

Verification and Diagnostics Framework in ATLAS Trigger/DAQ
M.Barczyk, D.Burckhart-Chromek, M.Caprini1, J.Da Silva Conceicao, M.Dobson, J.Flammer, R.Jones,
A.Kazarov2,3, S.Kolos2, D.Liko, L.Lucio, L.Mapelli, I.Soloviev2
CERN, Geneva, Switzerland

R.Hart
NIKHEF, Amsterdam, Netherlands

A.Amorim, D.Klose, J.Lima, L.Pedro
FCUL, Lisbon, Portugal

H.Wolters
UCP, Figueira da Foz, Portugal

E.Badescu
NIPNE, Bucharest, Romania

I.Alexandrov, V.Kotov, M.Mineev
JINR, Dubna, Russia

Yu.Ryabov
PNPI, Gatchina, Russia
1 on leave from NIPNE
2 on leave from PNPI
3 paper editor

Trigger and data acquisition (TDAQ) systems for modern HEP experiments are composed of thousands of hardware and software
components depending on each other in a very complex manner. Typically, such systems are operated by non-expert shift operators,
which are not aware of system functionality details. It is therefore necessary to help the operator to control the system and to minimize
system down-time by providing knowledge-based facilities for automatic testing and verification of system components and also for
error diagnostics and recovery.

For this purpose, a verification and diagnostic framework was developed in the scope of ATLAS TDAQ. The verification functionality
of the framework allows developers to configure simple low-level tests for any component in a TDAQ configuration. The test can be
configured as one or more processes running on different hosts. The framework organizes tests in sequences, using knowledge about
components hierarchy and dependencies, and allowing the operator to verify the functionality of any subset of the system. The
diagnostics functionality includes the possibility to analyze the test results and diagnose detected errors, e.g. by starting additional tests
and understanding reasons of failures. A conclusion about system functionality, error diagnosis and recovery advice are presented to the
operator in a GUI. The current implementation uses the CLIPS expert system shell for knowledge representation and reasoning.

1. INTRODUCTION

The ATLAS experiment [1] is one of four experiments at
the Large Hadron Collider particle accelerator that is
currently being built at CERN and is scheduled to start data
taking in 2007. The ATLAS detector data rate and volume
requires a very efficient Data Acquisition with a three-level
trigger system [2].

The ATLAS Online Software (Online SW) is a subsystem
of the ATLAS TDAQ project [2, chapter 5.3]. It
encompasses the software to configure, control and monitor
the TDAQ but excludes the processing and transportation of
physics data. It must co-exist and co-operate with the other
ATLAS sub-systems, in particular, interfaces are required to
the data-flow, triggers, processor farms, event builder,
detector read-out crate controllers and Detector Control
System (DCS).

The Control subsystem of the Online SW includes
software packages responsible for the distribution of run
commands and synchronization between the systems, TDAQ
initialization and shutdown, run supervision, error handling

and diagnostics, system testing and verification, access
management, process management and user interfaces.

The Diagnostics and Verification System (DVS) is one of
the software packages of the Control subsystem. It is used
for configuring and executing tests for TDAQ components ,
for detecting and diagnosing faults, and for advising
recovery actions to the TDAQ operator.

2. DVS FUNCTIONALITY

The ATLAS TDAQ system has a very complex structure
and behavior. Automation of system testing, error
diagnosing and recovery are important issues for the control
of such systems, because it helps to minimize experiment
down-time.

DVS is a framework which allows TDAQ developers and
experts to integrate tests and knowledge into it, so it can be
later used by a non-experienced shift operator to verify the
functionality of the TDAQ and diagnose problems. It is
possible to have a number of tests defined for a single
TDAQ component. Tests can be started on different hosts,
sequentially or in parallel.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1TUGP005 ePrint hep-ex/0305106

The main human users of DVS are the TDAQ Operator
and TDAQ Expert. The functionality of DVS is also used by
the TDAQ Supervisor application that helps the Operator to
control the system.

DVS functionality is exploited by the users in the
following cases (also presented in Figure 1):

• The TDAQ Expert implements and configures tests
for TDAQ components and stores tests in a database.
The Expert also stores the knowledge about testing
sequences and components behavior in a knowledge
base.

• During TDAQ initialization, TDAQ Supervisor
application or TDAQ Expert launches a number of
tests to ensure that hardware and software TDAQ
components are correctly initialized.

DVS

Supervisor

Operator

Expert

Verify
Component

Diagnose
Errors

Delevop &
Configure

Test

Browse
Testable

Components

Figure 1. DVS users and functionality

• When an error is detected during the data taking, the

TDAQ Operator can browse the TDAQ configuration
in the DVS GUI and verify the status of a group of
TDAQ components in order to detect problems.
Using rules stored in the knowledge base and the test
repository, DVS organizes and launches sequences of
tests for selected components. Then it analyses test
results, diagnoses errors and presents to the Operator
a conclusion about the reason for the errors. Advice
on how to repair failed components is also presented.

