

A Geometrical Modeller for HEP

R. Brun, A. Gheata
CERN, CH 1211, Geneva 23, Switzerland

M. Gheata
ISS, RO 76900, Bucharest MG23, Romania

For ALICE off-line collaboration

Geometrical modelling generally provides the geometrical description of a special structure and a set of services to "navigate"
through it. HEP geometrical modellers are designed to handle high complexity detector geometries and they are usually
embedded within simulation MC frameworks. The fact that these frameworks greatly depend on their specific geometrical tools
makes simulation applications hardly portable to MC’s other than the one they were designed for. The ALICE Off-line Project
in collaboration with the ROOT team is proposing a multi-purpose geometrical modeller for HEP that is integrated within a
virtual MC infrastructure. This tool has been optimised for performance with the geometry setups of several HEP experiments
and provides a single representation for the geometry used by different applications such as simulation, reconstruction or event
display.

Figure 1: The ROOT geometry modeller is able to represent most HEP experiments

1. INTRODUCTION

The simulation of an experiment is one of the most
important activities during its preparation as it can
provide a better understanding of the detector response
and how the acquired data will eventually look like. As
HEP moves to new experiments with more and more
complex detector systems, this becomes one of the most
CPU time and resources consuming off-line task. It is
handled by large simulation engines such as GEANT [5,
7] and has to share its geometry description with several
other frameworks, such as reconstruction or event
display.

Having one single geometry description may become a
critical issue when several applications have to share
related data and rely on detector module inter-dependent
algorithms. In such cases having for instance a simplified
geometry for reconstruction may not be an option
anymore. We have also to consider the fact that
geometry itself is a subject to changes in time. If several
different implementations are used, it can be very

difficult to maintain a consistent geometry. On the other
hand the geometry description and navigation features
are currently embedded and fully specific to the different
simulation engines, therefore the general tendency is that
several applications cluster in large frameworks around
these in order to solve this problem. Since geometry
modelling and related features are quite complex,
simulation packages grow larger as new geometrical
functionality is needed, the framework becoming less
and less modular leaving no alternative for usage of
other simulation packages other than the initial choice.

The geometry design itself is coded in a manner
optimizing the simulation performance for the specific
geometry modeller used, therefore becoming hardly
portable without penalties.

We are proposing a new package intended as a toolkit
to provide geometrical description of an experiment, full
navigation functionality and additional tools to help
building, checking and debugging geometries. Its
development is a common effort of both ALICE off-line
and ROOT teams that started 1.5 years ago.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THMT001 ePrint physics/0306151

Initially driven by ALICE needs related to the
simulation and reconstruction framework, the new
geometry is now designed as an experiment-independent
package. Based on a GEANT-like architecture, it is able
to represent and optimise the geometry performance of

several HEP experiments. The gain in speed for
navigation tasks ranges from 20% to about 800%
compared to GEANT3. Since a significant fraction of the
total simulation time is spent only for navigation
purposes, this provides a valuable gain in performance.

Monitoring

Simulation
program

Geant3-based
Geant4-based
Fluka-based

Visualization
Event display

Reconstruction
program

C++ classes
Geometry
package

Geometry,
Calibration,
Alignment

DB

G3 geometry

G4 geometry

FLUKA
geometry

Reconstruction
geometry

Other
geometries...

Figure 2: A single geometry available for all applications

The geometrical modeller is currently being integrated

in a Virtual Monte-Carlo schema enabling running
transparently several simulation MC’s using the same user
code.

2. ARCHITECTURE AND NAVIGATION

2.1. Design overview

The development of a new geometry package has started
from a set of requirements and desired features:

• Provide basic navigation features like: “Where am I
in the geometry?” “How far from next boundary?”
or “Which is the maximum safe step in any
direction that does not cross any boundary?”
“What is the normal to the boundary at the crossing
point?”.

• Be able to map existing GEANT3 geometry
descriptions in order to have a smooth transition
from what already exist.

• Provide a compact implementation that scales with
the number of objects in the geometry – both for
memory management and performance.

• Improve tracking performance with respect to
existing modellers.

