

Detector Construction Database System for ALICE Experiment
W.S. Peryt, T. Traczyk, M. Janik, D. Jarosz, P. Mazan, B. Pawlowski, K. Stanislawek,

P. Szarwas, M. Szuba, D. Tukendorf, P. Warecki, J. Wojcieszuk

- for ALICE Collaboration
Warsaw University of Technology, ul. Koszykowa 75, Warsaw, PL

New approach to the detector construction database system design is presented in the paper. The most specific features of applied model
are following: (i) distributed (local) databases located at laboratories involved in production, tests and assembly of components and
central repository located at CERN. (ii) generic data structures used in design of both local and central databases. (iii) advanced
monitoring system with check-in/check-out capabilities for component's flow between labs (iv)making use of generic data structures in
user application common for quite different subdetectors (v) using of XML language for data transfers between local databases and the
central one.

1. INTRODUCTION

ALICE collaboration, which prepares one of the future
experiments at LHC/CERN, came into production phase of
its detector. ALICE detector consists of many subdectors,
designed and manufactured in many laboratories and
commercial firms, located mainly in Europe, but also in
U.S., India, China and Korea. More than 1000 people and 65
institutions are involved in this enterprise. To assure
apropriate environment for this specific task, strictly related
to tests of particular components, measurements and
assembly procedures, work on Detector Construction
Database System started 2 years ago. There are several
points which have influnce on design of our system
architecture.

Many detector components must migrate between
manufacturers and laboratories during test and assembly
phases. We should be able to trace and register all these
movements and synchronize the physical location of
components with ownership of related data in database
accordingly.

The tests/measurements will produce huge amount of
data. Practically almost all of them must be stored in
database for further analysis and use. Data comes mainly
from test benches with software based on LabVIEW suite.
The most convenient and reliable solution should assure
undisturbed, direct population of database with these data,
i.e. without intermediate storage as disk files.

Taking into account the above and to avoid potential
communication problems over WAN (Internet) we decided
to apply model with distributed local (we call them
“satellite”) databases located in labs involved in detector
production and central repository located ad CERN.

The choice of DBMS for Central Database was rather
obvious (Oracle) but it wasn't the case for satellite databases.
The comprehensive and objective comparison of MySQL,
PostgreSQL and Oracle was made to choose DBMS
optimally.

Communication between satellite databases and the
central one is based on the following assumptions: messages
are passed in XML, mainly off-line (batch processing),
without any satellite-satellite communication. The “request-
response” model is applied (like in HTTP) and only satellite
database can initiate communication.

Specific feature of our approach to the data structure is
using so-called “generic structure”. In relational database it
means that one set of tables is used for storing data of
various structure. It is achieved by designing universal
flexible data structures, driven by meta-data (called
“dictionaries”).

There are two main groups of advantages following from
generic structures: (i) concerning flexibility of data
structures and (ii) related to application construction.

The more detailed description of these topics can be found
in further part of this paper.

Detector Construction Database System for ALICE
consists of several auxiliary subsystems. One of them,
Components' Circulation Tracking System, is responsible for
keeping order in the Alice databases system by tracing of
places where the components currently are, managing
components' statuses, managing access rights for
components' data etc.

Another one, Remote Computer State Analysis System
(RCSAS), is responsible for monitoring of remote databases.
Its main functions are: performing tests on remote servers,
e.g. connection checking, parsing remote databases’ log
files, inform administrators about errors found on their
servers during tests, e.g. by e-mail, gathering and reporting
information on tests’ results.

 RCSAS has three-layer architecture: database – where it
stores all necessary information, main program (splitted into
two parts (client and server) and Web application - for data
presentation. For security reason connection between server
and client is over SSL The system is extensible, that means
new tests and actions can be easily added.
Essential, from the practical point of view, part of the whole
system is communication server (called LabServer), which is
a standalone daemon. It allows data exchange between
National Instruments LabVIEW and SQL databases.

The system as a whole is still under development but
several satellite databases already work, central database at
CERN is also installed. Further satellite database are in
status nascendi.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint NONETHKT002

2. DATA STRUCTURES

Main assumptions

The data collected in satellite databases will be gathered in
the central database. It can be done quite easily only if very
similar data structures are used for all the satellite databases
and the central one. It means, that the data structures for all
laboratories, and all detectors and component types should
be almost the same.

