Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

Verification and Diagnostics Framework in ATLAS Trigger/DAQ

M.Barczyk, D.Burckhart-Chromek, M.Caprini*, J.Da Silva Conceicao, M.Dobson, J.Flammer, R.Jones,
A.Kazarov??, S.Kolos?, D.Liko, L.Lucio, L.Mapelli, I.Soloviev?

CERN, Geneva, Switzerland

R.Hart
NIKHEF, Amsterdam, Netherlands

A.Amorim, D.Klose, J.Lima, L.Pedro
FCUL, Lisbon, Portugal
H.Wolters

UCP, Figueira da Foz, Portugal
E.Badescu

NIPNE, Bucharest, Romania
|.Alexandrov, V.Kotov, M.Mineev
JINR, Dubna, Russia
Yu.Ryabov

PNPI, Gatchina, Russia

1 on leave from NIPNE

2 on leave from PNPI

3 paper editor

Trigger and data acquisition (TDAQ) systems for modern HEP experiments are composed of thousands of hardware and software
components depending on each other in a very complex manner. Typically, such systemsare operated by non-expert shift operators,
which are not awareof system functionality details. It is therefore necessary to help the operator to control the system and to minimize
system down-time by providing knowledge-based facilities for automatic testing and verification of system components and also for
error diagnostics and recovery.

For this purpose, a verification and diagnostic framework was developed in the scope of ATLAS TDAQ. The v erification functionality
of the framework allows developers to configure simple low-level tests for any component in a TDAQ configuration. The test can be
configured as one or more processes running on different hosts. The framework organizes tests in sequences, using knowledge about
components hierarchy and dependencies, and allowing the operator to verify the functionality of any subset of the system. The
diagnostics functionality includes the possibility to analyzethetest results and diagnose detected errors, e.g. by starting additiona tests
and understanding reasons of failures. A conclusion about system functionality, error diagnosis and recovery advice are presented to the

operator in a GUI. The current implementation uses the CLIPS expert system shell for knowledge representation and reasoning.

1. INTRODUCTION

The ATLAS experiment [1] is one of four experiments at
the Large Hadron Collider particle accelerator that is
currently being built at CERN and is scheduled to start data
taking in 2007. The ATLAS detector data rate and volume
reguires a very efficient Data Acquisition with a three-level
trigger system[2].

The ATLAS Online Software (Online SW) is asubsystem
of the ATLAS TDAQ project [2, chapter 5.3]. It
encompasses the software to configure, control and monitor
the TDAQ but excludes the processing and transportation of
physics data. It must co-exist and co-operate with the other
ATLAS sub-systems, in particular, interfaces are required to
the data-flow, triggers, processor farns, event builder,
detector read-out crate controllers and Detector Control
System (DCS).

The Control subsystem of the Online SW includes
software packages responsible for the distribution of run
commands and synchronization between the systems, TDAQ
initialization and shutdown, run supervision, error handling

TUGP0O05

and diagnostics, system testing and verification, access
management, process management and user interfaces.

The Diagnostics and Verification System (DVS) is one of
the software packages of the Control subsystem. It is used
for configuring and executing tests for TDAQ components,
for detecting and diagnosing faults, and for advising
recovery actionsto the TDAQ operator.

2. DVS FUNCTIONALITY

The ATLAS TDAQ system has a very complex structure
and behavior. Automation of system testing, error
diagnosing and recovery are important issues for the control
of such systems, because it helps to minimize experiment
down-time.

DVSis aframework which allows TDAQ developers and
experts to integrate tests and knowledge into it, so it can be
later used by a non-experienced shift operator to verify the
functionality of the TDAQ and diagnose problems. It is
possible to have a number of tests defined for a single
TDAQ component. Tests can be started on different hosts,
sequentialy or in parallel.

ePrint hep-ex/0305106

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

The main human users of DVS are the TDAQ Operator
and TDAQ Expert. The functionality of DVSis also used by
the TDAQ Supervisor application that helps the Operator to
control the system.

DVS functionality is exploited by the users in the
following cases (also presented in Figure 1):

» The TDAQ Expert implements and configures tests
for TDAQ components and stores tests in a database
The Expert also stores the knowledge about testing
sequences and components behavior in a knowledge
base.

e During TDAQ initialization, TDAQ Supervisor
application or TDAQ Expert launches a number of
tests to ensure that hardware and software TDAQ
components are correctly initialized.

