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New approach to the detector construction database system design is presented in the paper. The most specific features of applied model 
are following: (i) distributed (local) databases located at laboratories involved in production, tests and assembly of components  and 
central repository located at CERN. (ii) generic data structures used in design of both local and central databases. (iii) advanced 
monitoring system with check-in/check-out capabilities for component's flow between labs (iv)making use of generic data structures in 
user application common for quite different subdetectors (v) using of XML language for data transfers between local databases and the 
central one. 

 

1. INTRODUCTION 

ALICE collaboration, which prepares one of the future 
experiments at LHC/CERN, came into production phase of 
its detector.  ALICE detector  consists of  many subdectors, 
designed and manufactured in many laboratories and 
commercial firms, located mainly in Europe, but also in 
U.S., India, China and Korea. More than 1000 people and 65 
institutions are involved  in this enterprise. To assure 
apropriate  environment for this specific task, strictly related 
to tests of particular components, measurements and 
assembly procedures, work on  Detector  Construction 
Database System started 2 years ago.  There are several 
points which have influnce on design of our system 
architecture. 

Many detector components must migrate between 
manufacturers and laboratories during test and assembly 
phases. We should be able to trace and register all these 
movements and synchronize the physical location of 
components with ownership of related data in database 
accordingly. 

The tests/measurements will produce huge amount of 
data. Practically almost all of them must be stored in 
database for further analysis and use. Data comes mainly 
from test benches with software based on LabVIEW suite. 
The most convenient and reliable solution should assure 
undisturbed, direct population of database with these data, 
i.e. without intermediate storage as disk files. 

Taking into account the above  and to avoid potential 
communication problems over WAN (Internet) we decided 
to apply model with distributed local (we call them 
“satellite”) databases located in labs involved in detector 
production and central repository located ad CERN.  

The choice of DBMS for Central Database was rather 
obvious (Oracle) but it wasn't the case for satellite databases. 
The comprehensive and objective comparison of  MySQL, 
PostgreSQL and Oracle was made to choose  DBMS 
optimally.  

Communication between satellite databases and the 
central one is based on the following assumptions: messages 
are passed  in XML, mainly off-line (batch processing), 
without any satellite-satellite communication. The “request-
response” model is applied (like in HTTP) and only satellite 
database can initiate communication. 

Specific feature of our approach to the data structure is 
using so-called “generic structure”. In relational database it 
means that one set of tables is used for storing data of 
various structure. It is achieved by designing universal 
flexible data structures, driven by meta-data (called 
“dictionaries”).  

There are two main groups of advantages following from 
generic structures: (i) concerning flexibility of data 
structures and (ii) related to application construction.  

The more detailed description of these topics can be found 
in further part of this paper. 

Detector Construction Database System for ALICE 
consists of several auxiliary subsystems. One of them, 
Components' Circulation Tracking System, is responsible for 
keeping order in the Alice databases system by tracing of 
places where the components currently are, managing 
components' statuses, managing access rights for 
components' data etc.  

Another one, Remote Computer State Analysis System 
(RCSAS), is responsible for monitoring of remote databases. 
Its main functions are: performing tests on remote servers, 
e.g. connection checking, parsing remote databases’ log 
files, inform administrators about errors found on their 
servers during tests, e.g. by e-mail, gathering and reporting 
information on tests’ results. 

 RCSAS has three-layer architecture: database – where it 
stores all necessary information, main program (splitted into 
two parts (client and server) and Web application - for data 
presentation. For security reason connection between server 
and client is over SSL The system is extensible, that means 
new tests and actions can be easily added. 
Essential, from the practical point of view, part of the whole 
system is communication server (called LabServer), which is 
a standalone daemon. It allows data exchange between 
National Instruments LabVIEW and SQL databases. 

The system as a whole is still under development but 
several satellite databases already work, central database at 
CERN is also installed. Further satellite database  are in 
status nascendi. 
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2. DATA STRUCTURES 

Main assumptions 

The data collected in satellite databases will be gathered in 
the central database.  It can be done quite easily only if very 
similar data structures are used for all the satellite databases 
and the central one.  It means, that the data structures for all 
laboratories, and all detectors and component types should 
be almost the same.  