The only way to achieve this in relational database is to
use generic data structures. Generic approach makes
possible use of one common set of tables for all types of
detectors and their components.

In generic approach, also a universal “core” application
can be created, with possibility to create some more
specialized application modules for particular needs.

Typical (specialized) structure versus generic
structure

Typical specialized (non-generic) structure contains a
separate table or set of tables for each type of objects
(having different set of properties), and a separate column
(attribute) for each property. It means, that if one wants to
describe several types of appliances, he should create
separate set of tables for each type. In big systems number
of tables can be quite high (hundreds), and number of
columns can be very high (thousands). Such data structure
is complex and very difficult to maintain. It also means, that
separate specialized application (containing forms, data
browsers, reports, etc.) should be created for each type of
appliance, which is time-consuming, and maintenance of the
resulting system must be very costly. Figure S.1 shows an
example of simple specialized structure.

Object type C
Id
* Property C1
* Property C2
* Property C3
...

Object type B
Id
* Property B1
* Property B2
* Property B3
...

Object type A
Id
* Property A1
* Property A2
* Property A3
...

Object type C
Id
* Property C1
* Property C2
* Property C3
...

Object type B
Id
* Property B1
* Property B2
* Property B3
...

Object type A
Id
* Property A1
* Property A2
* Property A3
...

Figure 1 Typical (specialized) structure

Generic structure is dictionary-based. It contains the data
stored in universal, flexible structures, and metadata
(dictionaries), which define the meaning and other features
of particular data entries. Metadata contain, for example,
dictionaries of object types, properties, etc. In generic
approach, one generic set of tables is used for all objects. It
means, that the number of tables and columns can be
reasonably small, but number of rows in data tables must be
definitely greater. Figure S.2 shows an example of basic

generic structure, where Type and Property Definition
entities represent metadata, but Object and Property Value
entities represent the data describing real objects.

Object
Id
* Name
...

Type
Id
* Name
...

Property
definition
Id
* Name
* Optional?
* Data type
...

Property
value
* Value

Object
Id
* Name
...

Type
Id
* Name
...

Property
definition
Id
* Name
* Optional?
* Data type
...

Property
value
* Value

Figure 2 Generic structure

Advantages In our case, the most important advantage of
generic data structures is that the same structure can be used
in all satellite databases, and the entire system is therefore
much easier to maintain.

Structure of the central database can be very similar to the
structure of satellite ones, so it is easy to understand the
relationships between central and satellite data; no
complicated translations between satellite and central
structures are required; it is also much easier to introduce
changes to both structures.

The same generic application can be used on top of all the
databases. The application can be dictionary-driven, so it is
much easier to maintain.

The structure is flexible, so new types of components can
be introduced with no need to change the database structure.

The structure is also quite simple, it contains about 20
tables, so it is quite easy to understand and to memorize.

Disadvantages The generic structure is not so

straightforward as the specialized one.
There may also be more performance problems comparing

to not-generic structures (in our case the performance of the
generic structure has been tested on large data volumes and
proved to be sufficient).

The metadata (dictionaries) must be distributed to satellite
sites, and changes in the dictionaries should be synchronized
in all databases.

Procedural constraints (triggers) in the database are
necessary to enforce data integrity (e.g. proper typing of
values).

The generic application is a bit more difficult to create
than “normal” one, but we have to create and to maintain

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint NONETHKT002

only one universal application instead of many different
specialized applications).

Proposed data structure

Proposed generic data structure is shown on Figure S.3.
Careful design of primary keys enables the data to be

easily integrated into central database (no key conflicts
should occur) and the tables and indexes to be easily
partitioned.

Dictionaries (drawn in gray) are maintained in central

repository, supplied from central database to laboratories,
and are read-only in satellite databases.

Components’ data, created and updated in satellite
databases at laboratories are copied to central repository.

Components are identified by globally unique internal
numerical identifier, user code (locally unique) and a serial
number (unique for specific component type).