DVS

Component
Supervisor

V4
/
/ Diagnose
z P Errors

Operator
> Browse
Testable

Components

Delevop &
Configure
Test

—

Expert

Figure 1. DV Susers and functionality

* When an error is detected during the data taking, the
TDAQ Operator can browse the TDAQ configuration
in the DVS GUI and verify the status of a group of
TDAQ components in order to detect problems.
Using rules stored in the knowledge base and the test
repository, DV S organizes and |aunches sequences of
tests for selected components. Then it analyses test
results, diagnoses errors and presents to the Operator
a conclusion about the reason for the errors. Advice
on how to repair failed components is also presented.

3. DVS DESIGN AND IMPLEMENTATION

3.1. Design approach

The main design ideas for DV S devel opment were:

 to use simple component tests, developed by experts
for TDAQ components

e to use expert system technology to store TDAQ
developers knowledge in order to make it available
for non-experienced shift operators

« develop a framework which allows to configure, store
tests and store knowledge, which can be made
available for later use by the operators

TUGP0O05

« develop end-user, friendly GUI application to be used
by the operators

3.2. DVS package context

Figure 2 shows how DV 'S cooperates with users and other
Online SW packages. The functiondity of DVS can be used
either by a human user (TDAQ Operator) via GUI or by
other packages (TDAQ Supervisor) via API. To implement
the required functionality, DVS reads the TDAQ
configuration via the Configuration Databases service,
launches tests via the Test Manager and uses the CLIPS
package to implement the expert system.

r— —
)
TDAQ _E.
Supervisor 1 /k
o =N\
N ‘-_// Operator
DVS
-~ i N,
71 & - ¥ i
Test Configuration
CLIPS Manager Databases

Figure 2. DV S package context

3.3. Implementation overview

The DVS interna architecture is presented in Figure 3. It
is composed of a Test Repository Database, a Knowledge
Base, an Expert System engine, C++ and Java libraries and a
Graphical User Interface application.

The Test Repository and Expert System provide TDAQ
developers (experts) with the possibility to:

« develop and configure tests for classes and objects in
the TDAQ configuration, or redefine existing tests
and store them in the test repository database

 develop the Knowledge Base, using the expert system

language, to store specific knowledge about
component functionality.
DVS i
’:_—__:)I 1
| Knowledge §_ Expert
|l Base I — System Java API
J
7 A3 4 =
T - oK AN
[—— | ~L
|| Test ———s| C+API S dvs Gul
I'| Repository | |
[| [
| 3 T 2
T 7 1 =
& N
\
_T I::j supervisor L
=
// N\ I //K\
Expert Operator

Figure 3. DV S package internal architecture

For end users (TDAQ Operator or other Online SW
component like the Supervisor application), DVS provides
the possibility to have a "testable" view on a TDAQ
configuration, where a user can select a single component or
a group of components and verify its status. This

ePrint hep-ex/0305106

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

functionality is provided via GUI, or via the C++ and Java
APIs, so it can be used either directly by the operator or by
another application.

3.4. What is atest

A test is a small application, which verifies status of a
single software or hardware TDAQ component in a
configuration and returns a test result (either Passed, Failed
or Unresolved). Test should be as independent as possible,
i.e. it should not rely on functionality of other TDAQ
components. Typically a test is developed by a component
expert. A €st can be launched on any host used in the
configuration. It is possible to have a number of tests defined
for one TDAQ component, so they can be started on
different hosts, synchronously one-by-one or in paralel.

Test processes are handled and executed with the help of
the Test Manager and Process Manager [3, 4] - other Online
SW components.

3.5. Test Repository

The Test Repository is a database which alows to
describe different attributes of a test in the TDAQ
Configuration Database [5].

The facilities provided by the TDAQ Configuration
Databases are used to develop object schema, to store and to
retrieve test objects from the database.

Each test in the repository is an instance of one of three
classes defined in the Test Repository schema, presented in
Figure 4 Test, Test4Object or Test4Class. These classes are
used to describe test attributes and to associate the test with
objectsin the TDAQ Configuration database.

The base Test class describes basic test attributes:

* test implementation (as a link to a SW_object class
fromthe TDAQ Configuration Database schema)

* test parameters

* testtime-out

* host name where the test to be executed

» mode of test execution: synchronous or asynchronous
(for the case where a number of tests are defined for a
database object)

« order of tests execution (for the case where a number
of tests are defined for a database object)

desentie-from
—
Teat
pexameiars : siing 0N
host: eiring
H#ﬂmm Py
neo 14| SW_Olject
TestdTlase Test4Object
dab_name: oiring objact d . Bl <siring>

Figure 4. Test Repository schema

TUGP0O05

Test4Class and Test4Object classes, inherited from the
Test class, are used to associate a test to objects in the
TDAQ Configuration database. | nstances of the Test4Object
class are tests which verify the functionality of particular
TDAQ components, whose database identifiers are stored in
the “object_id" attribute of Test4Object. To define a test for
al objects of a particular class, it is necessary to create an
instance of Test4Class and fill its “class_name” attribute
with the name of the class to be tested.