The only way to achieve this in relational database is to 
use generic data structures.  Generic approach makes 
possible use of one common set of tables for all types of 
detectors and their components. 

In generic approach, also a universal “core” application 
can be created, with possibility to create some more 
specialized application modules for particular needs. 

Typical (specialized) structure versus generic 
structure 

Typical specialized (non-generic) structure contains a 
separate table or set of tables for each type of objects 
(having different set of properties), and a separate column 
(attribute) for each property.  It means, that if one wants to 
describe several types of appliances, he should create 
separate set of tables for each type.  In big systems number 
of tables can be quite high (hundreds), and number of 
columns can be very high (thousands).  Such data structure 
is complex and very difficult to maintain.  It also means, that 
separate specialized application (containing forms, data 
browsers, reports, etc.) should be created for each type of 
appliance, which is time-consuming, and maintenance of the 
resulting system must be very costly.  Figure S.1 shows an 
example of simple specialized structure. 

Object type C
# Id
* Property C1
* Property C2
* Property C3
...

Object type B
# Id
* Property B1
* Property B2
* Property B3
...

Object type A
# Id
* Property A1
* Property A2
* Property A3
...

Object type C
# Id
* Property C1
* Property C2
* Property C3
...

Object type B
# Id
* Property B1
* Property B2
* Property B3
...

Object type A
# Id
* Property A1
* Property A2
* Property A3
...

 
Figure 1  Typical (specialized) structure 

Generic structure is dictionary-based.  It contains the data 
stored in universal, flexible structures, and metadata 
(dictionaries), which define the meaning and other features 
of particular data entries. Metadata contain, for example, 
dictionaries of object types, properties, etc.  In generic 
approach, one generic set of tables is used for all objects.  It 
means, that the number of tables and columns can be 
reasonably small, but number of rows in data tables must be 
definitely greater.  Figure S.2 shows an example of basic 

generic structure, where Type and Property Definition 
entities represent metadata, but Object and Property Value 
entities represent the data describing real objects. 

Object
# Id
* Name
...

Type
# Id
* Name
...

Property
definition
# Id
* Name
* Optional?
* Data type
...

Property
value
* Value

Object
# Id
* Name
...

Type
# Id
* Name
...

Property
definition
# Id
* Name
* Optional?
* Data type
...

Property
value
* Value

 
Figure 2  Generic structure 

Advantages  In our case, the most important advantage of 
generic data structures is that the same structure can be used 
in all satellite databases, and the entire system is therefore 
much easier to maintain.   

Structure of the central database can be very similar to the 
structure of satellite ones, so it is easy to understand the 
relationships between central and satellite data; no 
complicated translations between satellite and central 
structures are required; it is also much easier to introduce 
changes to both structures. 

The same generic application can be used on top of all the 
databases.  The application can be dictionary-driven, so it is 
much easier to maintain. 

The structure is flexible, so new types of components can 
be introduced with no need to change the database structure. 

The structure is also quite simple, it contains about 20 
tables, so it is  quite easy to understand and to memorize. 

 
Disadvantages  The generic structure is not so 

straightforward as the specialized one. 
There may also be more performance problems comparing 

to not-generic structures (in our case the performance of the 
generic structure has been tested on large data volumes and 
proved to be sufficient). 

The metadata (dictionaries) must be distributed to satellite 
sites, and changes in the dictionaries should be synchronized 
in all databases. 

Procedural constraints (triggers) in the database are 
necessary to enforce data integrity (e.g. proper typing of 
values). 

The generic application is a bit more difficult to create 
than “normal” one, but we have to create and to maintain 
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only one universal application instead of many different 
specialized applications). 

Proposed data structure 

Proposed generic data structure is shown on Figure S.3. 
Careful design of primary keys enables the data to be 

easily integrated into central database (no key conflicts 
should occur) and the tables and indexes to be easily 
partitioned. 

 
Dictionaries  (drawn in gray) are maintained in central 

repository, supplied from central database to laboratories, 
and are read-only in satellite databases. 

Components’ data, created and updated in satellite 
databases at laboratories are copied to central repository. 

Components are identified by globally unique internal 
numerical identifier, user code (locally unique) and a serial 
number (unique for specific component type). 

