

Understanding and Coping with Hardware and Software Failures in a Very
Large Trigger Farm

Jim Kowalkowski
Fermi National Accelerator Laboratory, Batavia, IL, 60510

When thousands of processors are involved in performing event filtering on a trigger farm, there is likely to be a large number of failures
within the software and hardware systems. BTeV, a proton/antiproton collider experiment at Fermi National Accelerator Laboratory, has
designed a trigger, which includes several thousand processors. If fault conditions are not given proper treatment, it is conceivable that
this trigger system will experience failures at a high enough rate to have a negative impact on its effectiveness. The RTES (Real Time
Embedded Systems) collaboration is a group of physicists, engineers, and computer scientists working to address the problem of
reliability in large-scale clusters with real-time constraints such as this. Resulting infrastructure must be highly scalable, verifiable,
extensible by users, and dynamically changeable.

1. INTRODUCTION

Time critical event filtering applications running on
trigger farms with thousands of processors are likely to
suffer from a large number of failures within the software
and hardware systems. The BTeV experiment [1] includes a
trigger with approximately 5,000 CPUs. If fault conditions
are not given proper treatment, it is conceivable that this
trigger system will experience failures at a high enough rate
to have a negative impact on its effectiveness. It is likely that
an administrative staff and cast of experiment operators will
not be able to service simple problems or analyze complex
problems or relationships in a timely fashion to avoid data
loss. The Real Time Embedded System collaboration
(RTES) [2] is a group of physicists, engineers , and computer
scientists, largely funded by an NSF ITR grant [3]. They are
working to address the problem of reliability in large-scale
clusters with realtime constraints such as this. RTES is
defining software infrastructure to detect, diagnose, and
recover from errors not only at the system administrative
level, but also at the application level. This infrastructure
must be highly scalable to minimize bottlenecks or single
points of failure. It has to be verifiable to make sure that it
does what it is supposed to do in a timely fashion, extensible
by users to acquire new detection/analysis methods as they
are discovered, and dynamically changeable so that it can be
reconfigured as the system operates. The problem is being
approached using a hierarchy of monitoring and control
elements, architected such that lower levels have high data
rates, short reaction times and a narrow view, and higher
levels have aggregated data summaries, longer reaction
times, and a more global perspective. The purpose of the
paper is to describe the RTES group, its relationship to
BTeV, the problems they are addressing in regards to fault
handling, the solutions they are working on, and some of the
difficulties involved in pulling together dissimilar interests.

1.1. BTeV Trigger System

The BTeV trigger system is being used as a model for
researching fault behavior and handling. A goal of this
trigger is to reliably apply processing to every crossing
generated by the BTeV pixel and muon detectors. In order to
achieve this goal, the designers have divided the trigger into
two farms: level-1 and level-2/3. The BTeV detector will

produce a crossing every 132ns. With a budget of 2500
embedded processors at level-1, this means that the system
must, on average, process an event every 330us. A queuing
hierarchy permits the trigger to operate with no fixed time
latency (the decision process is not synchronized on a fixed
time schedule). The level-2/3 farm has a budget of about
2500 x86 based PCs. Given the rejection requirements, the
average processing time per events are about 13ms for the
level-2 decision and about 130ms for the level-3 decision.

1.2. The Problem

The BTeV trigger serves as a good model for studying
fault handling in a large scale distributed computing
environment. BTeV requires the trigger to be highly
available, sustain high computational performance, and
maintain functional integrity over long periods of time. The
trigger must be maintainable and be capable of evolving
over time to accommodate new ideas and experiments.
Given the large number of connection points and commodity
parts used in this trigger, we are expecting component
hardware failures to occur frequently. This system will
contain a large amount of software (and firmware). The
reliability of this system is going to depend greatly on the
quality of this software, or how well it is tested, how well it
is designed, and how well it handles exceptional conditions.
Improving the overall quality of the system is going to
require quick and easy ways to identity problems and make
necessary corrections. This will be especially critical during
detector commissioning; when the software and hardware
must interact with real-world data for the first time.

