
The QCDOC supercomputer: hardware, software, and performance
P.A. Boylea,b, C. Junga,c, and T. Wettigd,e for the QCDOC Collaboration∗
aDepartment of Physics, Columbia University, New York, NY 10027, USA
bDepartment of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland
cPhysics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
dDepartment of Physics, Yale University, New Haven, CT 06520-8120, USA
eRIKEN-BNL Research Center, Upton, NY 11973, USA

An overview is given of the QCDOC architecture, a massively parallel and highly scalable computer optimized
for lattice QCD using system-on-a-chip technology. The heart of a single node is the PowerPC-based QCDOC
ASIC, developed in collaboration with IBM Research, with a peak speed of 1 GFlop/s. The nodes communicate
via high-speed serial links in a 6-dimensional mesh with nearest-neighbor connections. We find that highly
optimized four-dimensional QCD code obtains over 50% efficiency in cycle accurate simulations of QCDOC,
even for problems of fixed computational difficulty run on tens of thousands of nodes. We also provide an
overview of the QCDOC operating system, which manages and runs QCDOC applications on partitions of
variable dimensionality. Finally, the SciDAC activity for QCDOC and the message-passing interface QMP
specified as a part of the SciDAC effort are discussed for QCDOC. We explain how to make optimal use of
QMP routines on QCDOC in conjunction with existing C and C++ lattice QCD codes, including the publicly
available MILC codes.

1. Introduction

Lattice QCD directly performs the path integral for
the QCD Lagrangian by Monte-Carlo integration on
a computer. Space-time is discretised on a 4-torus,
and a large number of snapshots of typical vacuum
configurations is used to evaluate hadronic correlation
functions non-perturbatively. The numerical integra-
tion scheme introduces finite-volume, discretisation,
and statistical errors that can be removed with suf-
ficient compute power: lattice QCD is systematically
improvable.

With improved actions and extrapolation in the
lattice spacing, fairly modest lattice sizes, such as
323 × 64, are believed to be adequate for controlling
the discretisation and finite volume effects on most
hadronic observables.

Algorithms for including the effects of quark loops
in the selection of typical vacuum configurations are
numerically very expensive. The expense is believed
to grow with a large power of the inverse quark mass
for current best algorithms, and has thus far not been
paid in full by lattice simulations, either choosing to
ignore such effects (quenching) or simulating with ar-
tificially large quark masses. The goal for lattice QCD
is to simulate in a region where the dynamical quark
mass at least reliably connects to chiral perturbation
theory, if not to the physical masses, and requires at
least many tens of Teraflop years of computer power.

∗The QCDOC collaboration also includes D. Chen, A. Gara
(IBM Research), N.H. Christ, C. Cristian, S.D. Cohen, Z. Dong,
C. Kim, L. Levkova, X. Liao, G. Liu, R.D. Mawhinney, A.
Yamaguchi (Columbia University), B. Joo (U. of Edinburgh),
S. Ohta (RIKEN-BNL Research Center), R. Bennet, D. Stampf,
and K. Petrov (BNL).

The notable characteristic of this problem is the
need to focus ever more compute power on reducing
the quark mass for a fixed problem size, rather than
scaling up the problem size as more compute power
becomes available. To this end QCDOC has been de-
signed to allow efficient distribution of a single lattice
QCD simulation over a very large multi-dimensional
grid of a few tens of thousands of compute nodes.

At such extreme scalability the sparse matrix in-
versions involved require both global summation and
nearest neighbour communication at a much shorter
timescale than on smaller MPPs. Consequently both
global summation time and nearest neighbour latency
bite much harder, and both the QCDOC hardware
and software have been designed to address these is-
sues very effectively, with an order of magnitude im-
provement over traditional cluster technology on these
key operations.

2. QCDOC hardware

2.1. Overview

Continuing advances in the microelectronics indus-
try have made it possible to integrate almost all com-
ponents that make up a computer system on a sin-
gle chip. This is known as system-on-a-chip technol-
ogy. Using this technology, the individual process-
ing nodes in a massively parallel computer can be
greatly simplified. This is the idea behind the de-
sign of the QCDOC supercomputer: the processing
elements consist of a single application-specific inte-
grated circuit (ASIC) and an industry-standard DDR
memory module. Large machines can then be build
by simply adding many such processing elements.

The main ingredients of the QCDOC ASIC are

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THIT001, THIT002, THIT003 ePrint hep-lat/0306023

• 500 MHz, 32-bit PowerPC 440 processor core

• 64-bit, 1 GFlops floating-point unit

• 4 MBytes of on-chip memory (embedded DRAM)

• controllers for embedded and external memory

• nearest-neighbor serial communications unit with
aggregate bandwidth of 12 Gbit/s in 12 indepen-
dent directions

• other components such as Ethernet controller, in-
terrupt controller, etc.

