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Geometrical modelling generally provides the geometrical description of a special structure and a set of services to "navigate" 
through it. HEP geometrical modellers are designed to handle high complexity detector geometries and they are usually 
embedded within simulation MC frameworks. The fact that these frameworks greatly depend on their specific geometrical tools 
makes simulation applications hardly portable to MC’s other than the one they were designed for. The ALICE Off-line Project 
in collaboration with the ROOT team is proposing a multi-purpose geometrical modeller for HEP that is integrated within a 
virtual MC infrastructure. This tool has been optimised for performance with the geometry setups of several HEP experiments 
and provides a single representation for the geometry used by different applications such as simulation, reconstruction or event 
display.  

 

 
 

Figure 1: The ROOT geometry modeller is able to represent most HEP experiments 

1. INTRODUCTION 

The simulation of an experiment is one of the most 
important activities during its preparation as it can 
provide a better understanding of the detector response 
and how the acquired data will eventually look like.  As 
HEP moves to new experiments with more and more 
complex detector systems, this becomes one of the most 
CPU time and resources consuming off-line task. It is 
handled by large simulation engines such as GEANT [5, 
7] and has to share its geometry description with several 
other frameworks, such as reconstruction or event 
display.  

Having one single geometry description may become a 
critical issue when several applications have to share 
related data and rely on detector module inter-dependent 
algorithms. In such cases having for instance a simplified 
geometry for reconstruction may not be an option 
anymore. We have also to consider the fact that 
geometry itself is a subject to changes in time. If several 
different implementations are used, it can be very 

difficult to maintain a consistent geometry. On the other 
hand the geometry description and navigation features 
are currently embedded and fully specific to the different 
simulation engines, therefore the general tendency is that 
several applications cluster in large frameworks around 
these in order to solve this problem. Since geometry 
modelling and related features are quite complex, 
simulation packages grow larger as new geometrical 
functionality is needed, the framework becoming less 
and less modular leaving no alternative for usage of 
other simulation packages other than the initial choice. 

The geometry design itself is coded in a manner 
optimizing the simulation performance for the specific 
geometry modeller used, therefore becoming hardly 
portable without penalties. 

We are proposing a new package intended as a toolkit 
to provide geometrical description of an experiment, full 
navigation functionality and additional tools to help 
building, checking and debugging geometries. Its 
development is a common effort of both ALICE off-line 
and ROOT teams that started 1.5 years ago. 
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Initially driven by ALICE needs related to the 
simulation and reconstruction framework, the new 
geometry is now designed as an experiment-independent 
package. Based on a GEANT-like architecture, it is able 
to represent and optimise the geometry performance of 

several HEP experiments. The gain in speed for 
navigation tasks ranges from 20% to about 800% 
compared to GEANT3. Since a significant fraction of the 
total simulation time is spent only for navigation 
purposes, this provides a valuable gain in performance. 
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Figure 2: A single geometry available for all applications 

 
The geometrical modeller is currently being integrated 

in a Virtual Monte-Carlo schema enabling running 
transparently several simulation MC’s using the same user 
code.  

2. ARCHITECTURE AND NAVIGATION 

2.1. Design overview 

The development of a new geometry package has started 
from a set of requirements and desired features: 

• Provide basic navigation features like: “Where am I 
in the geometry?” “How far from next boundary?” 
or “Which is the maximum safe step in any 
direction that does not cross any boundary?” 
“What is the normal to the boundary at the crossing 
point?”. 

• Be able to map existing GEANT3 geometry 
descriptions in order to have a smooth transition 
from what already exist. 

• Provide a compact implementation that scales with 
the number of objects in the geometry – both for 
memory management and performance. 

• Improve tracking performance with respect to 
existing modellers. 

• Provide full interactivity enabling users to easily 
build, debug and access relevant geometrical 
information. 

Based on these requirements, we have adopted a 
GEANT-like architecture based on the container-contained 
concept [4] that was proven to work very well in case of 

detector geometries. The modeller (TGeo) [1] is developed 
within the ROOT framework [3] and currently provides a 
set of 16 basic shapes (primitives). It also provides a way 
of defining composite shapes as a result of Boolean 
operations between several primitives. Since the 
composition operation can be applied also to other 
composite shapes, this feature provides a quite large 
number of combinations covering most use cases. In order 
to facilitate geometry definition, the modeller provides 
also volume parameterisation methods as well as support 
for divisions to take advantage of detector symmetries. 