Component state contains properties representing
existence (exists, assembled, broken, destroyed), final
quality assessment, final acceptation mark, etc. Full history
of state changes is recorded

Component derivation describes assembling or
partitioning of the components, represented by a digraph:
nodes represent components, arcs represent composition or
derivation (a component may be assembled of other
components or derived, e.g. by partition or disassembling,
from another one). The location of the component in
compound component (e.g. location slot no) can also be
recorded. Full history of the assemblage and partition
processes is recorded.

Components’ parameters Each component can have
several parameters. Components of the same type have
identical set of parameters but, certainly, values of these
parameters may vary. Parameter is identified by a parameter
code and a component type code.

Values of parameters are stored in text format and can be
converted to proper data types as needed, e.g. to calculate an
aggregation (sum, average, etc). Data type of each
parameter must be defined. Elementary data types

 are: string, float number, integer number. Derived data
types can be defined by enumeration or by restriction of
range of allowable values. Each value change is validated
against its data type by a database trigger. Full history of
changes of component parameters’ values is recorded.

Processes are used to store information related to tests,
manufacturing processes, measurements etc. Each
component can be described by several types of processes,
and many instances of each process type (e.g. many
repetitions of particular test type). Compound process can
include other processes.

Complex test results can be stored as series of multi-
dimensional results, represented by a table of n columns: n–
1 coordinates and a test result value. The table is stored in
one relational table row, so reasonable query performance is
ensured. Object-relational data type (nested table) is used,
so each separate data cell can be retrieved using SQL query.
Numerical results are stored in text format: scale and

precision of numbers are preserved and scientific notation
can be used.

The same structure can be used to store a table
representing connections between parts of the component.

BLOBs (Binary Large Objects) can also be stored in this
structure to store binaries: pictures (photographs, etc.) and
other binary files.

Each process can have several parameters; processes of
the same type have identical set of parameters. Data types
of these parameters are defined similarly to data types of
components’ parameters.

Open structure

Generic structure features can be used to extend the
abilities of the database: new data types, parameters,
processes. But the structure should still be refined to reflect
new or just discovered needs. The structure itself is
extended only if we discover some important data that
cannot be stored in current structure in efficient and legible
way or we find out that some information is so important
and/or common that is should be “honored” by creating
separate attribute(s) or new entities for it.

3. MONITORING OF COMPONENTS’ FLOW
AND DATA FLOW

Purpose

Components Flow Monitoring Subsystem is one of the
most important parts of the whole System. Its importance
comes from the fact that it keeps order in the system as a
whole and implements mechanisms that allow avoidance of
loosing components during their trips from one testing
laboratory to another. The subsystem also provides
functionality that helps to maintain consistency of data
collected during the test process.

Generally the subsystem realizes two main tasks:
1. monitoring of flow of tested components,
2. monitoring of flow of data concerning these

components.
The following subsection provides detailed descriptions of

the tasks.

Monitoring of components

The first goal of the Components Flow Monitoring
Subsystem is to provide mechanisms allowing components
tracking during their travel between laboratories
participation in tests. To achieve this, the central inventory
of components, which contains actual location, status and
history of each component, was introduced. The figure
below shows how the monitoring of components is realized
in practice.

At the beginning each component has to be registered to
the system. As registration is usually done in the satellite
database, the central

inventory has to be notified to make a new component
visible to all parts of the system. During registration globally
unique identifier for each component is generated.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint NONETHKT002

Arrival/departure of a component to/from laboratory is also
registered in the central inventory. It is performed by check-
out/check-in operations provided by the subsystem.
Destruction of a component, if occurs, is recorded as well.

Monitoring of data flow
This part of the Components Flow Monitoring Subsystem

is responsible for a distribution of a write access to the
components’ data collected during tests. It ensures that in
“normal” circumstances only one satellite database can
modify data of the particular component at the same time. It
also guarantees that version of component’s data that is
updated in the given laboratory is always up-to-date. As in
case of the components’ monitoring, used solution is based
on a central inventory which contains such information like
name of the database that has write access to data of the
particular component and number of a current version of a
data.

Operations provided by the subsystem in the context of
monitoring of data flow are also similar to those used to
monitor components’ flow. If a particular laboratory wants
to have write access to component’s data it should check-out
it from the central database. When modifications are
completed, data should be checked-in back.