• Provide full interactivity enabling users to easily
build, debug and access relevant geometrical
information.

Based on these requirements, we have adopted a
GEANT-like architecture based on the container-contained
concept [4] that was proven to work very well in case of

detector geometries. The modeller (TGeo) [1] is developed
within the ROOT framework [3] and currently provides a
set of 16 basic shapes (primitives). It also provides a way
of defining composite shapes as a result of Boolean
operations between several primitives. Since the
composition operation can be applied also to other
composite shapes, this feature provides a quite large
number of combinations covering most use cases. In order
to facilitate geometry definition, the modeller provides
also volume parameterisation methods as well as support
for divisions to take advantage of detector symmetries.

The geometry is built by positioning volumes (a shape
associated with a tracking medium) inside containers,
which are as well volumes. Since volumes can be
replicated several times, the resulting structure is a graph
representing the logical geometric hierarchy. The only
mandatory conditions in order to have the modelling
features working properly are that positioned volumes
(called nodes) should not extrude their containers and
sister volumes inside the same container should not
overlap each other. Since intended overlaps are sometimes
unavoidable, users are allowed to declare them in order to
be properly handled by the modeller.

Navigation inside geometries is optimised using
volumetric divisions (voxels) at the level of the volumes.
These structures allow minimising the number of node
candidates that have to be checked for a given point and
track direction, at the cost of additional memory.

2.2. Navigation features

A geometrical modeller has to provide answers to few
basic queries related to geometry. Particle tracking is

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THMT001 ePrint physics/0306151

generally performed based on step management. At the
heart of all simulation packages there is a physics engine
able to generate the next process that will affect the
currently transported particle and to propose the next step
accordingly. Since the cross sections of most physics
processes are highly dependent on material properties, the
step manager has to know the current material, the
distance to next boundary along current direction and the
maximum safe step that can be made in the current
volume. When crossing boundaries, some physics
processes may also require the normal vector to the
crossed surface.

This information can be retrieved from the API of the
geometry manager class [4], which is free from any
dependency on physics. We are currently developing
specific interfaces for GEANT3, GEANT4 and FLUKA in
order to be able to handle all geometry-related calls with
the new geometry.

Most of the described navigation features are fully
implemented and we have a working interface to GEANT3
package. Extensive testing against GEANT3 was done in
order to validate navigation algorithms. For doing that, we
have developed an automatic conversion tool from G3 to
TGeo format. In this way we were able to port a large set
of existing G3 geometries to the new modeller.

2.3. Validation procedure

Several geometries of existing HEP experiments were
converted directly from GEANT3 ZEBRA banks. This
insured a one to one mapping between G3 and ROOT
geometry descriptions. We have performed GEANT3
simulations with the default physics setup of each
experiment, collecting samples of one million points in the
step manager. For each point we have saved additional
information, like: current direction, current step length and
safety distance, as computed by G3.

This information was saved both in HBOOK and ROOT
formats and the point samples were than fed back into the
two modellers. For each point we computed the
predictions of both G3 and ROOT modellers. Proceeding
this way, we were able to perform extensive test and
debugging of the navigation algorithms. This led to several
optimisations with respect to the early implementations.

Figure 3 shows an example of XY plot for all collected
points. A consistency check was done as a first step: the
predicted paths to the deepest node containing a given
point were compared between GEANT3 and TGeo. This
test typically gave differences ranging between few
percents and 20-30% of the total number of points for
high-complexity geometries. The reason for this comes
from the fact that during a simulation, steps are always
forced when the current particle crosses a boundary. Since
the boundary positions of a given geometrical object are
computed as a result of local matrix multiplication in the
corresponding branch of the geometrical tree, these are
always affected by a floating-point “diffusion” error
increasing with the geometry granularity, e.g. the average

number of levels per branch. Due to this reason, TGeo
may classify points collected at boundaries on the other
side than G3.

Figure 3: Points collected from G3 step manager.