In the following subsections, the QCDOC hardware
is described in more detail (see also Ref. [1]). The
main advantages of the QCDOC design are

• high scalability: 50% sustained performance for
typical applications on machines with several
10,000 nodes

• low price-performance ratio of $1 per sustained
MFlops

• low power consumption

• high reliability

2.2. The QCDOC ASIC

IBM is the leading vendor in the system-on-a-chip
industry. The QCDOC ASIC was designed in close
collaboration with IBM Research (Yorktown Heights)
and is shown schematically in Fig. 1. It contains stan-
dard cores from the IBM library as well as custom-
designed components for faster memory access and
high-speed off-chip communication.

The on-chip components are linked by three busses
from IBM’s CoreConnectTM technology [2]:

• Processor local bus (PLB). This is a 128-bit wide,
fully synchronous bus running at 1/3 of the CPU
frequency. It contains independent read and write
data busses. The PLB protocol (implemented by
the PLB arbiter) is rather sophisticated, allowing
for pipelining, split transactions, burst transfers
(fixed and variable length, early termination pos-
sible), DMA transfers, programmable arbitration,
and other features such as timeout, abort, etc.

• On-chip Peripheral Bus (OPB). This is a 32-bit
wide, fully synchronous bus running at 1/6 of the
CPU frequency. Its basic purpose is to off-load
slower devices from the PLB bus.

• Device Control Register Bus (DCR). This is a very
simple bus which is used to read and write various
control registers in the on-chip devices. The 440 is
the only master on this bus.

The IBM library components in the ASIC are

• The PowerPC-based 440 CPU core [3] with at-
tached 64-bit IEEE floating point unit [4]. The 440
is a Book E compliant 32-bit processor with a 32
kByte prefetching instruction cache and a 32 kByte
data cache with flexible cache control options (64-
way associative, partitionable, lockable). The pro-
cessor includes memory management with a 64-
entry translation-lookaside-buffer which supports
variable page sizes from 1 kByte to 256 MByte. It
also features dynamic branch prediction and a 7-
stage, dual issue pipeline. The target frequency of
the 440 is 500 MHz, i.e. the peak performance is
1 GFlops.
The 440 also features a JTAG interface. JTAG
(Joint Test Action Group) is an industry-standard
protocol that allows an external device to take
complete control of the processor. This function-
ality will be used for booting and debugging, see
below.

• 4 Mbytes of embedded DRAM (or EDRAM) which
is accessed with low latency and high bandwidth
through a custom-designed controller, the PEC,
see below.

• The PLB arbiter provides programmable arbitra-
tion for the up to eight allowed masters that can
control PLB transfers. We are using six masters:
the 440 instruction read, data read, and data write
interfaces (the last two are channeled through the
PEC), the EDRAM DMA, the SCU DMA, and the
MAL DMA used by the Ethernet controller.

• The PLB-OPB bridge is used to transfer data be-
tween the two busses. It is the only master on the
OPB and a slave on the PLB.

• The Universal Interrupt Controller (UIC) pro-
cesses the interrupts that are generated on- and
off-chip and provides critical and non-critical in-
terrupt signals to the 440.

• The DDR controller is a slave on the PLB, capable
of transferring data to/from external DDR (dou-
ble data rate) SDRAM at a peak bandwidth of
2.6 GBytes/s. It supports an address space of 2
GBytes and provides error detection, error correc-
tion, and refresh of the off-chip SDRAM.

• The Ethernet media access controller (EMAC)
provides a 100 Mbit/s Ethernet interface (it also
supports Gbit-Ethernet, but we are not making
use of this capability). The media-independent in-
terface (MII) signals at the ASIC boundary are
connected to a physical layer chip on the daugh-
terboard. The EMAC is a slave on the OPB and
has sideband signals to the MCMAL on the PLB.

• The DMA-capable Memory Access Layer (MC-
MAL) loads/unloads the EMAC through the side-
band signals. It is a master on the PLB.

• The inter-integrated circuit (I2C) controller is a
slave on the OPB. It is used to communicate with

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THIT001, THIT002, THIT003 ePrint hep-lat/0306023

Figure 1: The QCDOC ASIC.

off-chip devices supporting the I2C protocol, such
as the serial presence detect EPROM on the DDR
DIMM or voltage and temperature sensors on the
motherboard.

• The general purpose I/O (GPIO) unit is another
slave on the OPB whose 32-bit wide data bus is
taken out to the ASIC boundary. It is used, e.g.,
to drive LEDs, to control the global interrupt tree,
and to receive interrupts from off-chip devices.