Encountered problems and their solutions
Unfortunately the basic model described in the previous

subsections doesn’t cover all requirements. The list of
required features that had to be added comprises:
1. enforcing users to enter proper location of a particular

component,
2. possibility of data transfer from satellite database to

some auxiliary database (e.g. on notebook),
3. delays prevention in case of long-lasting abnormal

conditions like communication failures.
As a solution for the first problem dependence between

component and data check-in/check-out operations was
introduced. In a typical situation a particular satellite
database can check-out data of a given component only if it
checked-out the component itself before.

To provide the second feature, special authorization
mechanism was introduced. A satellite database that has the
component itself can pass write access to its data to other
satellite database.

To avoid delays in the test process in case of abnormal
conditions the subsystem provides special mode which
allows modification of data in satellite database even if there
is no possibility to check it out from the central database.

Implementation
The architecture of the Components Flow Monitoring

Subsystem has to be compliant with the architecture of the
system as a whole. For that reason the subsystem consists of
two parts:

1. central – co-working with the central
inventory,

2. satellite – co-working with a particular satellite
database.

Both parts are implemented in java language and
communicating each other through the web with use of
XML messages. The following figure shows a subsystem’s
architecture schema.

4. REMOTE COMPUTER MONITORING
SYSTEM

The goal for Remote Computer Monitoring System} is the
ability to check the state of a remote computers from one
central place. When we are talking about a state of a remote
system what we mean is the availability of miscellaneous
resources and network services installed on the host being
monitored. RCMS was developed because of the need to
monitor the state of satellite database systems, those storing
information about current production state of ALICE
detector parts (the whole production system consists of one
central database and number of satellite database systems).

Architecture
RCMS is build using three tier application model. In RCMS
those three tiers includes:
presentation tier - in particular this is a web interface to
view, find, filter etc. data in data base (test results). This part
is made using JSP pages and servlets.
business logic tier - the heart of every application. In RCMS
this part includes test invoker, test runner, tests and actions.
All these parts are described later.
 data management tier - database which stores information
about monitored hosts and user privileges (users of web
applications - administrators of monitored hosts).
Particularly interesting is the middle, business logic part of
the RCM S system and that is why it will be explained in
more detail in this paper. The whole system is written in
Java programming language thus it is very portable among
operating systems. Heart of RCMS system (the part which
actually performs monitoring) consis ts of following:

Tests Services and resources of a remote host being
monitored are checked during tests. Single test is actually a
single Java class with a method runTest() which performs a
test. There are two major types of tests. First group includes
test which do not require an account on monitored system
this includes e.g. ping tests. Second group includes tests like
the one which checks free space on a hard drive, so the tests
which require an local account on the system being
monitored. Tests in different groups are differently invoked.
New tests can be added simply by writing new Java test

XML

XML

Satellite databases

Central
database

C
entral servlet

Satellite

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint NONETHKT002

class. Which test to run are defined on a host basis so for a
different host we can have different test sets to run.
Actions After a test finishes an result is returned. For each
result returned test invoker triggers actions. Action can
actually be any thing. Action can store result to database or
send SMS or e-mail message to administrator of an
monitored server about some kind of an error which
occurred during a test. Which actions to run are defined on a
host basis so for a different host we can have different action
sets to trigger. Because action is actually a Java class new
actions can be easily added just by creating new Java class.
Test Invoker Invoker is responsible for running test. It reads
data form database (data about test, actions and monitored
hosts) and performs test and triggers actions when a test
finishes. Test invoker should be installed only on one system
(the monitoring system). It can run a test by it self only for
the first group of tests (those which do not require account
on a monitored computer). For the second type of test it uses
test runner.
Test Runner Test runner should be installed on every
monitored system. It receives tests (instances of a test
classes) from test invoker, runs a test on it's behalf and
returns result back to the test invoker.

All of these parts can be configured using configuration files
which consists of an key, value pairs. Those parameters are
used to customize test, actions, test invoker and test runner.