The geometry is built by positioning volumes (a shape 
associated with a tracking medium) inside containers, 
which are as well volumes. Since volumes can be 
replicated several times, the resulting structure is a graph 
representing the logical geometric hierarchy. The only 
mandatory conditions in order to have the modelling 
features working properly are that positioned volumes 
(called nodes) should not extrude their containers and 
sister volumes inside the same container should not 
overlap each other. Since intended overlaps are sometimes 
unavoidable, users are allowed to declare them in order to 
be properly handled by the modeller. 

Navigation inside geometries is optimised using 
volumetric divisions (voxels) at the level of the volumes. 
These structures allow minimising the number of node 
candidates that have to be checked for a given point and 
track direction, at the cost of additional memory. 

2.2. Navigation features 

A geometrical modeller has to provide answers to few 
basic queries related to geometry. Particle tracking is 
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generally performed based on step management. At the 
heart of all simulation packages there is a physics engine 
able to generate the next process that will affect the 
currently transported particle and to propose the next step 
accordingly. Since the cross sections of most physics 
processes are highly dependent on material properties, the 
step manager has to know the current material, the 
distance to next boundary along current direction and the 
maximum safe step that can be made in the current 
volume. When crossing boundaries, some physics 
processes may also require the normal vector to the 
crossed surface. 

This information can be retrieved from the API of the 
geometry manager class [4], which is free from any 
dependency on physics. We are currently developing 
specific interfaces for GEANT3, GEANT4 and FLUKA in 
order to be able to handle all geometry-related calls with 
the new geometry. 

Most of the described navigation features are fully 
implemented and we have a working interface to GEANT3 
package. Extensive testing against GEANT3 was done in 
order to validate navigation algorithms. For doing that, we 
have developed an automatic conversion tool from G3 to 
TGeo format. In this way we were able to port a large set 
of existing G3 geometries to the new modeller.  

2.3. Validation procedure 

Several geometries of existing HEP experiments were 
converted directly from GEANT3 ZEBRA banks. This 
insured a one to one mapping between G3 and ROOT 
geometry descriptions. We have performed GEANT3 
simulations with the default physics setup of each 
experiment, collecting samples of one million points in the 
step manager. For each point we have saved additional 
information, like: current direction, current step length and 
safety distance, as computed by G3. 

This information was saved both in HBOOK and ROOT 
formats and the point samples were than fed back into the 
two modellers. For each point we computed the 
predictions of both G3 and ROOT modellers. Proceeding 
this way, we were able to perform extensive test and 
debugging of the navigation algorithms. This led to several 
optimisations with respect to the early implementations.  

Figure 3 shows an example of XY plot for all collected 
points. A consistency check was done as a first step: the 
predicted paths to the deepest node containing a given 
point were compared between GEANT3 and TGeo. This 
test typically gave differences ranging between few 
percents and 20-30% of the total number of points for 
high-complexity geometries. The reason for this comes 
from the fact that during a simulation, steps are always 
forced when the current particle crosses a boundary. Since 
the boundary positions of a given geometrical object are 
computed as a result of local matrix multiplication in the 
corresponding branch of the geometrical tree, these are 
always affected by a floating-point “diffusion” error 
increasing with the geometry granularity, e.g. the average 

number of levels per branch. Due to this reason, TGeo 
may classify points collected at boundaries on the other 
side than G3. 

 

 
Figure 3: Points collected from G3 step manager. 

 
We have checked this hypothesis by introducing a small 

smearing into the collected physics sample. This second 
sample was called “random” and typically reduced the 
“boundary effect” to less than 1% for all tested geometries. 
The few remaining non boundary-related differences were 
mostly coming from points belonging to the overlapping 
region of two or more positioned volumes. These can be 
equally classified as belonging to one or the other since it 
does not affect the physics results of a simulation when 
correctly defined. On the other hand, there were few cases 
when the answer of TGeo was different from G3 due to 
errors in the geometry definition (overlaps or extrusions). 
Since we have performed a point-by-point check of all 
differences, we were finally able to understand them and 
provide a detailed classification accordingly. 

Similar validation tests were performed related to the 
computation of distances to the next boundary. We were 
also able to simulate events in the case of ALICE 
experiment having GEANT3 as main tracker and with 
TGeo performing computation of distances in parallel.  

Finally we have made performance comparisons for the 
two modellers both for the physics and random samples. 
These tests show the average timing per point for different 
modellers in the case of several geometry setups. These 
represent either some simple GEANT3 examples or actual 
geometries of HEP experiments converted directly from 
G3.  

The benchmarks are presented in Table 1 and show that 
TGeo modeller provides a large gain with respect to G3 in 
the cases where the later is unable to optimise its internal 
search algorithms; this usually happens for quite “flat” 
geometries where more than 500 volumes are positioned in 
the same container. 
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Table 1: TGeo performance vs. GEANT3 for “Where am I?” task.  Point samples were collected during a G3-based 
simulation for each setup; random points come from smearing these samples. Averaged timings per point (in µs) and 
ROOT/G3 ratio are presented. 