• The high-speed serial links (HSSL) used by the
SCU each contain eight independent ports (four
each for send/receive) through which bits are
clocked into/out of the ASIC at 500 Mbit/s per
port. The bits are converted to bytes (or vice
versa) in the HSSL. The HSSL input clocks are
phase-aligned by another IBM macro, the phase-
locked loop (PLL).

In addition to the components provided by IBM, the
QCDOC ASIC contains custom-designed components.
Most importantly, these components provide essential
support for the high-speed communications required
in a massively parallel machine.

• Serial Communications Unit (SCU). The task of
the SCU is to reliably manage the exchange of
data between neighboring nodes with minimum la-
tency and maximum bandwidth. The design takes
into account the particular communication require-
ments of lattice QCD simulations. A schematic
picture of the SCU is shown in Fig. 2.

The custom protocol governing the data transfers
defines packets that contain a 64-bit data word

and an 8-bit header containing control and par-
ity bits. When the receive unit receives a packet,
it first interprets the header, buffers the bytes from
the HSSL, and assembles the 64-bit word. It then
transfers the word to the receive register or passes
it on to the send unit. The receive buffer can
store three 64-bit words so that the send unit (in
a neighboring node) can send three words before
an acknowledgment is received. The functionality
of the send unit is essentially the inverse of that of
the receive unit. Send and receive operations can
proceed simultaneously. Each send or receive unit
is controlled by a DMA engine which then trans-
fers the data between memory and a send/receive
register. Each DMA engine is controlled by block-
strided-move instructions stored in SRAM in the
SCU itself.

A low-latency passthrough mode is provided for
global operations. Because of the latencies asso-
ciated with the HSSL, the most efficient method
to perform global sums is “shift-and-add”, using
a store-and-forward capability built into the SCU.
The main advantage of this scheme is that the soft-
ware latency of about 300 ns is paid only once per
dimension, rather than for each node in this di-
mension.

The total end-to-end latency is estimated to be
about 350 ns for supervisor transfers and about
550 ns for normal transfers. This is at least an
order of magnitude lower than the latency associ-
ated with Myrinet. Since a write instruction from
the 440 can initiate many independent transfers

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THIT001, THIT002, THIT003 ePrint hep-lat/0306023

Control

X

M
U

Passthru

REC DMA

64

8

encode

8

8

control

SEND REGISTER

DMA
Control

DMA
Control

SND DMA

U

X

M

In
te

rf
ac

e
P

LB
 S

la
ve

Registers

REC DMA
Instruction

SRAM

SND DMA
Instruction

SRAM

Arbiter

P
LB

 M
as

te
r

In
te

rf
ac

e

64

HSSL

control

control

rec buf
192−bit

snd buf
192−bit

decode control

HSSL

RECEIVE REGISTER

8

SND REC UNIT

REC UNIT

SND UNIT

1

1

Figure 2: Serial Communications Unit in the QCDOC ASIC. The ASIC boundary is on the left, the PLB interface on
the right.

on any subset of the 24 send or receive channels,
the latencies associated with multiple transfers can
be overlapped to some degree. The total off-chip
bandwidth using all 24 HSSL ports is 12 Gbit/s.
In a 4-dimensional physics application only 16 of
the 24 HSSL ports will be used, resulting in a to-
tal bandwidth of 8 Gbit/s. This provides a good
match for the communications requirements of typ-
ical applications. Concrete performance figures are
given in Sec. 3.4 below.

• Prefetching EDRAM Controller (PEC). The PEC
is designed to provide the 440 with high-bandwidth
access to the EDRAM. It interfaces to the 440 data
read and data write busses via a fast version of
the PLB that runs at the CPU frequency and that
we call processor direct bus (PDB). The PEC also
contains a PLB slave interface to allow for read and
write operations from/to any master on the PLB
as well as a DMA engine to transfer data between
EDRAM and the external DDR memory.

The access to EDRAM (which is memory-mapped)
proceeds at 8 GBytes/s. ECC is built into the
PEC, with 1-bit error correct and 2-bit error de-
tect functionality. The PEC also refreshes the
EDRAM. The latency of the PDB itself is 1-2 CPU
cycles. This very low latency eliminates the need
for pipelining. The maximum PDB bandwidth is 8
GBytes/s for read and write. However, due to in-
ternal latencies in the 440, the maximum sustained
bandwidth is 3.2 GBytes/s.

The read data prefetch from EDRAM occurs in
two 1024-bit lines. Three read ports (PDB, PLB
slave, DMA) arbitrate for the common EDRAM.
The coherency between PDB, PLB slave, and
DMA is maintained within the PEC. Each read
port has four 1024-bit registers that are paired in
two sets to allow for ping-ponging between differ-
ent memory locations. There are also two 1024-
bit write buffer registers each for the PDB/PLB
slave/DMA write interfaces.