How it works

Figure shows simplified view of how the whole RCMS
system works. When the test invoker starts it reads its
configuration file and then connects to the database to check
which tests should be run and which host to monitor. After
getting this information it starts separate thread for each test
it invokes. Maximum number of simultaneous threads can be
limited by appropriate variable in configuration file. In each
thread a test is invoked, that is for each test appropriate Java
class is downloaded from the network (you describe where
action and test classes are located as a runtime parameter).
Then, when a test belongs to the first group of tests, invoker
performs it otherwise, when test belongs to a second group
of tests, invoker connects to test runner on monitored
system, authenticates it self using username and password
(these two are configured per host basis) and send test object
to the remote host. The connection between test invoker and
test runner is encrypted so neither passwords, test and results
are sent unencrypted. When test runner receives a test it first
downloads test class from the same place as the test invoker
did and after performing test returns test result to the test
invoker over this secure SSL connection.
After receiving test result (no mater of what kind of test) test
invoker triggers appropriate actions and after this it destroys
thread of this test invocation. While the test invocation
threads are running test invoker in, it's ma in loop, waits
(using sleep} system function) for the next tests run cycle.
When defining test for a particular host one has to also
define time interval between subsequent test invocations for
test being defined so the system knows how long can it sleep
before the next test invocation cycle.
Dynamic tests and actions class loading give the ability to

use the same classes on invoker and runner sides so there is
no threat of test invoker and test runner having different
versions of the same test class. As s aid before both test
runner and invoker have it's separate configuration files
which allow to customize their runtime behavior. No data is
sent unencrypted. New test and actions can be added to
support more functionality. Because of it's flexibility
Remote Computer Monitoring System can be very powerful
tool for system administrators to help them diagnose and
inform about problems on system their administer.

5. LabsServer

Populating the databases with acquired data provides an
interesting challenge of designing a generic and robust
interface between the LabVIEW application and the
RDBMS, as LabVIEW itself doesn't offer such a possibility.
We have designed a separate tool for this purpose:
LabServer.

LabServer is a standalone program written in POSIX-

compliant C, designed to operate as a networking daemon –
ie. to remain in the background, waiting for incoming client
connections. As one is accepted, the daemon spawns a
separate instance of itself which then processes the requests,
allowing its primary one to carry on listening – thus being
able to handle concurrently as many client connections as
configured for.

Such a solution has got several advantages over

implementing such functionality into the LabVIEW
application. First of all, keeping the database access separate
allows using the same data source with different database
systems – the two currently supported are MySQL and
PostgreSQL, with plans for Oracle support in the future; the
application-daemon protocol doesn't have to change.
Second, different components of the setup can run on
different machines, each of them suited for its purpose. Last
but not least, unlike LabVIEW, LAbServer and all the
libraries it co-operates with are Open Source.

There are two ways in which LabServer can operate. In

raw mode, the daemon directly transmits SQL queries and
their results between the application and the database. In
parsed mode, the daemon accepts input data in the
predefined format, converts them to a sequence of SQL
queries and fills the tables accordingly.

There are currently two branches of LabServer available.

The older one, versioned as 1.0.x, contains the original raw
mode code as well as a custom parser/formatter designed to
work with version 1.13 of the database structure; it is known
to be stable. The newer one, to be versioned as 1.1.x but
marked 1.0.9x at present, has undergone a complete rewrite
of the parsed mode code in order to reflect the changes in
both the input format (valid XML) and the database structure
(1.23c); it has already been confirmed operational, but
awaits testing in production environment.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint NONETHKT002

Due to its modular design, the core of LabServer itself is
independent of any libraries other than the standard C one.
The modules requiring additional software are:
• MySQL and PostgreSQL support – their client API

libraries (libmysqlclient and libpq respectively);
• host-based access control – the popular TCP Wrappers

suite (libwrap);
• the new-style parser – GNOME XML library version 2

(libxml2).

6. User application

User application for construction database.
User application is one of the most important thing, which

has to be created. This part of the whole system allows end
users to work with data stored in databases, satellite database
as well as central database. In order to prepare high quality
product, building process will be based on RUP (Rational
Unified Process) and by means of Unified Modeling
Language (UML). UML is de facto standard methodology
for ilustrating and modeling software engineering concepts
in an unambiguous way. UML is a highly imp ortant
achievement is object-oriented

methodology and this is a common mechanism for
developers to communicate and design. RUP provides a
detailed processes, activities, and tasks to be undertaken by
team members is clearly defined roles.

