rule engine, which 
will in turn execute embedded subroutines and functions or 
define new facts which will, in turn, cause more rules to 
execute. Functions are defined that can effect the desired 
changes. Figure 5 shows a high level architectural diagram 
of the system. 

 
Figure 5 : The daqAI architecture. A C++ shell 
mediates the actions and inputs of the CLIPS script and all 
components external to the system. Connections to the 
Logger, Run Control, the text -to-speech synthesizer, and the 
monitor server are all by TCP/IP. 

daqAI is both a MS client and display. It uses the display 
features to gather the data it uses to make its decisions, and 
the client features to publish its internal state, actions, and 
log. 

3.1. Program Structure 

daqAI, the C++ program, is a shell. Embedded in the shell 
is the CLIPS system. At runtime a CLIPS rule script is 
loaded and run thus allowing us to change its behavior 
without having to rebuild the system. Figure 5 shows the 
general design. 

3.1.1. The C++ Shell 
daqAI is designed around a loop that executes forever. 

The loop is repeated approximately once per second. The 
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loop first makes a MS request to gather the monitor data. 
The system then resets the CLIPS system to its cleared state 
and defines facts corresponding to the monitor data. The 
translation algorithm is a fairly simple text based one. The 
CLIPS inference engine is then run. During the engine 
execution rules make callbacks into the daqAI shell to 
request logging output or request an init of the L3DAQ 
system. The daqAI shell does nothing during the callbacks 
other than to mark they have occurred. Once the inference 
engine has run to completion, the daqAI shell examines the 
DAQ init requests, log requests, text -to-speech requests, etc., 
for new ones that weren’t present on the previous iteration. 
The new requests are acted upon, the old ones ignored. Any 
requests that were made last iteration but not the current 
iteration are so noted, though no external action is taken. 
Finally, monitor variables and information are generated and 
published for any MS requests. The loop then repeats. 

The CLIPS rule engine is started fresh for each iteration 
through the main loop. All previous knowledge is erased 
from the engine at the start of the loop. Thus, the system 
arrives at the same set of conclusions each time through the 
loop as long as the inputs remain the same. Of course, if a 
problem occurs requiring a reset to be issued, one would 
expect the system to issue a reset each time through the loop. 
As shown in Figure 5, daqAI C++ is a shell around the 
CLIPS system. It watches the requests that are made by the 
CLIPS system and takes action only when it observes a 
change. So the first time a reset request is made, the shell 
will actually issue the reset. If the same request is made on 
the next iteration, no reset will be issued to the DAQ system.  
This pattern is followed for all actions. 

The system could have been designed to remember facts 
from iteration-to-iteration. A facts based system is well 
suited to noticing a set of facts in combination and flagging 
them. However, the code to recognize that this set of 
conditions no longer exists, but did just before is not clear or 
easy to write. The problem domain is also well suited to the 
idea of a fresh start each iteration: this version of the system 
isn’t designed to watch for patterns in the time -domain: just 
the presence of a set of condition. 

There are situations that require some memory from 
previous iterations. A number of monitor variables tend to 
give false reading for a very short period of time , for 
example . daqAI must make sure the monitor variable is out 
of range for an extended period of time. daqAI contains a 
number of useful constructs give the script crude model of 
time. There are timers that will count up as long as a special 
function is called each iteration. If it isn’t called, the timer 
resets to zero. The timer is available as an input for rules as a 

fact. There are also counters and even arbitrary facts that can 
be set and thus remembered from iteration to iteration. 

The main loops plug-in architecture allows for 
communication to an arbitrary set of external devices. 
Currently these include the main DØ Run Control program, 
log files, a control room text -to-speech synthesizer, the 
official control room logbook, and email. Each time daqAI 
identifies an error it will assign it a name. Once a downtime 
condition has been resolved a complete report is added to the 
official online logbook, where it can be viewed by any 
member of DØ. At the end of each shift daqAI reports what 
errors occurred and their total downtime. This gives an 
accurate accounting of downtime at DØ. 

3.1.2. The CLIPS Language  
CLIPS rules are stored as a text file. The structure of the 

script is completely up to the programmer. The language is 
rich containing not only rule constructs but also objects. The 
daqAI script makes use only of the rule style. For complete 
documentation see references [6]; this section contains a 
very brief introduction to rule based programming in CLIPS. 

The runtime environment contains a list of active facts. 
Each fact has a name and an arbitrary number of arguments. 
For example (daq_rate 33) might indicate the L3DAQ rate is 
currently running at 33 Hz, and (bad_muon_roc) might 
indicate that a muon readout crate has gone bad. In the 
daqAI program, the C++ shell defines a list of facts that are a 
direct translation of the monitor data. 

The CLIPS program is a list of rules. Rules have 
preconditions and actions. A rule fires when the 
preconditions are met. Preconditions are usually pattern 
matches involving facts. Figure 6 is a simple example. This 
rule will fire only if the daq_rate is less than 50 Hz. In this 
case, this rule will assert a new fact: (b_daq_rate_low 33) 
given the initial presence of the (daq_rate 33) fact. 

Very powerful programs can be built out of this simple set 
of constructs. Facts represent the current environment and 
rules represent the knowledge. 

3.1.3. The CLIPS daqAI Script 
The daqAI CLIPS script is the heart of daqAI. Its rules 

contain the hand coded knowledge of the problems it 
recognizes and the actions it should perform upon their 
recognition. 