Component state  contains properties representing 
existence (exists, assembled, broken, destroyed), final 
quality assessment, final acceptation mark, etc. Full history 
of state changes is recorded 

Component derivation describes assembling or 
partitioning of the components, represented by a digraph: 
nodes represent components, arcs represent composition or 
derivation (a component may be assembled of other 
components or derived, e.g. by partition or disassembling, 
from another one).  The location of the component in 
compound component (e.g. location slot no) can also be 
recorded.  Full history of the assemblage and partition 
processes is recorded. 

Components’ parameters Each component can have 
several parameters. Components of the same type have 
identical set of parameters but, certainly, values of these 
parameters may vary.  Parameter is identified by a parameter 
code and a component type code. 

Values of parameters are stored in text format and can be 
converted to proper data types as needed, e.g. to calculate an 
aggregation (sum, average, etc).  Data type of each 
parameter must be defined.  Elementary data types  

 are: string, float number, integer number.  Derived data 
types can be defined by enumeration or by restriction of 
range of allowable values.  Each value change is validated 
against its data type by a database trigger.  Full history of 
changes of component parameters’ values is recorded. 

Processes are used to store information related to tests, 
manufacturing processes, measurements etc.  Each 
component can be described by several types of processes, 
and many instances of each process type (e.g. many 
repetitions of particular test type). Compound process can 
include other processes. 

Complex test results can be stored as series of multi-
dimensional results, represented by a table of n columns: n–
1 coordinates and a test result value.  The table is stored in 
one relational table row, so reasonable query performance is 
ensured.  Object-relational data type (nested table) is used, 
so each separate data cell can be retrieved using SQL query.  
Numerical results are stored in text format: scale and 

precision of numbers are preserved and scientific notation 
can be used. 

The same structure can be used to store a table 
representing connections between parts of the component.  

BLOBs (Binary Large Objects) can also be stored in this 
structure to store binaries:  pictures (photographs, etc.) and 
other binary files. 

Each process can have several parameters; processes of 
the same type have identical set of parameters.  Data types 
of these parameters are defined similarly to data types of 
components’ parameters. 

Open structure 

Generic structure features can be used to extend the 
abilities of the database:  new data types, parameters, 
processes.  But the structure should still be refined to reflect 
new or just discovered needs.  The structure itself is  
extended only if we discover some important data that 
cannot be stored in current structure in efficient and legible 
way or we find out that some information is so important 
and/or common that is should be “honored” by creating 
separate attribute(s) or new entities for it. 

3. MONITORING OF COMPONENTS’ FLOW 
AND DATA FLOW 

Purpose 

Components Flow Monitoring Subsystem is one of the 
most important parts of the whole System. Its importance 
comes from the fact that it keeps order in the system as a 
whole and implements mechanisms that allow avoidance of 
loosing components during their trips from one testing 
laboratory to another. The subsystem also provides 
functionality that helps to maintain consistency of data 
collected during the test process.  

Generally the subsystem realizes two main tasks: 
1. monitoring of flow of tested components, 
2. monitoring of flow of data concerning these 

components. 
The following subsection provides detailed descriptions of 

the tasks. 

Monitoring of components 

The first goal of the Components Flow Monitoring 
Subsystem is to provide mechanisms allowing components 
tracking during their travel between laboratories 
participation in tests. To achieve this, the central inventory 
of components, which contains actual location, status and 
history of each component, was introduced. The figure 
below shows how the monitoring of components is realized 
in practice.  

At the beginning each component has to be registered to 
the system. As registration is usually done in the satellite 
database, the central  

inventory has to be notified to make a new component 
visible to all parts of the system. During registration globally 
unique identifier for each component is generated. 
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Arrival/departure of a component to/from laboratory is also 
registered in the central inventory. It is performed by check-
out/check-in operations provided by the subsystem. 
Destruction of a component, if occurs, is recorded as well. 

 

Monitoring of data flow 
This part of the Components Flow Monitoring Subsystem 

is responsible for a distribution of a write access to the 
components’ data collected during tests. It ensures that in 
“normal” circumstances only one satellite database can 
modify data of the particular component at the same time. It 
also guarantees that version of component’s data that is 
updated in the given laboratory is always up-to-date. As in 
case of the components’ monitoring, used solution is based 
on a central inventory which contains such information like 
name of the database that has write access to data of the 
particular component and number of a current version of a 
data. 