Geometry Nobjects <nodes FN_phys. FN_phys. G3/ROOT FN_rand. FN_rand. G3/ROOT
/volume> G3 ROOT G3 ROOT

Gexam1 425 0.17 1.18 0.73 1.62 2.41 1.18 2.04
Gexam3 86 2.04 1.10 0.65 1.69 1.19 0.66 1.80
Gexam4 12781 1.67 0.96 0.62 1.55 4.34 2.58 1.68
ATLAS 29046966 7.48 3.24 2.49 1.30 13.25 6.19 2.14
CMS 1166310 6.18 12.95 2.15 6.02 10.53 5.12 2.06
BRAHMS 2649 6.04 6.04 0.79 7.65 7.95 0.53 15.00
CDF 28525 11.45 25.04 1.90 13.18 5.60 1.07 5.23
MINOS_NEAR 30988 4.32 10.87 5.08 2.14 7.64 3.00 2.55
BTEV 295310 6.88 12.31 1.53 8.05 50.31 2.04 24.66
TESLA 15370 1.04 2.35 0.81 2.90 4.53 1.84 2.46  
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Figure 4: Benchmarks for finding the deepest node in the geometry containing a given point (“Where am I?”).
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3. ADDITIONAL FEATURES 

3.1. User Interface 

The modeller user interface is implemented at two 
levels: all methods for building geometry, navigation 
interface utilities, visualization global settings and 
geometry checking are provided by the manager class [4]. 
Since any volume can become a top-level node in the 
geometry tree, there are several control methods and 
utilities (ray tracing, visualization, sampling) that are 
implemented at the level of volume objects.  

Once geometry is successfully built and closed, there are 
several ways users can interact with it at graphics level. 
The geometry manager class is then registered and 
accessible in the ROOT browser [2]. The logical hierarchy 
of volumes can be fully parsed and all interface methods 
implemented at this level becomes accessible via context 
menus. The geometry-drawing package is part of a 
different library that is loaded on demand only when 
graphics-related calls are issued. 

3.2. Visualization and checking utilities 

Geometry visualization is currently implemented as a 
separate primitive-based interactive package allowing 
volume picking in parallel or perspective views. Hidden 
line/surface algorithms are supported for the time being by 
a separate package called X3D.  

As the modeller architecture is based on embedding 
volumes into several layers, visualization supports a 
number of global options such as: 

• Visualization of all volumes down to a given level; 
• Visualization of final leaves in geometry, e.g. 

volumes having no daughters inside; 
• Visualization of a specified branch or of a given 

volume only. 
There are several visualization attributes that can be set 

directly at volume level: 
• Visibility of the volume itself; 
• Visibility of daughters; 
• Colour and line attributes; 

Once a picture is displayed, several methods can be used 
in order to perform validation checks for a given geometry 
module/branch: 

• Sampling random points in the bounding box of the 
displayed volume branch. This method allows a 
direct visualization check of the modeller response 
for a given part of the geometry. Points classified 
by the modeller as belonging to volumes which are 
currently displayed are plotted with the same colour 
as the volume containing it; 

• Isotropic ray tracing starting from a given point 
defined in the local reference frame of the displayed 

volume. Rays are fully tracked until they exit the 
current branch and only the segments crossing 
visible parts are displayed. 

• Weight estimation of a given detector module. This 
is provided by a material sampling algorithm where 
it is possible to specify the desired precision. 

In order to provide better interactivity, picked objects 
can be inspected. The viewing system provides navigation 
controls for zooming, moving, rotating and animating 
geometries. 

3.3. Geometry checker 

A simple but efficient geometry-checking tool was 
developed in order to be able to debug geometries. In fact, 
this tool is able to detect the vast majority of incorrect 
geometric constructs in reasonable time. As an example, a 
geometry like ALICE containing about 1.2 million 
positioned objects is fully checked within 30 seconds. 

The checking algorithm verifies (within a given 
tolerance) if: 

• Any of the positioned volumes extrude their 
container; 

• Any of the volumes positioned inside the same 
container overlap each other, unless declared these 
volumes are declared overlapping. 

The method loops over all pairs of candidate nodes, 
producing a list of illegal overlaps/extrusions that can be 
inspected with the ROOT browser. This list is sorted by 
decreasing overlap distance and all objects inside can be 
inspected and visualized on-line. 

Table 2: Overlaps in ALICE geometry. 
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Figure 5: A typical extrusion 

3.4. Geometry I/O  

Currently the geometry modeller supports full ROOT 
I/O, meaning that a given geometry can be exported at any 
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time as a ROOT file or retrieved back in a ready state. The 
size of the geometry file and the time to load are very 
important when designing and testing it. 