The layout of the script is in several tiers, each tier feeds 
the next . The lowest tier contains the facts that are directly 
converted to facts by the daqAI C++ shell. The second tier 
contains very basic inferences from the raw data. For 
example, it contains a rule testing for a low L3DAQ event 
rate. The third tier contains problem recognition rules and 
often involves several second tier inputs. The third tier also 

(defrule b_daq_rate_low "Is rate too low?" 
 (daq_rate ?rt&:(< ?rt 50)) 
 => 
 (assert (b_daq_rate_low ?rt)) 
) 
 

Figure 6: A simple CLIPS rule. This rule will assert a new fact, b_daq_rate_low if the fact (daq_rate x) is present 
and x is less than 50. 
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insures that the existence of a problem is worrisome. This 
prevents daqAI from trying to control the system during 
commissioning, for example. The fourth tier contains the 
action rules. These issue commands to run control, log 
messages, send text to the speech synthesizer (and old 
DECTalk DTC01 machine). 

 

3.2. Performance 

The current version of daqAI has been in operation for 
almost a year without major modifications. When the daqAI 
program first started running the DØ DAQ system had a 
number of problems that daqAI was able to fix much faster 
and more consistently than most shifters. The result was data 
taking efficiency went from about 75% to 85%. Currently, in 
June of 2003, the DØ DAQ system is much more stable and 
as a result daqAI’s direct impact is less. One of its more 
important functions now is to create the shift summaries and 
list the individual downtimes. 

The current version of the daqAI CLIPS script uniquely 
recognizes 8 different problems, in addition to the general 
Unknown downtime. For 4 of them there are established 
automatic recovery procedures. The unknown problem 
classification indicates a problem that daqAI doesn’t 
explicitly recognize. 

One key to a system like daqAI’s success is the wealth of 
monitor information available to it. Adding new data sources 
to our MS system only increases the potential of a tool like  
daqAI. 

3.3. Comments on Usage 

Though daqAI has proved quite useful, it is not without its 
problems. In particular, the amount of work required to 
identify a common problem and implement an automated fix 
can be daunting. Especially when it is considered that in a 
system as complex as the DØ DAQ the same symptoms can 
mean different problems over time. 

Finding a new problem isn’t difficult. daqAI leaves behind 
enough logging information to make this easy. A key 
indication is if the Unknown category of downtime is quite 
large. Log file investigations and some time in the control 
room on shift will quickly point out the class of problems. 
Unfortunately, the symptoms for the problem are often 
duplicated during normal running and it  can often take a few 
days of testing to get the rules just right. Once that is 
correctly implemented an automated fix can be added. It was 
often found that what looked like single problems were , in 
fact, two types and required different fixes. This process can 
take again several days to sort out correctly. 

In the long term the inability of the script to respond to 
changing conditions can lead to problems. If the underlying 
problem is fixed, but daqAI’s script is not changed it can 
introduce dead time into the system by issuing run control 
commands where they are not required. 

Lastly, we were perhaps naïve thinking that the sociology 
of the experiment was not something we would have to deal 
with. Many detector groups were reluctant to have anything 

but a shifter control their detector. daqAI quickly gained 
acceptance as a tool to identify problems, but took a longer 
before people were comfortable with it sending direct 
commands and manipulating the system. 

3.4. Future Directions 

There are two possible improvements to daqAI based on 
current experiences: sensitivity to the time domain, and 
automatic run-condition classification. 

daqAI is not sensitive to the sequence in which things 
happen without resorting to the timer-counters mentioned 
above. The symptoms for a problem often evolve over time, 
or the differentiating fact is what happens in the initial 10 
seconds after the data rate begins to fall. Some of the 
monitor data has only course time resolution – more than 5 
seconds – but much of it has 1 second resolution. 

The second improvement addresses the most time 
consuming aspect of daqAI problem identification. There are 
many automatic classification schemes for physics variables 
based on various figures of merit. Something similar could 
be designed for a daqAI like system. One could imagine 
adding the ability to monitor shifter actions. When the shifter 
took an action that clearly changed the state of the system it 
would be recorded along with the current system state. 
Enough statistics and the system may be able to being a 
model. 

Both of these approaches, though interesting, would 
require a good deal of effort. Their implementation schedule 
has not yet been decided. 

4. CONCLUSIONS 

The monitor system based on a caching monitor server has 
proved to be a simple, robust, and easy to use monitor 
system for the DØ DAQ and other parts of the DØ online 
system. The key to its adoption by the rest of DØ was the 
easy with which one could communicate. The protocol was 
designed to be as simple as possible and thus gained the 
acceptance that other monitor systems didn’t as readily. We 
believe it is important to have as few monitor systems in an 
experiment as possible as the monitor system is only as 
powerful as the data it is serving. 

Many clients and displays were discussed in this paper. In 
particular, the daqAI auto recovery program has proved to be 
a unique use of this monitor data. When first implemented it 
helped DØ gain over 10% data-taking uptime, and in that 
sense was very successful. It correctly identified and fixed 
the most vexing problems. It continues to function, though 
DØ’s DAQ system is much more stable that before and thus 
makes use of daqAI auto-recovery feature less frequently. 

The most important lesson learned by our group during the 
design and implementation of thes e projects was the key to 
having monitor information easily and quickly available. 
The design allowed us to quickly add new monitor items in 
even some of the busiest environments. Rich and prompt 
monitor data is a good start to better experiment uptimes. 
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