• Ethernet-JTAG interface. As mentioned above,
the 440 core has a JTAG interface over which one
can take complete control of the processor. In par-
ticular, this interface can be used to load boot
code into the instruction cache and start execu-
tion. This completely eliminates the need for boot
ROM. The question is how the JTAG instructions
should be loaded into the 440. (There are special
tools that use the JTAG interface, but it would
be impractical to connect one tool per ASIC for
booting.) A solution to this question has already
been developed at IBM Research, implemented us-
ing a field-programmable gate array (FPGA), that
converts special Ethernet packets to JTAG com-
mands and vice versa. This logic is now part of
the QCDOC ASIC and will be used not only for
booting but also to access the CPU for diagnos-
tics/debugging at run time. The unique MAC ad-
dress of each ASIC is provided to the Ethernet-
JTAG component by location pins on the ASIC,

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THIT001, THIT002, THIT003 ePrint hep-lat/0306023

Figure 3: A QCDOC daughterboard with two ASICs and
two DDR DIMMs. The cubic blocks are connectors.

Figure 4: A QCDOC motherboard with 32
daughterboards.

and the IP address is then derived from the MAC
address.

The QCDOC ASIC is manufactured using CMOS
7SF technology (0.18 µm lithography process).

2.3. Mechanical design

The mechanical design is indicated in Figs. 3–5.
Two QCDOC ASICs will be mounted on a daugh-

terboard, together with two industry-standard DDR
SDRAM modules (one per ASIC) whose capacity will
be determined by the price of memory when the ma-
chine is assembled. A maximum of 2 GBytes per ASIC
are supported. The daughterboard also contains four
physical layer chips (two per ASIC for their Ether-
net and Ethernet-JTAG interfaces) and a 4:1 Ether-
net hub so that a single 100 Mbit/s Ethernet signal is
taken off the daughterboard.

32 daughterboards are mounted on a motherboard.
The motherboard also contains eight 4:1 Ethernet
hubs so that the total Ethernet bandwidth off a moth-
erboard is 800 Mbit/s. Furthermore, the motherboard
contains power transformers as well as temperature
and voltage sensors.

8 motherboards are mounted in a crate with a sin-
gle backplane. The final machine then consists of a
certain number of such crates connected by cables.

2.4. Networks

There are three separate networks: the high-speed
physics network, an Ethernet-based auxiliary net-
work, and a global interrupt tree.

Figure 5: 8 QCDOC motherboards in a single backplane.

The physics network consists of high-speed serial
links between nearest neighbors with a bandwidth of
2×500 Mbits/s per link. Transfers across these links
are managed by the serial communications unit in the
QCDOC ASIC as described above. The nodes are ar-
ranged in a 6-dimensional torus which allows for an
efficient partitioning of the machine in software, de-
scribed in more detail below. On a motherboard, the
node topology is 26, with three dimensions open and
three dimensions closed on the motherboard (one of
which is closed on the daughterboard).

The auxiliary network is used for booting, diagnos-
tics, and I/O over Ethernet, with an Ethernet con-
troller integrated on the ASIC. The Ethernet traffic
to and from the ASIC will run at 100 Mbit/s. As
mentioned above, hubs on the daughter- and mother-
boards provide a total bandwidth of 800 Mbit/s off a
motherboard to commercial Gbit-Ethernet switches, a
parallel disk system, and the host workstation (a stan-
dard Unix SMP with multiple Gbit-Ethernet cards).

The global interrupt tree consists of three separate
interrupt lines that are visible across all partitions.
An interrupt asserted by any ASIC is first transmitted
to the top of the tree and then propagated down the
tree to all other ASICs in the full machine. It will
remain asserted until cleared by the ASIC from which
it originated.

3. System Software

The QCDOC system software is minimally required
to boot and manage the machine, load and run appli-
cation code, and service application, communication
and I/O requests. The system can be thought of as
composed of three major parts.

• The front-end operating system, known as the
qdaemon.

• The node operating system, known as the run-
kernel.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THIT001, THIT002, THIT003 ePrint hep-lat/0306023

• The run-time support libraries used by applica-
tions.

In this section we discuss the qdaemon and run-
kernel and defer discussion of the run-time support
libraries till a later Sec. 4.

3.1. qdaemon

The qdaemon runs like a normal Unix daemon and
is responsible for booting, managing and partitioning
the ”back-end” grid of QCDOC nodes. The qdaemon
is the sole point of access to the back-end for users
and communicates with many nodes concurrently via
RPC over the multiple gigabit Ethernet links.