Operations provided by the subsystem in the context of 
monitoring of data flow are also similar to those used to 
monitor components’ flow. If a particular laboratory wants 
to have write access to component’s data it should check-out 
it from the central database. When modifications are 
completed, data should be checked-in back. 

 
Encountered problems and their solutions 
Unfortunately the basic model described in the previous 

subsections doesn’t cover all requirements. The list of 
required features that had to be added comprises: 
1. enforcing users to enter proper location of a particular 

component, 
2. possibility of data transfer from satellite database to 

some auxiliary database (e.g. on notebook),  
3. delays prevention in case of long-lasting abnormal 

conditions like communication failures. 
As a solution for the first problem dependence between 

component and data check-in/check-out operations was 
introduced. In a typical situation a particular satellite 
database can check-out data of a given component only if it 
checked-out the component itself before. 

To provide the second feature, special authorization 
mechanism was introduced. A satellite database that has the 
component itself can pass write access to its data to other 
satellite database. 

To avoid delays in the test process in case of abnormal 
conditions the subsystem provides special mode which 
allows modification of data in satellite database even if there 
is no possibility to check it out from the central database. 

 
Implementation 
The architecture of the Components Flow Monitoring 

Subsystem has to be compliant with the architecture of the 
system as a whole. For that reason the subsystem consists of 
two parts: 

1. central – co-working with the central 
inventory, 

2. satellite – co-working with a particular satellite 
database. 

Both parts are implemented in java language and 
communicating each other through the web with use of 
XML messages. The following figure shows a subsystem’s 
architecture schema.  

 
 

4. REMOTE COMPUTER MONITORING 
SYSTEM 

The goal for Remote Computer Monitoring System} is the 
ability to check the state of a remote computers from one 
central place. When we are talking about a state of a remote 
system what we mean is the availability of miscellaneous 
resources and network services installed on the host being 
monitored. RCMS was developed because of the need to 
monitor the state of satellite database systems, those storing  
information about current production state of ALICE 
detector parts (the whole production system consists of one 
central database and number of satellite database systems). 
 
Architecture 
RCMS is build using three tier application model. In RCMS 
those three tiers includes:  
presentation tier - in particular this is a web interface to 
view, find, filter etc. data in data base (test results). This part 
is made using JSP pages and servlets. 
business logic tier - the heart of every application. In RCMS 
this part includes test invoker, test runner, tests and actions. 
All these parts are described later. 
  data management tier - database which stores information 
about monitored hosts and user privileges (users of web 
applications - administrators of monitored hosts). 
Particularly interesting is the middle, business logic part of 
the RCM S system and that is why it will be explained in 
more detail in this paper. The whole system is written in 
Java programming language thus it is very portable among 
operating systems. Heart of RCMS system (the part which 
actually performs monitoring) consis ts of following: 
 
Tests Services and resources of a remote host being 
monitored are checked during tests. Single test is actually a 
single Java class with a method runTest() which performs a 
test. There are two major types of tests. First group includes 
test which do not require an account on monitored system 
this includes e.g. ping tests. Second group includes tests  like 
the one which checks free space on a hard drive, so the tests 
which require an local account on the system being 
monitored. Tests in different groups are differently invoked. 
New tests can be added simply by writing new Java test 

XML

XML

Satellite databases

Central
database

C
entral servlet

Satellite 
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class. Which test to run are defined on a host basis so for a 
different host we can have different test sets to run. 
Actions After a test finishes an result is returned. For each 
result returned test invoker triggers actions. Action can 
actually be any thing. Action can store result to database or 
send SMS or e-mail message to administrator of an 
monitored server about some kind of an error which 
occurred during a test. Which actions to run are defined on a 
host basis so for a different host we can have different action 
sets to trigger. Because action is actually a Java class new 
actions can be easily added just by creating new Java class. 
Test Invoker Invoker is responsible for running test. It reads 
data form database (data about test, actions and monitored 
hosts) and performs test and triggers actions when a test 
finishes. Test invoker should be installed only on one system 
(the monitoring system). It can run a test by it self only for 
the first group of tests (those which do not require account 
on a monitored computer). For the second type of test it uses 
test runner. 
Test Runner Test runner should be installed on every 
monitored system. It receives tests (instances of a test 
classes) from test invoker, runs a test on it's behalf and 
returns result back to the test invoker. 
 
