
 
 

 
 

 

Understanding and Coping with Hardware and Software Failures in a Very 
Large Trigger Farm 

Jim Kowalkowski 
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When thousands of processors are involved in performing event filtering on a trigger farm, there is likely to be a large number of failures 
within the software and hardware systems. BTeV, a proton/antiproton collider experiment at Fermi National Accelerator Laboratory, has 
designed a trigger, which includes several thousand processors. If fault conditions are not given proper treatment, it is conceivable that 
this trigger system will experience failures at a high enough rate to have a negative impact on its effectiveness. The RTES (Real Time 
Embedded Systems) collaboration is a group of physicists, engineers, and computer scientists working to address the problem of 
reliability in large-scale clusters with real-time constraints such as this. Resulting infrastructure must be highly scalable, verifiable, 
extensible by users, and dynamically changeable. 

 

1. INTRODUCTION 

Time critical event filtering applications running on 
trigger farms with thousands of processors are likely to 
suffer from a large number of failures within the software 
and hardware systems. The BTeV experiment [1] includes a 
trigger with approximately 5,000 CPUs. If fault conditions 
are not given proper treatment, it is conceivable that this 
trigger system will experience failures at a high enough rate 
to have a negative impact on its effectiveness. It is likely that 
an administrative staff and cast of experiment operators will 
not be able to service simple problems or analyze complex 
problems or relationships in a timely fashion to avoid data 
loss. The Real Time Embedded System collaboration 
(RTES) [2] is a group of physicists, engineers , and computer 
scientists, largely funded by an NSF ITR grant [3]. They are 
working to address the problem of reliability in large-scale 
clusters with realtime constraints such as this. RTES is 
defining software infrastructure to detect, diagnose, and 
recover from errors not only at the system administrative 
level, but also at the application level. This infrastructure 
must be highly scalable to minimize bottlenecks or single 
points of failure. It has to be verifiable to make sure that it 
does what it is supposed to do in a timely fashion, extensible 
by users to acquire new detection/analysis methods as they 
are discovered, and dynamically changeable so that it can be 
reconfigured as the system operates. The problem is being 
approached using a hierarchy of monitoring and control 
elements, architected such that lower levels have high data 
rates, short reaction times and a narrow view, and higher 
levels have aggregated data summaries, longer reaction 
times, and a more global perspective. The purpose of the 
paper is to describe the RTES group, its relationship to 
BTeV, the problems they are addressing in regards to fault 
handling, the solutions they are working on, and some of the 
difficulties involved in pulling together dissimilar interests. 

1.1. BTeV Trigger System 

The BTeV trigger system is being used as a model for 
researching fault behavior and handling.  A goal of this 
trigger is to reliably apply processing to every crossing 
generated by the BTeV pixel and muon detectors. In order to 
achieve this goal, the designers have divided the trigger into 
two farms: level-1 and level-2/3.  The BTeV detector will 

produce a crossing every 132ns. With a budget of 2500 
embedded processors at level-1, this means that the system 
must, on average, process an event every 330us. A queuing 
hierarchy permits the trigger to operate with no fixed time 
latency (the decision process is not synchronized on a fixed 
time schedule). The level-2/3 farm has a budget of about 
2500 x86 based PCs. Given the rejection requirements, the 
average processing time per events are about 13ms for the 
level-2 decision and about 130ms for the level-3 decision. 

1.2. The Problem 

The BTeV trigger serves as a good model for studying 
fault handling in a large scale distributed computing 
environment. BTeV requires the trigger to be highly 
available, sustain high computational performance, and 
maintain functional integrity over long periods of time. The 
trigger must be maintainable and be capable of evolving 
over time to accommodate new ideas and experiments. 
Given the large number of connection points and commodity 
parts used in this trigger, we are expecting component 
hardware failures to occur frequently. This system will 
contain a large amount of software (and firmware). The 
reliability of this system is going to depend greatly on the 
quality of this software, or how well it is tested, how well it 
is designed, and how well it handles exceptional conditions. 
Improving the overall quality of the system is going to 
require quick and easy ways to identity problems and make 
necessary corrections. This will be especially critical during 
detector commissioning; when the software and hardware 
must interact with real-world data for the first time. 