The qdaemon is contacted either via a PBS based
queuing system, or directly via a client program called
the ”qcsh”. The qcsh is a modified shell, with addi-
tional built-in commands for sending requests to the
qdaemon to perform operations on the QCDOC, such
as running code on a partition.

The qdaemon is aggressively multi-threaded and
supports many partitions and connected users simul-
taneously.

3.2. Run-Kernel

The node operating system is a simple (non-
preemptive) kernel. The overall design goal for the
run-kernel is to run one compute process, and run it
well.

Thus the kernel uses the 440’s MMU for memory
protection, but not translation. This allows for pro-
tection of the O/S from errant user code, and for zero-
copy communication with simple (i.e. non-virtual
memory aware) hardware. Further, the entire mem-
ory map can be covered by the 64 entry TLB, so that
TLB misses (which are a source of significant perfor-
mance loss in many HPC machines) cannot occur on
QCDOC.

The kernel does not implement scheduling so that
the application is guaranteed 100% of the CPU. This is
very important since a more traditional kernel on such
a large and very tightly coupled machine (QCDOC
will self-synchronise every 22 microseconds in some
codes) would be impacted by a few nodes running
their scheduler during any given dslash application.

The run kernel does, however, service both hard-
ware and software interrupts. The features of the
standard PowerPC architecture allow user code er-
rors to be trapped cleanly and robustly from software
interrupts. The kernel also services system call re-
quests from user code, both to access the communica-
tion hardware through a very lean software layer, and
to implement the standard C run-time environment
(Cygnus newlib).

The kernel includes an Ethernet driver allowing for
host-node communication, and an NFS client has been
implemented allowing for file I/O from the nodes, both
to the front end and to a parallel disk system com-
posed from standard network attached storage.

Both run-kernel and application circular print
buffers are maintained on the nodes. This allows for
post-mortem readout of each node’s output, or option-
ally any subset of nodes can be configured at run-time
to output directly to the console.

3.3. Partitioning

As discussed, QCDOC is based on a six-dimensional
toroidal grid of nodes.

A partition is a rectangular subvolume of the total
machine and can be defined by the 6-coordinates of
two nodes in the machine grid, namely the bottom-
left, upper-right pair in six dimensions.

Each node has its own mapping from application di-
rections to machine directions. By changing this map-
ping with node coordinate, we can change the topol-
ogy and dimensionality seen by application code. This
is done by successively folding machine axes together
into a single application axis.

A simple 2d example of mapping an in principle
non-periodic 4 × 4 square into a 1d-torus of length 16
is shown in Fig. 6.

This process may be repeated, and an example
of remapping a 26 single motherboard is shown in
Fig. 7. For any given machine it is possible to config-
ure QCDOC for any application dimensionality from
1 to 6. From the point of view of the communications
software, all partitions are six dimensional, but some
variable number of these dimensions may be trivial.
Calls in trivial application dimensions implement local
copies from a node to itself, while calls in non-trivial
application dimensions are mapped to the appropriate
machine directions.

Figure 6: Folding two machine axes into one periodic
application axis

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THIT001, THIT002, THIT003 ePrint hep-lat/0306023

Figure 7: Folding three pairs of machine axes into three
periodic application axes. This example corresponds to
remapping a single QCDOC motherboard.

3.4. Performance of optimised code

In this section we present the performance of opti-
mised code on cycle accurate simulation of QCDOC.
Table I shows the performance of key single-node as-
sembler kernels. Most of these assembler kernels were
in fact generated via a C++ program which will also
output Alpha and Sparc assembler. This allows a very
fair comparison with other contemporary RISC chips.

Anecdotally, the phenomenal bandwidth from
EDRAM allows the FPU performance of QCDOC on
double precision floating point to match that of high
end workstations from L2 cache.

The very low latency communication on QCDOC
(circa 550 ns) allows for extreme scalability of QCD
sparse matrix multiplies. Performance is very accept-
able down to local volumes as small as 24, correspond-
ing to a very spread out lattice. These benchmarks are
shown in Table II.

Table I Double precision floating point performance on
optimised variants of common (single-node) QCD kernels
on the QCDOC simulator. Here we assume a 500MHz
nominal clock, and very high fractions of the 1 GFlop/s
peak can be obtained in the dominant kernels such as
SU3-2spinor.

Operation Mflops/node
SU3-SU3 800

SU3-2spinor 780
DAXPY 190
ZAXPY 450

DAXPY-Norm 350
CloverTerm/asm 790
CloverTerm/gcc 150
CloverTerm/xlc 300

Table II Performance of common QCD Dirac matrix
multiply operations on the QCDOC simulator. Wilson
Deo takes around 22µs on Vlocal = 24, with 16 distinct
communications in that time.