3. DVS DESIGN AND IMPLEMENTATION

3.1. Design approach

The main design ideas for DVS development were :
• to use simple component tests, developed by experts

for TDAQ components
• to use expert system technology to store TDAQ

developers knowledge in order to make it available
for non-experienced shift operators

• develop a framework which allows to configure, store
tests and store knowledge, which can be made
available for later use by the operators

• develop end-user, friendly GUI application to be used
by the operators

3.2. DVS package context

Figure 2 shows how DVS cooperates with users and other
Online SW packages. The functionality of DVS can be used
either by a human user (TDAQ Operator) via GUI or by
other packages (TDAQ Supervisor) via API. To implement
the required functionality, DVS reads the TDAQ
configuration via the Configuration Databases service,
launches tests via the Test Manager and uses the CLIPS
package to implement the expert system.

DVS

Operator

Configuration
Databases

Test
Manager

CLIPS

TDAQ
Supervisor

Figure 2. DVS package context

3.3. Implementation overview

The DVS internal architecture is presented in Figure 3. It
is composed of a Test Repository Database, a Knowledge
Base, an Expert System engine, C++ and Java libraries and a
Graphical User Interface application.

The Test Repository and Expert System provide TDAQ
developers (experts) with the possibility to:

• develop and configure tests for classes and objects in
the TDAQ configuration, or redefine existing tests
and store them in the test repository database

• develop the Knowledge Base, using the expert system
language, to store specific knowledge about
component functionality.

DVS

Expert Operator

Test
Repository

Knowledge
Base

Expert
System

dvs GUIC+ API

supervisor

Java API

Figure 3. DVS package internal architecture

For end users (TDAQ Operator or other Online SW
component like the Supervisor application), DVS provides
the possibility to have a "testable" view on a TDAQ
configuration, where a user can select a single component or
a group of components and verify its status. This

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2TUGP005 ePrint hep-ex/0305106

functionality is provided via GUI, or via the C++ and Java
APIs, so it can be used either directly by the operator or by
another application.

3.4. What is a test

A test is a small application, which verifies status of a
single software or hardware TDAQ comp onent in a
configuration and returns a test result (either Passed, Failed
or Unresolved). Test should be as independent as possible,
i.e. it should not rely on functionality of other TDAQ
components. Typically a test is developed by a component
expert. A test can be launched on any host used in the
configuration. It is possible to have a number of tests defined
for one TDAQ component, so they can be started on
different hosts, synchronously one-by-one or in parallel.

Test processes are handled and executed with the help of
the Test Manager and Process Manager [3, 4] - other Online
SW components.

3.5. Test Repository

The Test Repository is a database which allows to
describe different attributes of a test in the TDAQ
Configuration Database [5].

The facilities provided by the TDAQ Configuration
Databases are used to develop object schema, to store and to
retrieve test objects from the database.

Each test in the repository is an instance of one of three
classes defined in the Test Repository schema, presented in
Figure 4: Test, Test4Object or Test4Class. These classes are
used to describe test attributes and to associate the test with
objects in the TDAQ Configuration database.

The base Test class describes basic test attributes:
• test implementation (as a link to a SW_object class

from the TDAQ Configuration Database schema)
• test parameters
• test time-out
• host name where the test to be executed
• mode of test execution: synchronous or asynchronous

(for the case where a number of tests are defined for a
database object)

• order of tests execution (for the case where a number
of tests are defined for a database object)

Figure 4. Test Repository schema

Test4Class and Test4Object classes, inherited from the
Test class, are used to associate a test to objects in the
TDAQ Configuration database. Instances of the Test4Object
class are tests which verify the functionality of particular
TDAQ components, whose database identifiers are stored in
the “object_id” attribute of Test4Object. To define a test for
all objects of a particular class, it is necessary to create an
instance of Test4Class and fill its “class_name” attribute
with the name of the class to be tested.

A C++ API (Test Data Access Library) is provided to
access all the required configuration information.

The Test Repository and Test DAL are described in
details in [6].

The Test Repository can contain tests for any TDAQ
component described in a TDAQ configuration. Currently
the Online SW test repository contains:

• tests for all TDAQ Online SW infrastructure
applications

• a test for computer (remote access test)
• a test for VME module ("vme ping" test)
• a test for optical S-Link (source-destination test)

More tests are being implemented by TDAQ developers
for their particular TDAQ subsystems and components. It is
envisaged for the final TDAQ system to have a complete test
repository, which covers all TDAQ components that can be
tested.