1.3. The Goal 

In order to satisfy the requirements of this trigger and 
address the problems associated with it, we need a fault 
handling subsystem. The goal is to create one such 
subsystem to be used by all components in the trigger and 
DAQ. This subsystem must be capable of accurately 
identifying problems and compensating for them. This 
includes application related activities such as changing 
algorithm thresholds and overall system activities such as 
load shifting. As many recovery procedures as possible must 
be automated. A simple example is switching to a hot spare 
level-1 processing board when a working board fails. 
Operators and system developers must be able to easily 
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incorporate new procedures or policies into the system. The 
operators must be able to easily select error handling 
policies. A detailed record of observations and actions must 
be kept to facilitate reproduction of analysis results and to 
identify long-term trends. 

Creating a single subsystem for handling faults across the 
DAQ and the trigger can benefit the experiment by lowering 
new procedure integration costs and reducing the amount of 
knowledge necessary to operate and maintain the system. A 
standard set of interfaces and protocols reduces the number 
of conversions and products that must be developed and 
maintained. Developing standards for error handling and 
reporting means that the information produced or exchanged 
between applications can be easily processed. 

2. THE RTES COLLABORATION 

The RTES group is a collaboration of five institutions, 
funded by NSF Information Technology Grant ACI-
0121658. The collaboration consists of physicists, computer 
scientists, and electrical engineers from University of 
Illinois, University of Pittsburgh, University of Syracuse, 
Vanderbilt, and Fermilab. The group has experts in 
reliability and fault tolerance, real-time scheduling and load 
balancing, embedded system development, and system 
modeling. The purpose of this group is to research 
methodologies and tools for doing fault handling and 
analysis in large scale, real-time environments. BTeV 
provides the physical, concrete problem that can be used to 
demonstrate and benefit directly from the research. BTeV 
has a real need for this fault handling research and RTES has 
a real need for a very large-scale system for testing ideas and 
setting the scope of the research. Pulling together many 
areas of expertise will lead to a good overall solution. Each 
of the individual groups adds a unique perspective and 
number of ideas for solving the problem. 

3. TECHNOLOGIES 

Each of the universities involved has expertise in some 
aspect of the problem. In some cases , they already have tool 
kits that have been used to solve smaller scale problems 
related to realtime embedded systems and fault management. 
BTeV has established a prototype architecture for the trigger 
that is being used as a model for RTES software 
development. The prototype helps to set subsystem 
boundaries, give a sense of scale, and identify required 
interfaces and error conditions. This prototype uses DSPs as 
the embedded level-1 processors. Figure 1 shows a block 
diagram of the trigger components. This paper concentrates 
on one of the farmlets and its components, and on the L2/3 
node and its software infrastructure. The farmlet is basically 
a single event input queue (FPGA) with three to six servers. 
It also contains a microcontroller that is used for 
configuration, controls, and monitoring. 

  

Figure 1 – Working model of the BTeV trigger 

The technologies introduced by RTES and discussed 
below are ARMORs for L2/3 nodes and overall management 
nodes, VLA s for the embedded processors and specific 
monitoring tasks at L2/3, and GME for system modeling and 
configuration. Each of these apply to different aspects of the 
trigger and all of them must work together. 