Operation Local Vol. Mflops/node
Wilson Deo 24 470
Wilson Deo 44 535
Clover Deo 24 560
Clover Deo 44 590

Staggered Deo 24 370
Staggered Deo 22.42 430
Asqtad Deo 44 440

QCDOC SCALING (estimated)
Wilson CG on Fixed 323x 64 Size Problem

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000 30000 35000

Processors

Pe
rf

or
m

an
ce

 (T
flo

ps
)

0

2

4

6

8

10

12

14

16

G
lo

ba
l s

um
 (:

se
c)

Figure 8: Wilson CG performance on a fixed 323 × 64
lattice. The machine should scale tremendously on a
fixed problem size.

Finally, we display estimates of the scalability of a
CG Wilson solver on large machines, including the 10
microsecond global summation time, in Fig. 8.

4. User software and performance

User software can access the hardware capabili-
ties of QCDOC by linking to the run-time library
provided. Optimized lattice QCD computation ker-
nels as well as communication routines will be avail-
able. The software infrastructure, including run-time
library and data management and execution environ-
ment, will be in compliance with the SciDAC lattice
QCD software effort to ensure greater portability and
efficiency for a wide range of codes not necessarily op-
timized for the QCDOC hardware.

4.1. SciDAC software Program

The SciDAC National Computational Infrastruc-
ture for Lattice Gauge Theory initiative [5] is a multi-

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7THIT001, THIT002, THIT003 ePrint hep-lat/0306023

institutional effort to create the software and hard-
ware infrastructure needed for Teraflop scale lattice
QCD simulations.

The goal of the software effort is to create a uni-
fied programming environment that will enable the
US lattice community to achieve high efficiency on di-
verse multi-Teraflop scale hardware platforms. More
specifically, the SciDAC software effort aims at provid-
ing a run-time environment for existing lattice QCD
codes such as the Columbia Physics System (CPS) [6],
MILC code [7], or the SZIN software system [8] so that
they can be run and achieve high performance on vari-
ous hardware platforms by adopting the programming
environment provided by the SciDAC Software effort.
A major part of this activity is to provide C and C++
API routines for lattice QCD (QCD-API) on which we
will focus in this report. The performance of MILC
routines with QMP on the QCDOC simulator is also
presented.

The organization of the QCD-API is as follows.

• Level 1:

– QCD Message Passing API (QMP) : Inter-node
communication

– QCD Linear Algebra API (QLA): Single node
linear Algebra

• Level 2: QCD Data Parallel API (QDP): Lattice-
wide operations with both communication and
computation.

Example: parallel transport
χ′(x) = Uµ(x)χ(x+ µ̂) for all x and fixed µ, where
χ(x) is the fermion field at position x and Uµ(x)
is the SU(3) gauge field connecting x and x + µ̂.

• Level 3: Highly optimized routines for lattice QCD

– Dirac matrix inverter

∗ Wilson, Clover
∗ Staggered
∗ Asqtad (Improved staggered)

– Hybrid Monte Carlo (HMC) Asqtad force term

So far, many Level 3 QCD-API routines as well
as QMP have been optimized and implemented for
QCDOC.

4.2. Brief description of QMP

QMP aims to provide portable, low-latency, high-
bandwidth communication routines suitable for lattice
QCD. Here we describe some of the features of QMP.
(For a more detailed description as well as for the C
and C++ binding of the QMP routines, see Ref. [9].)

• Point-to-point communication

– Nonblocking (computation and communication
can be overlapped)

– Simultaneous, multi-directional transfer capa-
bility

– Chained block/strided transfer capability

– Separate routines for initialization and com-
mencement of transfers → opened communica-
tion channels can be reused to minimize over-
head for repeated transfers

• Global operation

– Global reduction
Global Sum, Maximum, Minimum operations
for integer, single and double precision numbers
are available, as well as general binary reduction

– Broadcast

– Barrier

Since QCDOC has optimized hardware for lattice
QCD, it is crucial that the implementation does not
introduce an excessive software overhead. For the
nearest neighbor communication, the QMP specifica-
tions are close to QCDOC native calls, and the addi-
tional software overhead is small. Both C and C++
bindings are implemented over QCDOC system calls.
This also applies to QMP global operations. These
are implemented using the store-and-forward capabil-
ity of QCDOC so that the communication time for
global operations grows only as ∼ L × Nd, where Nd

is the number of dimensions and L is the number of
sites per dimension. Currently, the implementation
of QMP is complete except for non-nearest neighbor
communication, which is discussed in the next subsec-
tion.