All of these parts can be configured using configuration files 
which consists of an key, value pairs. Those parameters are 
used to customize test, actions, test invoker and test runner. 
 
How it works 

Figure shows simplified view of how the whole RCMS 
system works. When the test invoker starts it reads its 
configuration file and then connects to the database to check 
which tests should be run and which host to monitor. After 
getting this information it starts separate thread for each test 
it invokes. Maximum number of simultaneous threads can be 
limited by appropriate variable in configuration file. In each 
thread a test is invoked, that is for each test appropriate Java 
class is downloaded from the network (you describe where 
action and test classes are located as a runtime parameter). 
Then, when a test belongs to the first group of tests, invoker 
performs it otherwise, when test belongs to a second group 
of tests, invoker connects to test runner on monitored 
system, authenticates it self using username and password 
(these two are configured per host basis) and send test object 
to the remote host. The connection between test invoker and 
test runner is encrypted so neither passwords, test and results 
are sent unencrypted. When test runner receives a test it first 
downloads test class from the same place as the test invoker 
did and after performing test returns test result to the test 
invoker over this secure SSL connection. 
After receiving test result (no mater of what kind of test) test 
invoker triggers appropriate actions and after this it destroys 
thread of this test invocation. While the test invocation 
threads are running test invoker in, it's ma in loop, waits 
(using sleep} system function) for the  next tests run cycle. 
When defining test for a particular host one has to also 
define time interval between subsequent test invocations for 
test being defined so the system knows how long can it sleep 
before the next test invocation cycle. 
Dynamic tests and actions class loading give the ability to 

use the same classes on invoker and runner sides so there is 
no threat of test invoker and test runner having different 
versions of the same test class. As s aid before both test 
runner and invoker have it's separate configuration files 
which allow to customize their runtime behavior. No data is 
sent unencrypted. New test and actions can be added to 
support more functionality. Because of it's flexibility 
Remote Computer Monitoring System can be very powerful 
tool for system administrators to help them diagnose and 
inform about problems on system their administer. 
 

5. LabsServer 

Populating the databases with acquired data provides an 
interesting challenge of designing a generic and robust 
interface between the LabVIEW application and the 
RDBMS, as LabVIEW itself doesn't offer such a possibility. 
We have designed a separate tool for this purpose: 
LabServer. 

 
LabServer is a standalone program written in POSIX-

compliant C, designed to operate as a networking daemon – 
ie. to remain in the background, waiting for incoming client 
connections. As one is accepted, the daemon spawns a 
separate instance of itself which then processes the requests, 
allowing its primary one to carry on listening – thus being 
able to handle concurrently as many client connections as 
configured for. 

 
Such a solution has got several advantages over 

implementing such functionality into the LabVIEW 
application. First of all, keeping the database access separate 
allows using the same data source with different database 
systems – the two currently supported are MySQL and 
PostgreSQL, with plans for Oracle support in the future; the 
application-daemon protocol doesn't have to change. 
Second, different components of the setup can run on 
different machines, each of them suited for its purpose. Last 
but not least, unlike LabVIEW, LAbServer and all the 
libraries it co-operates with are Open Source. 

 
There are two ways in which LabServer can operate. In 

raw mode, the daemon directly transmits SQL queries and 
their results between the application and the database. In 
parsed mode, the daemon accepts input data in the 
predefined format, converts them to a sequence of SQL 
queries and fills the tables accordingly. 

 
There are currently two branches of LabServer available. 

The older one, versioned as 1.0.x, contains the original raw 
mode code as well as a custom parser/formatter designed to 
work with version 1.13 of the database structure; it is known 
to be stable. The newer one, to be versioned as 1.1.x but 
marked 1.0.9x at present, has undergone a complete rewrite 
of the parsed mode code in order to reflect the changes in 
both the input format (valid XML) and the database structure 
(1.23c); it has already been confirmed operational, but 
awaits testing in production environment. 
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Due to its modular design, the core of LabServer itself is 
independent of any libraries other than the standard C one. 
The modules requiring additional software are: 
• MySQL and PostgreSQL support – their client API 

libraries (libmysqlclient and libpq respectively);  
• host-based access control – the popular TCP Wrappers 

suite (libwrap); 
• the new-style parser – GNOME XML library version 2 

(libxml2). 