A C++ API (Test Data Access Library) is provided to
access al the required configuration information.

The Test Repository and Test DAL are described in
detailsin [6].

The Test Repository can contain tests for any TDAQ
component described in a TDAQ configuration. Currently
the Online SW test repository contains:

e tests for al TDAQ Online SW infrastructure
applications

¢ atest for computer (remote access test)

 atest for VME module ("vme ping" test)

 atest for optical S-Link (source-destination test)

More tests are being implemented by TDAQ developers
for their particular TDAQ subsystems and components. It is
envisaged for the final TDAQ system to have a complete test
repository, which covers all TDAQ components that can be
tested.

3.6. Expert System

The core of DVS is an expert system engine, implemented
in CLIPS ("C" language Integrated Production System) [7].
Itsmain features are:

« the expert system functionality is available via C AP,
so it can beintegrated in C/C++ applications

« providesfully featured OO language

 uses “if-then” rules for knowledge representation

« freefor non-commercial use

« available as source, easy to port to new platforms

e widely used, is known as the "de-facto" standard of
forward-chaining rule-based (production) systems in
the public domain

The DVS Knowledge Base (KB) is a number of text files
with CLIPS object schema and rules. Currently it contains
knowledge for testing and diagnosing application failures in
the distributed TDAQ environment. There are rules to
analyze results of testing, to start additional tests, to build
diagnostics and advisory messages.

Users can extend KB by developing new classes and rules
in CLIPS.

3.7. DVS GUI

The DVS GUI (shown in figures 5 and § presents the
TDAQ configuration as a hierarchical tree of testable
components (on the left side of the GUI).The user can select
any component or a group of component and launch tests
defined for these components. Test results, diagnosis of

ePrint hep-ex/0305106

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

found errors (if any) and recovery advice are presented on
theright side in separate panels for each tested component.
Other GUI features are:
* implemented in Java
* hypertext navigation over the output panels and the
componentstree
* log file browser for accessing log files produced by

TDAQ applications running in a distributed
environment
 help panel to read on-line HTML documentation for
TDAQ components
PP IR R F I aeota T Coad i SR (a0 ey | =)

Flg &0 Oproneg Hap
EREE N I E]

DAL Cor ponents

Ciagenss | Bpen asiic Toawoe) | CHAD | caisanr s

KO Contlaluirih 08 08 vl REL 40 iy | ¥
g B e cwars l
o arLes
¥ B crmw MOCL e e
$ @ Hogds moBL ;I,;'.]»C:JFH TemI5) For e objpect WptualBs te be
W TP B] ST N
I CF U Boand b s 1 - Implemented o3 TESTIF]

™ YME beeeaos

Paramerers: ~H plusies
Hiegx: it cxcford il

= DpkemEnied m
5 TEST.TCP FORT)
5 Parareters: -H Lgolusies -F 22
§ 5 raaacen ¥ i ARl
M W aion 1apasEIEg ,,,H e Gmglemented o3
1 i e = o
B8] Warhmrion T RS TEST _CORPUTER)

§ — e
[Pragram Fias
& B Intwr Frocsss Camimenics kn
& B o waaga
B [FSs. Supe ru e
B PG Agery on bepl Le0Gic
B PG Agars on bolLedes
& Pt W anag
o [b veen i oas
¥ PRI g e B U S
Sl icakan MRS Feceiver

Pardmetirs: -H lgdlu08h -2 ki -1 220 -
Mo noi defined dorsl

A LL:12FH: Ted dutput

oo ‘ssh Lgalusies Testane”
1
coTorred ash Lgpdustsh tuname =7

o MRS Seramr

Ty — a4 L1012 FH: Tem for Workstation laptus0ES FASSED
&0 Maniaring
- I35 e b
& % Fir Conirol
P e | b
WEICH R 0 TR O S DN L A8 B VST Py i ;
inRisiizing . 08 —
A st 1 L W D ed

Figure 5. DVS GUI main window with test result

DVS GUI for the TDAQ configuration which is used for
the current run can be launched from the main TDAQ
Control "Integrated GUI" application [8].