First of all system disigners had to collect user
requirements. Without this, it can be situation, when nobody
will want to use the final product. End users help developers
with discovering real requirements for application.

The main requirements are: application should be
accessible through web browser. This is also knows as “thin-
client” and is quite challenging endeavor. A thin-client
application is one in which ther server side is responsible for
generating the user interface into the application. This
product should be able to work with different database
management systems. In this case there will be: PostgreSQL
as satellite database (i. e. in Nanates, or Strasbourg) and
Oracle as sattelite database (Darmstadt) and as central
database (CERN). Next requirements was that, it must be
easy way to separete “model layer” and presentation layer.
One of the main requirements, maybe not for users, but
surely for developers, is that, developers should be able to
add new module as easy as possible. For example, data
exchene module and “check-in, check-out” module will be
integrated with this user interface. This application will be
created for a long time, and developers should be able to
remove and add new functionality.

 Application architecture is very important
issue. After discussion tree tier architecture was chosen. This
tree tier architecture consists of: presentation tier, business
tier and database tier. Each layer is completely independent

and distinct. Presentation layer is made by means of Java
Server Pages technology (JSP). JSPs live withing Web
server and can create pages differently based on velues
returned from business layer. Business layer is Jakarta
Tomcat servlet container with servlets. Servlets are
responsible for managing data stored in database. Database
tier consists of PostresSQL or Oracle database.

 To fullfil all this requirements developers
have decided to use Model-View-Controller (MVC) design
pattern. MVC is a way of decomposing an application into
three parts: the model, the view and the controller.
Controller – is responsible for intercepting and translating
user input into actions to be performed by the model, this is
servlet which gathers all request derived from clients, for
example: register new component. Model – represents an
application’s data and contains the logic for accessing and
manipulating that data. Any data, that are part of the
persistent state of application reside in the model objects.
The services that a model exposes seems to be generic
enough to support a variety of clients. View – is responsible
for rendering the state of the model. View forwards user
input to the controller. Model consist of pure Java classes
and uses Data Access Objects (DAO) design pattern to
encapsulate access to data stored in database. Moreover
DAO allows for cross-database and cross-schema
portability. These Java classes expose abstract methods for
accessing and updating the state of the model and for
executing complex processes encapsulated inside the model.
By glancing at DAO’s public method list, it should be easy
to understand how to control model’s behavior, for example
public Collection getDefinedComponents(String
detectorCode) .

This application seems to be well designed and we are
able to switch to EJB, but now we do not do that, because
EJB is probably to complex as far as this application is
concerned.

 To build this application Struts framework
was used. Struts is one of the Apache projects and this is a
framework for building Java based web applications. More
information about Struts are available at
http://jakarta.apache.org/struts .

 Sometimes there is a requirements to
presents component’s or processes data as graphical images.
In order to do it Root and Carrot is used. Root is an object-
oriented framework aimed at solving the data analysis
challenges of high-energy physics. Images are produced by
means of root. Carrot is module for Apache web browser,
and allows to present graphical images produced by root
directly in web browser. For more information about root
and carrot refer to http://root.cern.ch and http://carrot.cern.ch
respectively.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint NONETHKT002

D E F I N I T I O N O F V T C O L U M N
C O L U M N N O
o C O L U M N T Y P E
o L A B E L
o U N I T S O F M E A S U R E
o D E S C R I P T I O N
* I S A C T I V E

D A T A B A S E
D A T A B A S E C O D E
* N A M E

C O M P O N E N T T Y P E
D E R I V A T I O N
* D E R I V A T I O N T Y P E
o D E S C R I P T I O N
o Q U A N T I T Y
o M A X S E C T O R N O
o M A X P O S I T I O N N O

D E T E C T O R
D E T E C T O R C O D E
* N A M E
o D E S C R I P T I O N
o C A T E G O R Y

A L L O W A B L E V A L U E
S E Q U E N T I A L N O
* V A L U E
o H I G H V A L U E
o M E A N I N G
o N U M E R I C A L V A L U E