6. User application 

User application for construction database. 
User application is one of the most important thing, which 

has to be created. This part of the whole system allows end 
users to work with data stored in databases, satellite database 
as well as central database. In order to prepare high quality 
product, building process will be based on RUP (Rational 
Unified Process) and by means of Unified Modeling 
Language (UML). UML is de facto standard methodology 
for ilustrating and modeling software engineering concepts 
in an unambiguous way. UML is a highly imp ortant 
achievement is object-oriented  

methodology and this is a common mechanism for 
developers to communicate and design. RUP provides a 
detailed processes, activities, and tasks to be undertaken by 
team members is clearly defined roles. 

First of all system disigners had to collect user 
requirements. Without this, it can be situation, when nobody 
will want to use the final product. End users help developers 
with discovering real requirements for application.  

The main requirements are: application should be 
accessible through web browser. This is also knows as “thin-
client” and is quite challenging endeavor. A thin-client 
application is one in which ther server side is responsible for 
generating the user interface into the application. This 
product should be able to work with different database 
management systems. In this case there will be: PostgreSQL 
as satellite database (i. e. in Nanates, or Strasbourg) and 
Oracle as sattelite database (Darmstadt) and as central 
database (CERN). Next requirements was that, it must be 
easy way to separete “model layer” and presentation layer. 
One of the main requirements, maybe not for users, but 
surely for developers, is that, developers should be able to 
add new module as easy as possible. For example, data 
exchene module and “check-in, check-out” module will be 
integrated with this user interface. This application will be 
created for a long time, and developers should be able to 
remove and add new functionality. 

 Application architecture is very important 
issue. After discussion tree tier architecture was chosen. This 
tree tier architecture consists of: presentation tier, business 
tier and database tier. Each layer is completely independent 

and distinct. Presentation layer is made by means of Java 
Server Pages technology (JSP). JSPs live withing Web 
server and can create pages differently based on velues 
returned from business layer. Business layer is Jakarta 
Tomcat servlet container with servlets. Servlets are 
responsible for managing data stored in database. Database 
tier consists of PostresSQL or Oracle database.  

 To fullfil all this requirements developers 
have decided to use Model-View-Controller (MVC) design 
pattern. MVC is a way of decomposing an application into 
three parts: the model, the view and the controller. 
Controller – is responsible for intercepting and translating 
user input into actions to be performed by the model, this is 
servlet which gathers all request derived from clients, for 
example: register new component. Model – represents an 
application’s data and contains the logic for accessing and 
manipulating that data. Any data, that are part of the 
persistent state of application reside in the model objects. 
The services that a model exposes seems to be generic 
enough to support a variety of clients. View – is responsible 
for rendering the state of the model. View forwards user 
input to the controller. Model consist of pure Java classes 
and uses Data Access Objects (DAO) design pattern to 
encapsulate access to data stored in database. Moreover 
DAO allows for cross-database and cross-schema 
portability. These Java classes expose abstract methods for 
accessing and updating the state of the model and for 
executing complex processes encapsulated inside the model. 
By glancing at DAO’s public method list, it should be easy 
to understand  how to control model’s behavior, for example 
public Collection getDefinedComponents(String 
detectorCode) .  

This application seems to be well designed and we are 
able to switch to EJB, but now we do not do that, because 
EJB is probably to complex as far as this application is 
concerned.  

 To build this application Struts framework 
was used. Struts is one of  the Apache projects and this is a 
framework for building Java based web applications. More 
information about Struts are available at 
http://jakarta.apache.org/struts . 

 Sometimes there is a requirements to 
presents component’s or processes data as graphical images. 
In order to do it Root and Carrot is used. Root is an object-
oriented framework aimed at solving the data analysis 
challenges of high-energy physics. Images are produced by 
means of root. Carrot is module for Apache web browser, 
and allows to present graphical images produced by root 
directly in web browser. For more information about root 
and carrot refer to http://root.cern.ch and http://carrot.cern.ch 
respectively. 
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Figure 3.  Data structure for satellite database 
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