4.3. Non-Nearest Neighbor
Communication (NNC) on QCDOC

While communication patterns in lattice QCD are
often to and from nearest neighbors only, a well opti-
mized NNC QCD-API can be used for an implemen-
tation of routines with more complicated communi-
cation patterns, such as improved discretizations of
the continuum QCD actions (Asqtad action [10]) and
the MPI implementation on QMP (which is under
way [11]). However, additional software routines are
needed to manage NNC on top of the QCDOC hard-
ware where all high-bandwidth connections are only
to nearest neighbors.

Some of the desired features for NNC are as follows:

• Minimal buffer copying.

• Minimal overhead over QCDOC native communi-
cation call when destination is nearest neighbor.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8THIT001, THIT002, THIT003 ePrint hep-lat/0306023

Header
Data

NNinternal
NNinternal

NNinternal

.

Pending Receive

Arrived packets

Receive Queue

Arrived packets

Receive Queue

Send/Intermediate

Queue

Source

QMP_receive

Intermediate Destination

User ProgramUser ProgramUser Program

Receive Queue

Pending Receive

Queue

diate

Interme−

Send/ Send/

Queue

Intermediate

Arrived packets

Pending Receive

QMP_send

Figure 9: Block Diagram of Non-Nearest Neighbor Communication QCD-API on QCDOC

• Capability to co-exist with nearest neighbor com-
munication. Namely, both nearest and non-nearest
communication can be open simultaneously and
proceed without explicit user intervention or ex-
cessive delay on either communication channel.

The implementation strategy of NNC on QCDOC
is as follows. After the outgoing data is packetized
in the source node, the header is transferred and ac-
knowledged via the interrupting communication chan-
nel (supervisor). The user data is then transferred
using the non-interrupting physics network. If the re-
ceive node is not the destination of the packet, the
packet is pushed onto the send/intermediate packets
queue which sends the packets to the next node on the
path until it reaches the destination. To avoid possi-
ble lock-ups and excessive delays, static, Manhattan-
style routing is employed. It should be noted that in
most lattice QCD routines, the communication pat-
tern is uniform relative to the source, in which case
Manhattan-style is close to being optimal. Figure 9
shows the data flow between QCDOC nodes in NNC.
The implementation of NNC is under way [11].

4.4. Performance of MILC + QMP on
QCDOC

MILC code [7] is a body of C codes for SU(3) gauge
theory, developed and maintained by the MILC col-
laboration. It has been ported to various parallel
computers, workstations, and communication proto-
cols, including MPI and QMP. Implementation of the
QMP back-end for the MILC code was done by James

Osborne (osborn@physics.utah.edu). We ran several
lattice QCD kernels in MILC code with QMP on the
QCDOC simulator and measured the performance.

As shown in Table III, 15 ∼ 20% of peak perfor-
mance is observed on the QCDOC simulator for many
computationally intensive MILC C routines in single
precision compiled by the XLC compiler [12], which
generated significantly more efficient assembly com-
pared to GCC for PowerPC.

Table III Performance of QCD kernels from MILC code
on the QCDOC simulator. MILC codes are run in single
precision, and a 500Mhz CPU clock is assumed.

Operation Local Vol. Mflops/node
Staggered Deo 24 170
Staggered Deo 44 210
Asqtad Deo 44 150

Asqtad Force 24 140
Asqtad Force 44 200

4.5. Improved action (Asqtad) force term

The Asqtad action [10] is one of the improved dis-
cretizations of continuum QCD fermion actions which
exhibits smaller lattice spacing errors and flavor mix-
ing. It uses many different paths connecting χ(x) and
χ(x+ µ̂) or χ(x) and χ(x+3µ̂) in contrast to the Wil-
son or staggered actions where only one gauge link
Uµ(x) is used for each pair of neighbors. A diagram
of the paths in the Asqtad action is shown in Fig. 10.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

9THIT001, THIT002, THIT003 ePrint hep-lat/0306023

Onelink

Lepage7 staple

5 staple

Naik

Staple

Figure 10: Diagram of paths used in the Asqtad action.

Calculation of the force term for the gauge link
Uµ(x), ∂SAsqtad/∂Uµ(x), mostly consists of parallel
transport χ′(x) = Uµ(x)χ(x + µ̂) and SU(3) vector
outer products P (x) = χ(x)χ′†(x). Because of the
complexity of the gauge paths used in the action, the
number of floating point operations for the Asqtad
force term is much larger than for the application of
the Dirac operator and the force term for simpler ac-
tions. The number of floating point operations per site
is ∼ 250,000. Considering that the number of Flops for
the Asqtad Dirac operator is only 1146 per site, and
the typical number of conjugate gradient iterations is
about 1000 for the mass used in typical lattice simula-
tions, the force term calculation is a significant portion
of the Hybrid Monte Carlo simulation, where a Dirac
matrix inversion is alternated with a force term cal-
culation, and thus should be optimized as well as the
Dirac operator.