D A T A T Y P E
D A T A T Y P E C O D E
* N A M E
* E L E M E N T A R Y T Y P E
o D E S C R I P T I O N

M A N U F A C T U R E R
M A N U F A C T U R E R C O D E
* N A M E
* I S L A B
o D E S C R I P T I O N

P R O C E S S P A R A M E T E R
o V A L U E
o D E S C R I P T I O N

B L O B
N O
* B L O B V A L U E
o B L O B D A T E
o F I L E N A M E
o F I L E P A T H
o F I L E O W N E R
o D E S C R I P T I O N

P R O C E S S
P R O C E S S D A T E
o D E S C R I P T I O N
o V A L U E T A B L E
o P R O C E S S E D B Y
o I N S P E C T E D B Y
* I S V A L I D
* I S S K E L E T O N

P A R A M E T E R
V A L I D F R O M
o V A L I D T O
o V A L U E

D E F I N I T I O N O F P R O C E S S
P A R A M E T E R
P A R A M E T E R C O D E
* N A M E
* P A R A M E T E R T Y P E
o S E Q U E N T I A L N O
o U N I T S O F M E A S U R E
o D E S C R I P T I O N
* I S A C T I V E

D E F I N I T I O N O F P R O C E S S
P R O C E S S C O D E
* N A M E
* P R O C E S S T Y P E
o S E Q U E N T I A L N O
o D E S C R I P T I O N
o V T M A X R O W S
* I S A C T I V E

D E F I N I T I O N O F P A R A M E T E R
P A R A M E T E R C O D E
* N A M E
o S E Q U E N T I A L N O
o U N I T S O F M E A S U R E
o D E S C R I P T I O N
* I S A C T I V E

C O M P O N E N T S T A T E
V A L I D F R O M
o V A L I D T O
* E X I S T E N C E
* C O M P L E T E
o Q U A L I T Y
o A C C E P T E D
o L O C A T I O N
o D E S C R I P T I O N

C O M P O N E N T D E R I V A T I O N
V A L I D F R O M
o V A L I D T O
* D E R I V A T I O N T Y P E
o S E C T O R N O
o P O S I T I O N N O
o D E S C R I P T I O N

C O M P O N E N T G R O U P
G R O U P C O D E
* N A M E
o D E S C R I P T I O N

C O M P O N E N T T Y P E
T Y P E C O D E
* N A M E
* I S A C T I V E
o D E S C R I P T I O N

C O M P O N E N T
C O M P O N E N T I D
o U S E R C O D E
o S E R I A L N U M B E R
o D E S C R I P T I O N
* I S S K E L E T O N
* I S V I R T U A L
o P R O D U C T I O N D A T E

a s V T c o l u m n

.

for

i n c l u d e s

.

v a l u e t y p e

i n p r o c e s s

c o n s i s t s o f

i n p r o c e s s

c o n s i s t s o f

l oca ted i n

s i t e

c o d e d b y

c r e a t e s c o d e

i n g r o u p

g r o u p o f

de r i va t i ve

de r i va t i ve
s o u r c e o f

s o u r c e o f

b e l o n g s t o

i n c l u d e s

be longs to

c o n s i s t s o f

o f t ype

.

of type

.

b e l o n g s t o c o n s t r a i n e d b y

b e l o n g s t o

c o n s i s t s o f

b e l o n g s t o

cons i s t s o f

d e l i v e r e d b y

d e l i v e r s

m a n u f a c t u r e d b y

c r e a t e s

of

d e s c r i b e d b y

d e f i n e d b y

de f i nes

o f t e s t

h a s

for

p r o c e s s e d b y

d e f i n e d b y

de f i nes

o f

d e s c r i b e d b y

d e f i n e d b y

de f i nes

.

h a s p a r a m e t e r s

o f t ype

p r o c e s s e d b y

o f t ype

d e s c r i b e d b y

d e s c r i b e s

i n

s o u r c e o f

s o u r c e o f

de r i va t i ve

de r i va t i ve

i n g r o u p

cons i s t s o f

of type

i n c l u d e s

Figure 3. Data structure for satellite database

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint NONETHKT002