3.1. ARMORs 

The University of Illinois has produced a fault 
management software component called an Adaptive, 
Reconfigurable, and Mobile Objects for Reliability 
(ARMOR). An implementation of ARMOR exists called 
Chameleon [4]. ARMORs are multithreaded processes 
composed of replaceable building blocks called Elements. 
Elements communicate by way of messages. The pluggable 
component architecture makes this a highly flexible system 
allowing modules like recovery action elements, error 
analysis elements, and problem detection elements to be 
developed and configured independently.  ARMORs can be 
configured in a hierarchy across multiple nodes to provide 
entire system coverage. Figure 2 illustrates a simple armor 
configuration.  Here a node has a main ARMOR daemon 
watching over the node and reporting to higher-level 
ARMORs out on the network. Elements within these node-
level ARMORs work together to make sure all nodes are 
operating properly. Another standard ARMOR is the 
execution ARMOR. This ARMOR is responsible for 
protecting a single application. This type of protection does 
not require modifications to the program; it simply watches 
that the program is running. It can restart the application, 
generate messages for other elements to analyze, or trigger 
recovery actions based on returns codes from the 
application. 
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Figure 2 

An example recovery element is one that automatically 
migrates processes from one machine to another if a 
machine is overloaded or has a hardware failure. The 
ARMORs can also restart at a checkpoint. 

Within the trigger, ARMORs can provide error detection 
and recovery services to the trigger application and any other 
process running on the L2/3 nodes. They can also watch for 
hardware failures. ARMORs are designed to run under an 
operating system such as Linux and Windows and are not 
well suited for embedded systems with harsh memory and 
processing time requirements. Using the ARMOR API, the 
trigger application can report specific errors and other 
information directly to elements. Data processing rate and 
data quality measurements can be sent directly into the 
ARMOR to be distributed to the running elements for 
analysis. The BTeV online group is currently evaluating 
ARMORs to watch over DAQ and trigger related processes 
[5]. 

3.2. VLAs 

The University of Syracuse and the University of 
Pittsburgh are developing a concept called Very Lightweight 
Agents (VLA). A VLA is a software entity designed to 
collect various environmental and process related measures, 
analyze them, and perform actions in a highly constrained 
environment such as the level-1 trigger of BTeV. VLAs may 
be realized as a standalone process, a thread, or a collection 
of functions that maintain state within a larger application 
[6]. Given memory, CPU time, and network bandwidth 
constraints, a VLA will decide how to organize itself to 
provide the best possible results. In order to achieve this 
goal, a VLA may make use of real-time scheduling, priority 
queuing, and a hierarchical set of rules to guide its decisions. 

Within the context of the level-1 trigger, we imagine 
VLAs watching for fault conditions such as trigger 
algorithm crashes, link failures, inability of the processor to 
keep up, and algorithm running too long. Since the level-1 
trigger is so restricted, VLAs will rely on a higher-level 
control system to do any complex analysis and decision-
making. It is easy to believe that running any amount of 
VLA code during the first part of data taking will cause the 
processor to fall behind. The VLA will need to be smart 
enough to change its behavior as data taking progresses, to 
know problem priorities, and to know when the best time is 

to report to the larger control system. At level-2/3, VLAs 
may reside directly inside the trigger executable, performing 
similar function as in level-1. They will also be used to 
collect other hardware specific information such as CPU 
temperature readings. 

3.3. Modeling Tools 

The ISIS group at Vanderbilt University has produced a 
graphical modeling tool called the Generic Modeling 
Environment (GME) [7]. The tool enables one to do “Model 
Integrated Computing” (MIC). This tool allows a designer to 
model many aspects of a system by creating diagrams. The 
concept is similar to CASE tools in that it does capture 
component relationships and properties. It is different 
because it is not tied to a particular modeling paradigm such 
as UML [8]. The tool allows the designers to create a 
domain specific set of rules that define the modeling 
components; you create a modeling paradigm specific to 
your project. GME allows one to independently capture 
different aspects of a system using shapes, properties, 
associations, and constraints specific to the project and then 
combine them to form a system image [9]. Just as a compiler 
forms a parse tree from a programming language and then 
processes  the information in the tree to create machine 
specific assembly code, GME creates a set of data structure 
representing the information in the models and allows 
“model interpreters” to generate information about the 
system. Typical model interpreters are C/C++ code 
generators and system configuration generators. Examples of 
aspects are hardware configuration, process dataflow, and 
fault handling. Hardware configuration includes physical 
components and their connectivity. Dataflow includes 
logical connectivity and executable configuration. Fault 
handling diagrams show system reactions to problems using 
hierarchical state machines. The look and feel of the GME in 
many of the examples we have seen is similar to electronic 
circuit design tools. 