We have checked this hypothesis by introducing a small

smearing into the collected physics sample. This second
sample was called “random” and typically reduced the
“boundary effect” to less than 1% for all tested geometries.
The few remaining non boundary-related differences were
mostly coming from points belonging to the overlapping
region of two or more positioned volumes. These can be
equally classified as belonging to one or the other since it
does not affect the physics results of a simulation when
correctly defined. On the other hand, there were few cases
when the answer of TGeo was different from G3 due to
errors in the geometry definition (overlaps or extrusions).
Since we have performed a point-by-point check of all
differences, we were finally able to understand them and
provide a detailed classification accordingly.

Similar validation tests were performed related to the
computation of distances to the next boundary. We were
also able to simulate events in the case of ALICE
experiment having GEANT3 as main tracker and with
TGeo performing computation of distances in parallel.

Finally we have made performance comparisons for the
two modellers both for the physics and random samples.
These tests show the average timing per point for different
modellers in the case of several geometry setups. These
represent either some simple GEANT3 examples or actual
geometries of HEP experiments converted directly from
G3.

The benchmarks are presented in Table 1 and show that
TGeo modeller provides a large gain with respect to G3 in
the cases where the later is unable to optimise its internal
search algorithms; this usually happens for quite “flat”
geometries where more than 500 volumes are positioned in
the same container.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THMT001 ePrint physics/0306151

Table 1: TGeo performance vs. GEANT3 for “Where am I?” task. Point samples were collected during a G3-based
simulation for each setup; random points come from smearing these samples. Averaged timings per point (in µs) and
ROOT/G3 ratio are presented.

Geometry Nobjects <nodes FN_phys. FN_phys. G3/ROOT FN_rand. FN_rand. G3/ROOT
/volume> G3 ROOT G3 ROOT

Gexam1 425 0.17 1.18 0.73 1.62 2.41 1.18 2.04
Gexam3 86 2.04 1.10 0.65 1.69 1.19 0.66 1.80
Gexam4 12781 1.67 0.96 0.62 1.55 4.34 2.58 1.68
ATLAS 29046966 7.48 3.24 2.49 1.30 13.25 6.19 2.14
CMS 1166310 6.18 12.95 2.15 6.02 10.53 5.12 2.06
BRAHMS 2649 6.04 6.04 0.79 7.65 7.95 0.53 15.00
CDF 28525 11.45 25.04 1.90 13.18 5.60 1.07 5.23
MINOS_NEAR 30988 4.32 10.87 5.08 2.14 7.64 3.00 2.55
BTEV 295310 6.88 12.31 1.53 8.05 50.31 2.04 24.66
TESLA 15370 1.04 2.35 0.81 2.90 4.53 1.84 2.46

0 10 20 30 40 50 60

µs/point
(1 milion points)

Gexam1
Gexam3
Gexam4
ATLAS

CMS
BRAHMS

CDF
MINOS_NEAR

BTEV
TESLA

Performance for "Where am I" - random case

ROOT

G3

0 5 10 15 20 25 30

Gexam1
Gexam3
Gexam4
ATLAS

CMS
BRAHMS

CDF
MINOS_NEAR

BTEV
TESLA

Performance for "Where am I" - physics case

ROOT

G3

Figure 4: Benchmarks for finding the deepest node in the geometry containing a given point (“Where am I?”).

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THMT001 ePrint physics/0306151

3. ADDITIONAL FEATURES

3.1. User Interface

The modeller user interface is implemented at two
levels: all methods for building geometry, navigation
interface utilities, visualization global settings and
geometry checking are provided by the manager class [4].
Since any volume can become a top-level node in the
geometry tree, there are several control methods and
utilities (ray tracing, visualization, sampling) that are
implemented at the level of volume objects.

Once geometry is successfully built and closed, there are
several ways users can interact with it at graphics level.
The geometry manager class is then registered and
accessible in the ROOT browser [2]. The logical hierarchy
of volumes can be fully parsed and all interface methods
implemented at this level becomes accessible via context
menus. The geometry-drawing package is part of a
different library that is loaded on demand only when
graphics-related calls are issued.