We found the performance of the Asqtad force term
was initially rather low, only 3% of peak for 24 and
6% for 44 local lattice volumes. Upon examining the
source code, we found that the communication chan-
nels are being created and destroyed for each parallel
transport. This amounts to 30∼60% of the total num-
ber of cycles for parallel transport. After modifying
the parallel transport to reuse communication chan-
nels and combining small routines used in the outer
product routine to eliminate function call overhead,
the overall performance increased significantly to 12%
for a 24 and 13% for a 44 local lattice.

Further optimization was done by eliminating func-
tion calls for computation routines defined for each
lattice site within parallel transport and outer prod-
uct routines. Together with loop unrolling, this made
it possible to preload data into the L1 cache and regis-
ters to avoid cache misses. This improved the perfor-
mance of computation routines by a factor of 1.5∼1.7.
The overall performance increased to 14% for 24 and
20% for 44 local volume, a 300∼400% increase over
the original performance and quite acceptable for a C
routine.

5. Status and conclusions

QCDOC is a massively parallel computing architec-
ture optimized for lattice QCD. The node has been

designed to balance the floating point performance,
memory bandwidth, and communication performance
such that for QCD no single subsystem limits the
performance. The design improves the network and
memory subsystem performance relative to the float-
ing point peak when compared with current commer-
cial MPPs.

Simulation measurements of the nearest neighbour
latency and global summation suggests at least an or-
der of magnitude improvement over current commer-
cial machines. This has enabled us to demonstrate
very efficient use of the floating point unit that is
maintained on remarkably small local volumes, such
as 24, and estimate scalability on typical lattices to
machines as large as several tens of thousands of
nodes.

The six dimensional mesh network is dealt with
transparently by the operating system, and the ma-
chine can be dynamically partitioned to run multiple
applications of any dimension from one through six.
This should enable applications with similar charac-
teristics to QCD (local communication on a regular
multi-dimensional mesh) to make efficient use of the
machine.

A run-time environment compliant with the Sci-
DAC software effort will be available. The mes-
sage passing interface defined by the SciDAC effort,
QMP, provides portable, efficient communication rou-
tines for lattice QCD. The QMP implementation on
QCDOC is complete except for non-nearest neighbor
communication, which is in the process of being im-
plemented. Performance numbers for lattice QCD
routines from MILC code with QMP were presented.
To take full advantage of the hardware capabilities of
QCDOC provided via QMP, the user programs should
be written in a way that minimizes repetitive over-
heads, as shown by the performance numbers for the
Asqtad force term.

The first batch of QCDOC ASICs has been man-
ufactured and is being assembled for initial testing.
While we thank the editors for their patience, we re-
gret having been unable to further delay the submis-
sion of these proceedings until after the hardware went
online. Performance figures obtained from real hard-
ware will be available in the near future.

Acknowledgments

This work was supported in part by U.S. Depart-
ment of Energy contracts DE-AC02-98CH10886 (CJ)
and DE-FG02-91ER40608 (TW), by the RIKEN-BNL
Research Center (TW), and by PPARC (PAB).

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

10THIT001, THIT002, THIT003 ePrint hep-lat/0306023

References

[1] D. Chen et al., Nucl. Phys. B (Proc. Suppl.) 94
(2001) 825; P.A. Boyle et al., Nucl. Phys. B (Proc.
Suppl.) 106 (2002) 177; P.A. Boyle et al., hep-
lat/0210034

[2] http://www-3.ibm.com/chips/products/
coreconnect

[3] http://www-3.ibm.com/chips/techlib/techlib.nsf/
products/PowerPC 440 Embedded Core

[4] http://www-3.ibm.com/chips/products/
powerpc/newsletter/aug2001/new-prod3.html

[5] http://www.scidac.org
[6] http://phys.columbia.edu/∼cqft/physics sfw/

physics sfw.htm
[7] http://www.physics.utah.edu/∼detar/milc
[8] http://www.jlab.org/∼edwards/szin/
[9] http://www.lqcd.org/qmp/MessageAPI.htm

[10] K. Orginos and D. Toussaint, Phys. Rev. D 59
(1999) 014501; K. Orginos, D. Toussaint and R.
L. Sugar, Phys. Rev. D 60 (1999) 054503; G. P.
Lepage, Phys. Rev. D59 (1999) 074502.

[11] R. Bennet, in Proceedings of ”High Performance
Computing with QCDOC and BlueGene”, BNL-
71147-2003

[12] http://www-3.ibm.com/software/awdtools/caix

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

11THIT001, THIT002, THIT003 ePrint hep-lat/0306023