4. USE IN THE BTEV TRIGGER 

From the controls, monitoring, and configuration 
perspective, the trigger forms a natural hierarchy. Using this 
hierarchy in an intelligent way is a must for the system to 
scale properly. Figure 3 shows the components of the trigger 
and their relationships and approximate multiplicities. The 
diagram is broken up into three levels; as we move down, 
we move closer to the machine. Regional and global 
management nodes will be PCs running Linux. The level-2/3 
branch shown has twenty-five regional management 
machines each operating 100 trigger nodes (2500 total 
nodes). The level-1 branch shown has six management 
machines each operating 100 boards, which each containing 
four embedded processors and a front end CPU. Each level 
in the diagram represents a region where a particular 
technology will be deployed. Software components that sit 
on the border will likely utilize two different technologies.  
Event processing and filtering happens at the lowest level 
and therefore has the most restrictions. 
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Figure 3 

The primary technology used on the “Worker DSP”, or 
embedded system level, will be VLAs. Here we will most 
likely have a simple, lightweight operating system running a 
single process image containing multiple threads. The 
operating system will offer basic support for facilities such 
as resource locking and task preemption and interrupt 
handling. One plan for the application is for it to be 
composed of two separately released components: (1) a fault 
and mo nitoring subsystem and (2) an event processing 
subsystem. VLAs will live in subsystem (1). The event 
processing subsystem can report status and measurements. 
This subsystem will not necessary know if the measurements 
are good or bad; it is the job of the fault management 
subsystem to determine this. VLAs are likely to perform 
three functions: watch the hardware resources such as 
communications links, watch for algorithm crashes and 
timeouts, and watch some of the measurements coming from 
the trigger algorithm. The VLA infrastructure must be 
flexible enough to allow dynamic configuration without 
compilation or application link editing. VLAs may only have 
time to watch for thresholds or limits to be exceeded and 
then alert higher-level processes in the Farmlet to do the 
actual analysis. 

ARMORs will handle fault tolerance issues in the 
“Worker PC” at level-2/3. Here ARMORs will watch over 
the processes that are active, including the trigger 
application. The execution elements can restart a failed 
progress. ARMORs will also manage hardware monitoring 
VLAs. The VLAs will collect sensor data from the system 
and summarize it for use in element analysis modules. 
Examples of system-level VLAs are CPU temperature, 
network utilization, and I/O error monitoring. VLA code 
may also be embedded within the physics event building 
processes and filter program. These VLAs will report event 
processing statistics and error conditions to the ARMOR for 
further processing. ARMORs at the “Worker PC” will know 
how to interpret the data coming in from the various VLAs 
and know what the proper operating conditions are. They 
will know how to perform local recovery such as restarting 
processes and resetting hardware. These ARMORs are tied 

to a higher-level regional manager. Error conditions that 
cannot be handled locally will be sent off to this manager for 
further analysis. Statistical summaries will also be sent up to 
the manager. 

The middle level will likely be ARMOR based. This level 
has a view across many nodes in the trigger and can perform 
complex analysis on statistics and errors received from the 
worker nodes. It can take larger actions such as taking a 
node out of service or reassigning nodes that are performing 
other tasks. The top level will handle communications with 
as many external entities as is needed to operate the trigger. 
This top-level manager will have the widest view of the 
system and can perform actions that affect the entire trigger. 