3.6. Expert System

The core of DVS is an expert system engine, implemented
in CLIPS ("C" language Integrated Production System) [7].
Its main features are:

• the expert system functionality is available via C API,
so it can be integrated in C/C++ applications

• provides fully featured OO language
• uses “if-then” rules for knowledge representation
• free for non-commercial use
• available as source, easy to port to new platforms
• widely used, is known as the "de-facto" standard of

forward-chaining rule-based (production) systems in
the public domain

The DVS Knowledge Base (KB) is a number of text files
with CLIPS object schema and rules. Currently it contains
knowledge for testing and diagnosing application failures in
the distributed TDAQ environment. There are rules to
analyze results of testing, to start additional tests, to build
diagnostics and advisory messages.

Users can extend KB by developing new classes and rules
in CLIPS.

3.7. DVS GUI

The DVS GUI (shown in figures 5 and 6) presents the
TDAQ configuration as a hierarchical tree of testable
components (on the left side of the GUI).The user can select
any component or a group of component and launch tests
defined for these components . Test results, diagnosis of

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3TUGP005 ePrint hep-ex/0305106

found errors (if any) and recovery advice are presented on
the right side in separate panels for each tested component.

Other GUI features are:
• implemented in Java
• hypertext navigation over the output panels and the

components tree
• log file browser for accessing log files produced by

TDAQ applications running in a distributed
environment

• help panel to read on-line HTML documentation for
TDAQ components

Figure 5. DVS GUI main window with test result

DVS GUI for the TDAQ configuration which is used for

the current run can be launched from the main TDAQ
Control "Integrated GUI" application [8].

3.8. Usage examples

In Figure 5 the screenshot of the DVS GUI is presented. It
is an example of usage of the verification functionality of
DVS. On the left side of the GUI one can see a tree of
testable components in the loaded TDAQ configuration. One
component (Workstation “lxplus075”) was selected and
tested. The test log is displayed in a hypertext panel on the
right side. It shows a sequence of three independent tests
launched for this workstation and the details of those tests,
like parameters and host. Then the output of the tests and
finally the test result (“PASSED”) are displayed.

The screenshot in Figure 6 shows an example of failed
testing for the “MRS Server” application (Online SW
Message Reporting System server). To diagnose the failure,
some additional tests were launched by DVS (according to
rules in the KB) and the diagnosis of the failure was
developed along with advices what to do in order to recover
the failed component. The list of recovery actions to be

applied by the operator to repair the problem with the “MRS
Server” is presented in the “Expert Advice” panel on the
right side of the GUI.

Figure 6. DVS GUI window with recovery advice

4. SUMMARY

The paper describes use cases, and the design and
implementation details of the Diagnostics and Verification
System of the ATLAS TDAQ system. DVS is a framework
which is used for the configuration of tests for TDAQ
components and for automation of their execution. Each
TDAQ component in a configuration can be associated with
a number of tests. Each test is a binary that can be launched
on a computer in a distributed environment. All information
about tests is stored in the Test Repository database. DVS is
based on an expert system technique. Its knowledge base
keeps TDAQ developers knowledge, useful for detecting
and diagnosing faults and for advising the non-experienced
TDAQ Operator of recovery actions.

More detailed information about DVS, including Users
Guide can be found in [9].

References

[1] ATLAS Collaboration, “Technical Proposal for a
General-Purpose pp Experiment at the LHC collider
at CERN”, CERN/LHCC/94-43, 1994

[2] ATLAS Collaboration, “ATLAS High-Level
Triggers, DAQ and DCS Technical Proposal”,
CERN/LHCC/2000-17, March 2000

[3] I.Alexandrov et al., “Process Management inside
ATLAS DAQ”, IEEE Transactions on Nuclear
Science, Volume 29, Issue 5, Part 2, October 2002,
pages 2459-2462

[4] R.Hart, “Implementation of Test Manager”, ATLAS
DAQ-1 Technical Note112,
http://atddoc.cern.ch/Atlas/Notes/112/Note112-1.html

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4TUGP005 ePrint hep-ex/0305106

[5] I.Alexandrov et al., “ATLAS TDAQ Configuration
Databases”, Proceedings of CHEP2001 Conference,
Beijing, China, 2001, pp 608-611

[6] A.Kazarov, “Test Repository and Test DAL”,
ATLAS TDAQ-1 Technical Note 170,
http://atddoc.cern.ch/Atlas/Notes/170/Note170-1.html

[7] CLIPS Expert System Shell,
http://www.ghg.net/clips/CLIPS.htm

[8] IGUI web page, http://atlas-onlsw.web.cern.ch/Atlas-
onlsw/components/igui/Igui.html

[9] DVS web page
http//atddoc.cern.ch/Atlas/DaqSoft/components/diagn
ostics/Welcome.html

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5TUGP005 ePrint hep-ex/0305106