In table 3 are presented the sizes of few geometry files 
as represented by TGeo modeller compared to the original 
size of the GEANT3 representation in RZ format. In order 
to have a more complete picture of the I/O performance, 
the time to read into memory each geometry file is 
presented against the total number of nodes. 

Table 3: I/O load lime and file size compared to GEANT3  
Geom. No. Nodes G3 .rz 

[Kb] 
.root file 

[Kb] 
CPU time 
PIII/800[s] 

AMS 112777 7372 4059 10.59 

ATLAS 29046966 9863 4231 6.38 

BTEV 295310 2048 839 1.30 

CDF 24422 1818 1113 1.00 

 
As a future plan, we consider the possibility to interface 

the geometrical modeller I/O with at least one relational 
database such as MySQL. 

4. VIRTUAL MONTE-CARLO INTEGRATION 

The ROOT geometrical modeller is currently being 
integrated in a Virtual Monte Carlo (VMC) schema [8] 
developed within the ALICE Software Project. The final 
goal is to be able to run transparently several simulation 
engines using the same geometry. Being independent from 
any simulation package, this geometry can also be used in 
a reconstruction code. 
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Figure 6: Schematic view of the experimental software framework based on the VMC and an external geometrical modeller 
 

 
The VMC is a set of abstract interfaces that provides 

access for user code to the data structures (common blocks 
in case of FORTRAN or classes for C++) and methods of 
the simulation programs behind it. It allows user Monte 
Carlo applications to access in a common way GEANT3, 
GEANT4 or FLUKA. 

The pure virtual methods in the VMC are implemented 
by specific interfaces to the simulation programs. Among 
several methods for controlling simulation behaviour, step 
management and particle stack, there are specific methods 
for building and retrieving geometrical information. In the 
current production version of VMC, these methods are 
implemented inside the simulation specific interfaces and 
they build the native geometries specific to the simulation 
packages used.  

In order to provide a single geometry to be used by all 
simulation programs, we need 

• To provide the implementation of the VMC 
methods for building and accessing TGeo geometry 
which can then replace the current implementation 
for building native geometries.  

• To replace the navigation functionality of native 
geometries with corresponding features provided by 

TGeo by redirecting all navigation queries to the 
new geometry. 

This is possible in case of GEANT3 and FLUKA by 
wrapping modelling specific subroutines. In case of 
GEANT4 [7] this would be also eventually possible if the 
package will provide an abstract layer for navigation. This 
layer should contain the prototypes for all basic queries 
like: master-to-local transformations, computation of 
distances to boundaries, safety distance or computation of 
normal vectors to crossed surfaces. GEANT4 step 
manager as well as all other G4 objects that are related to 
navigation would have to rely only upon calls to this 
abstract layer. In this case the actual G4Navigator class 
will implement the navigation functionality for native G4 
geometry descriptions, while in case of TGeo we will need 
to provide a specific implementation. Going the other way 
around, a version of a TGeo to G4 geometry converter is 
under development, so that G4 users will be able to run 
GEANT4-based simulations starting from a ROOT 
geometry description [8]. 

Currently the version of GEANT3 with direct use of 
TGeo is working. GEANT3 tracking can be fully done 
without filling G3 geometry common blocks but only by 
building its materials and media. The only remaining step 
for the full implementation of a production version of 
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VMC based on TGeo package is the computation of the 
normal vectors to the crossed surfaced, required by optical 
physics processes. This feature is currently under 
development. 

FLUKA [6] is a simulation program using different 
concepts than GEANT related to the geometry description. 
Since the VMC design was inspired by GEANT3, realistic 
detector geometries would be very difficult to build by 
using directly FLUKA geometry package. However, an 
interface between FLUKA and GEANT4 geometry can be 
currently used to run FLUKA driven by G4 navigation. 
We are currently in the process of designing a similar one 
based on TGeo modeller. 

An important aspect of the version of the VMC working 
with the new package is that users will be able to build the 
geometry by using directly the API of TGeo. The 
geometry built in this way can be stored in ROOT format 
and then directly retrieved and used it the context of VMC. 

5. CONCLUSIONS 

A new geometrical modeller able to represent a large 
number of HEP experiments is being developed by ALICE 
and ROOT teams. 

This will provide a unique representation of ALICE 
geometry and will allow running transparently several 
MC’s and reconstruction programs using not only the 
same geometry description, but also the same geometry 
modeller. 

Performance was the highest priority during the 
development and this is reflected by the benchmarks. The 
code is available in the ROOT distribution. 
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