5. THE ITR EXPERIENCE 

5.1. Overall Comments 

Five institutions make up the RTES group. Each of these 
collaborating institutions has personal goals they want to 
achieve and expertise in specific areas of computer science, 
electrical engineering, and physics. Bringing this diverse set 
of interests and experiences together forces each group to 
expand their domain and include new ideas in their thinking. 
We believe that the overall result will be a better solution to 
the problem. Working together in this situation also forces 
everyone to change his or her path toward a solution. 

Each group has a set of toolkits and techniques for solving 
problems they have dealt with in the past. It is natural to first 
try to apply this existing set to the new problem; to reuse the 
gained experience and not start from scratch. This can be 
described as group momentum and it  is requires a lot of 
energy to change course. The scale of the BTeV trigger is 
larger than any of the groups have seen before and requires 
changes in process. 

The institutions involved are located far apart. Developing 
a coherent system requires a lot of interaction and 
communication. The distance between groups impedes 
progress. It is far more difficult to convene information over 
the phone or by using email than it is talking person to 
person. Biweekly teleconferences and bimonthly 
collaboration meetings help reduce this problem. 

We have an overall research goal in mind: creation of 
methodologies and a toolkit to be used to add fault tolerance 
to the BTeV trigger. It is not easy to balance individual 
group research goals and interests with the overall goal. 
Some research may not be directly useful in a trigger due to 
constraints, but may be useful in solving a similar large-
scale cluster-computing problem. Some of the developments 
are far different from traditional methods used in the physics 
community and require an open mind and creative thinking 
to discover potential uses in a triggering system.  

5.2. The approach so far 

Discussions, prototyping, and simple demonstrations have 
been the primary tools used so far to move towards the goal. 
The discussions include concept refinement, such as what a 
VLA really is, what it means to schedule tasks, what a 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THGT001 ePrint cs.DC/0306074



 
 

 
 

 

trigger system does, and how a large-scale system operates 
(physically and sociologically). RTES sponsored a workshop 
[10] to discuss ideas and other fault tolerance issues in large 
systems. 

The Vanderbilt group has created DSP boards that mimic 
the processing that go on in level-1. This platform is being 
used to understand what types of recovery are possible in 
this confined environment and how communications take 
place and are managed. Each of the groups has used this 
hardware to some extent. Another purpose of this board is to 
help the group define boundaries between subsystems and 
develop abstractions and code that are necessary to run 
actual BTeV level-1 hardware. 

5.3. Achieving the goal 

We are currently in the process of creating a set of 
requirements that will be used to drive the development 
process. The interactions between the trigger subsystems and 
the RTES toolkits will be captured in a set of use cases [11]. 
The use cases will serve as acceptance criteria for RTES 
components. A model of the level-1 and level-2/3 trigger 
system has been defined to set the problem context and aid 
in the understanding of system boundaries. It also serves as a 
way for everyone to understand a common set of terms and 
definitions.  

6. CONCLUSION 

We are working towards having a single fault 
management toolkit to be used in the BTeV trigger and 
DAQ systems. This toolkit provides APIs for both system 
level services and application level programs. It can be used 
for resource and application monitoring, process 
management, error reporting, and encapsulation of recovery 
procedures. The goal is to have a system that is fault 
tolerant, efficient to operate, and possible to quickly 
comprehend and extend. This system has an enormous 
number of resources that must be functional and operating at 
peak performance to accomplish its task. RTES will enable 
the operations group to automate problem handling; a must 
in a system such as this. The expandable nature of RTES 
components will allow the system to be as smart as the 
modules that are plugged into it. Careful planning and 
configuration can lead to an increase in trigger uptime and 
resource utilization. It will also reduce the time needed to 

diagnose comp lex problems and understand the operating 
characteristics of the software. 

The BTeV trigger is a good model for large-scale fault 
management research. The real-time constraints of the 
trigger mean interesting research for computer scientists and 
engineers regarding scheduling and deadline management. 
We are confident that the new experiences brought in by the 
RTES group will have a positive effect on BTeV. 
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