3.2. Visualization and checking utilities

Geometry visualization is currently implemented as a
separate primitive-based interactive package allowing
volume picking in parallel or perspective views. Hidden
line/surface algorithms are supported for the time being by
a separate package called X3D.

As the modeller architecture is based on embedding
volumes into several layers, visualization supports a
number of global options such as:

• Visualization of all volumes down to a given level;
• Visualization of final leaves in geometry, e.g.

volumes having no daughters inside;
• Visualization of a specified branch or of a given

volume only.
There are several visualization attributes that can be set

directly at volume level:
• Visibility of the volume itself;
• Visibility of daughters;
• Colour and line attributes;

Once a picture is displayed, several methods can be used
in order to perform validation checks for a given geometry
module/branch:

• Sampling random points in the bounding box of the
displayed volume branch. This method allows a
direct visualization check of the modeller response
for a given part of the geometry. Points classified
by the modeller as belonging to volumes which are
currently displayed are plotted with the same colour
as the volume containing it;

• Isotropic ray tracing starting from a given point
defined in the local reference frame of the displayed

volume. Rays are fully tracked until they exit the
current branch and only the segments crossing
visible parts are displayed.

• Weight estimation of a given detector module. This
is provided by a material sampling algorithm where
it is possible to specify the desired precision.

In order to provide better interactivity, picked objects
can be inspected. The viewing system provides navigation
controls for zooming, moving, rotating and animating
geometries.

3.3. Geometry checker

A simple but efficient geometry-checking tool was
developed in order to be able to debug geometries. In fact,
this tool is able to detect the vast majority of incorrect
geometric constructs in reasonable time. As an example, a
geometry like ALICE containing about 1.2 million
positioned objects is fully checked within 30 seconds.

The checking algorithm verifies (within a given
tolerance) if:

• Any of the positioned volumes extrude their
container;

• Any of the volumes positioned inside the same
container overlap each other, unless declared these
volumes are declared overlapping.

The method loops over all pairs of candidate nodes,
producing a list of illegal overlaps/extrusions that can be
inspected with the ROOT browser. This list is sorted by
decreasing overlap distance and all objects inside can be
inspected and visualized on-line.

Table 2: Overlaps in ALICE geometry.

1460 764 154 ALICE

>10�µ >100 µ > 1 mm

Overlaps/Extrusions Geometry

Figure 5: A typical extrusion

3.4. Geometry I/O

Currently the geometry modeller supports full ROOT
I/O, meaning that a given geometry can be exported at any

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THMT001 ePrint physics/0306151

time as a ROOT file or retrieved back in a ready state. The
size of the geometry file and the time to load are very
important when designing and testing it.

In table 3 are presented the sizes of few geometry files
as represented by TGeo modeller compared to the original
size of the GEANT3 representation in RZ format. In order
to have a more complete picture of the I/O performance,
the time to read into memory each geometry file is
presented against the total number of nodes.

Table 3: I/O load lime and file size compared to GEANT3
Geom. No. Nodes G3 .rz

[Kb]
.root file

[Kb]
CPU time
PIII/800[s]

AMS 112777 7372 4059 10.59

ATLAS 29046966 9863 4231 6.38

BTEV 295310 2048 839 1.30

CDF 24422 1818 1113 1.00

As a future plan, we consider the possibility to interface

the geometrical modeller I/O with at least one relational
database such as MySQL.

4. VIRTUAL MONTE-CARLO INTEGRATION

The ROOT geometrical modeller is currently being
integrated in a Virtual Monte Carlo (VMC) schema [8]
developed within the ALICE Software Project. The final
goal is to be able to run transparently several simulation
engines using the same geometry. Being independent from
any simulation package, this geometry can also be used in
a reconstruction code.

V ir tu a l
G e o m etr ic a l

M o d e ller

G 3

G 4

F L U K A

G 3 tra n sp o rt

G 4 tra n sp o rt

F L U K A
tra n sp o rt

G e o m e tr ic a l
M o d e lle r

R e c o n stru c tio n V isu a lisa tio n

V M C
U se r
c o d e�

Figure 6: Schematic view of the experimental software framework based on the VMC and an external geometrical modeller

The VMC is a set of abstract interfaces that provides

access for user code to the data structures (common blocks
in case of FORTRAN or classes for C++) and methods of
the simulation programs behind it. It allows user Monte
Carlo applications to access in a common way GEANT3,
GEANT4 or FLUKA.