3.8. Usage examples

In Figure 5 the screenshot of the DVS GUI is presented. It
is an example of usage of the verification functionality of
DVS. On the left side of the GUI one can see a tree of
testable components in the loaded TDAQ configuration. One
component (Workstation “Ixplus075”) was selected and
tested. The test log is displayed in a hypertext panel on the
right side. It shows a sequence of three independent tests
launched for this workstation and the details of those tests,
like parameters and host. Then the output of the tests and
finally thetest result (“PASSED”) are displayed.

The screenshot in Figure 6shows an example of failed
testing for the “MRS Server” application (Online SW
Message Reporting System server). To diagnose the failure,
some additional tests were launched by DV'S (according to
rules in the KB) and the diagnosis of the failure was
developed along with advices what to do in order to recover
the failed component. The list of recovery actions to be

TUGP0O05

applied by the operator to repair the problem with the “MRS
Server” is presented in the “Expert Advice” panel on the
right side of the GUI.

™= NG RT I AWl S pYhs BTN FENE T [TEaT TR
Hie xiione Optisre Help

w B EEENE 4

LA TR Diggreasds | Copuncguce | Temleg Helw - Sopkowing Lags
Bl worbyiaion poaidlo?” |- m
B — S as
2 |2 Frogram st

[try-ngerdsr on infi
an |pul i wCbeck L the computer YWerkataton
e-sanvr o i 8 P 10225 s A has caroe shell
-Gl On lue sereioe ambled, or corraciness of it's pames
= 2wl et attrtutes in He cerfigmra
dansbase

menearig -lasory on
mr-racstanr on i

o

B rmrz-zerver onime (B8

rdb=mernr in a0

SRR On e o

o agend on EEE-rIE

 Seart apphicakion Partition I Secwar wia
Froo=ss Marager

B re-cratm-mrarspie-cics # fran apptcacion kRS Server via Process
B 3 iwer Froce ss Commani oy Henzger

IS Famiion P2 serv

£ Conmrad Pariiion sora

& i nformaion Serdce '
& 5 Wsceags Renering Syris)

W Srakcsinn WES R

W 5 ey
@ O Rty Qlabesss -
|4 : i |
[l cam i the O e Claguoaics and Vardicaion Framessack. -
Jrinsizing 0K =

Figure 6. DVS GUI window with recovery advice

4. SUMMARY

The paper describes use cases, and the design and
implementation details of the Diagnostics and Verification
System of the ATLAS TDAQ system. DV S is a framework
which is used for the configuration of tests for TDAQ
components and for automation of their execution. Each
TDAQ component in a configuration can be associated with
a number of tests. Each test is a binary that can be launched
on a computer in a distributed environment. All information
about tests is stored in the Test Repository database. DVSis
based on an expert system technique. Its knowledge base
keeps TDAQ developers knowledge, useful for detecting
and diagnosing faults and for advising the non-experienced
TDAQ Operator of recovery actions.

More detailed information about DVS, including Users
Guide can befoundin[9].

References

[1] ATLAS Collaboration, “Technical Proposal for a
General-Purpose pp Experiment at the LHC collider
at CERN”, CERN/LHCC/94-43, 1994

[2] ATLASCollaboration, “ATLAS High-Level
Triggers, DAQ and DCS Technical Proposal”,
CERN/LHCC/2000-17, March 2000

[3] I.Alexandrov et d., “Process Management inside
ATLAS DAQ”, IEEE Transactions on Nuclear
Science, Volume 29, Issue 5, Part 2, October 2002,
pages 2459-2462

[4] R.Hart, “Implementation of Test Manager’, ATLAS
DAQ-1 Technical Notell2,
http://atddoc.cern.ch/Atlas/Notes/112/Notel12- 1.html

ePrint hep-ex/0305106

(5]

(6]

[7]

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

|.Alexandrov et a., “ATLAS TDAQ Configuration [8]
Databases’, Proceedings of CHEP2001 Conference,
Beijing, China, 2001, pp 608-611 [9]

A.Kazarov, “Test Repository and Test DAL”,
ATLASTDAQ-1 Technical Note 170,
http://atddoc.cern.ch/Atlas/Notes/170/Notel70-1.html
CLIPS Expert System Shell,
http://www.ghg.net/clips/CL I PS.htm

TUGP0O05 5

IGUI web page, http://atlas-onlsw.web.cern.ch/Atlas-
onlsw/components/igui/lgui.html

DV S web page
http//atddoc.cern.ch/Atlas/DagSoft/components/diagn
ostics/Welcome.html

ePrint hep-ex/0305106