The pure virtual methods in the VMC are implemented
by specific interfaces to the simulation programs. Among
several methods for controlling simulation behaviour, step
management and particle stack, there are specific methods
for building and retrieving geometrical information. In the
current production version of VMC, these methods are
implemented inside the simulation specific interfaces and
they build the native geometries specific to the simulation
packages used.

In order to provide a single geometry to be used by all
simulation programs, we need

• To provide the implementation of the VMC
methods for building and accessing TGeo geometry
which can then replace the current implementation
for building native geometries.

• To replace the navigation functionality of native
geometries with corresponding features provided by

TGeo by redirecting all navigation queries to the
new geometry.

This is possible in case of GEANT3 and FLUKA by
wrapping modelling specific subroutines. In case of
GEANT4 [7] this would be also eventually possible if the
package will provide an abstract layer for navigation. This
layer should contain the prototypes for all basic queries
like: master-to-local transformations, computation of
distances to boundaries, safety distance or computation of
normal vectors to crossed surfaces. GEANT4 step
manager as well as all other G4 objects that are related to
navigation would have to rely only upon calls to this
abstract layer. In this case the actual G4Navigator class
will implement the navigation functionality for native G4
geometry descriptions, while in case of TGeo we will need
to provide a specific implementation. Going the other way
around, a version of a TGeo to G4 geometry converter is
under development, so that G4 users will be able to run
GEANT4-based simulations starting from a ROOT
geometry description [8].

Currently the version of GEANT3 with direct use of
TGeo is working. GEANT3 tracking can be fully done
without filling G3 geometry common blocks but only by
building its materials and media. The only remaining step
for the full implementation of a production version of

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THMT001 ePrint physics/0306151

VMC based on TGeo package is the computation of the
normal vectors to the crossed surfaced, required by optical
physics processes. This feature is currently under
development.

FLUKA [6] is a simulation program using different
concepts than GEANT related to the geometry description.
Since the VMC design was inspired by GEANT3, realistic
detector geometries would be very difficult to build by
using directly FLUKA geometry package. However, an
interface between FLUKA and GEANT4 geometry can be
currently used to run FLUKA driven by G4 navigation.
We are currently in the process of designing a similar one
based on TGeo modeller.

An important aspect of the version of the VMC working
with the new package is that users will be able to build the
geometry by using directly the API of TGeo. The
geometry built in this way can be stored in ROOT format
and then directly retrieved and used it the context of VMC.

5. CONCLUSIONS

A new geometrical modeller able to represent a large
number of HEP experiments is being developed by ALICE
and ROOT teams.

This will provide a unique representation of ALICE
geometry and will allow running transparently several
MC’s and reconstruction programs using not only the
same geometry description, but also the same geometry
modeller.

Performance was the highest priority during the
development and this is reflected by the benchmarks. The
code is available in the ROOT distribution.

References

[1] R. Brun, A. Gheata, M. Gheata, “The ROOT
Geometry Package”, Nucl. Instr. And Meth. A 502
(2003), p. 676-680.

[2] R. Brun, F. Rademakers, “ROOT – An Object
Oriented Data Analysis Framework”, Proc.
AIHENP’96, Lausanne, Sept. 1996.

[3] http://root.cern.ch
[4] http://root.cern.ch/root/htmldoc/TGeoManager.html
[5] R. Brun, et al., “GEANT3 Users Guide”, CERN

Data Handling Division, DD/EE/84-1, 1985
[6] http://pcfluka.mi.infn.it
[7] http://geant4.web.cern.ch/geant4/index.html
[8] ���� ����	
������������
������������
����
���
���

“The Virtual Monte-Carlo”, Presented at CHEP’03,
La Jolla, PSN THJT006

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7THMT001 ePrint physics/0306151