1.3. The Goal

In order to satisfy the requirements of this trigger and
address the problems associated with it, we need a fault
handling subsystem. The goal is to create one such
subsystem to be used by all components in the trigger and
DAQ. This subsystem must be capable of accurately
identifying problems and compensating for them. This
includes application related activities such as changing
algorithm thresholds and overall system activities such as
load shifting. As many recovery procedures as possible must
be automated. A simple example is switching to a hot spare
level-1 processing board when a working board fails.
Operators and system developers must be able to easily

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THGT001 ePrint cs.DC/0306074

incorporate new procedures or policies into the system. The
operators must be able to easily select error handling
policies. A detailed record of observations and actions must
be kept to facilitate reproduction of analysis results and to
identify long-term trends.

Creating a single subsystem for handling faults across the
DAQ and the trigger can benefit the experiment by lowering
new procedure integration costs and reducing the amount of
knowledge necessary to operate and maintain the system. A
standard set of interfaces and protocols reduces the number
of conversions and products that must be developed and
maintained. Developing standards for error handling and
reporting means that the information produced or exchanged
between applications can be easily processed.

2. THE RTES COLLABORATION

The RTES group is a collaboration of five institutions,
funded by NSF Information Technology Grant ACI-
0121658. The collaboration consists of physicists, computer
scientists, and electrical engineers from University of
Illinois, University of Pittsburgh, University of Syracuse,
Vanderbilt, and Fermilab. The group has experts in
reliability and fault tolerance, real-time scheduling and load
balancing, embedded system development, and system
modeling. The purpose of this group is to research
methodologies and tools for doing fault handling and
analysis in large scale, real-time environments. BTeV
provides the physical, concrete problem that can be used to
demonstrate and benefit directly from the research. BTeV
has a real need for this fault handling research and RTES has
a real need for a very large-scale system for testing ideas and
setting the scope of the research. Pulling together many
areas of expertise will lead to a good overall solution. Each
of the individual groups adds a unique perspective and
number of ideas for solving the problem.

3. TECHNOLOGIES

Each of the universities involved has expertise in some
aspect of the problem. In some cases , they already have tool
kits that have been used to solve smaller scale problems
related to realtime embedded systems and fault management.
BTeV has established a prototype architecture for the trigger
that is being used as a model for RTES software
development. The prototype helps to set subsystem
boundaries, give a sense of scale, and identify required
interfaces and error conditions. This prototype uses DSPs as
the embedded level-1 processors. Figure 1 shows a block
diagram of the trigger components. This paper concentrates
on one of the farmlets and its components, and on the L2/3
node and its software infrastructure. The farmlet is basically
a single event input queue (FPGA) with three to six servers.
It also contains a microcontroller that is used for
configuration, controls, and monitoring.

Figure 1 – Working model of the BTeV trigger

The technologies introduced by RTES and discussed
below are ARMORs for L2/3 nodes and overall management
nodes, VLA s for the embedded processors and specific
monitoring tasks at L2/3, and GME for system modeling and
configuration. Each of these apply to different aspects of the
trigger and all of them must work together.

3.1. ARMORs

The University of Illinois has produced a fault
management software component called an Adaptive,
Reconfigurable, and Mobile Objects for Reliability
(ARMOR). An implementation of ARMOR exists called
Chameleon [4]. ARMORs are multithreaded processes
composed of replaceable building blocks called Elements.
Elements communicate by way of messages. The pluggable
component architecture makes this a highly flexible system
allowing modules like recovery action elements, error
analysis elements, and problem detection elements to be
developed and configured independently. ARMORs can be
configured in a hierarchy across multiple nodes to provide
entire system coverage. Figure 2 illustrates a simple armor
configuration. Here a node has a main ARMOR daemon
watching over the node and reporting to higher-level
ARMORs out on the network. Elements within these node-
level ARMORs work together to make sure all nodes are
operating properly. Another standard ARMOR is the
execution ARMOR. This ARMOR is responsible for
protecting a single application. This type of protection does
not require modifications to the program; it simply watches
that the program is running. It can restart the application,
generate messages for other elements to analyze, or trigger
recovery actions based on returns codes from the
application.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THGT001 ePrint cs.DC/0306074

TCP
Mgmt.

Pipe
Mgmt.

Process
Mgmt.

Detection
Policy

ARMOR Microkernel
Process
Mgmt.

Network

Node 1

Daemon
Node 2

Daemon

Remote daemons

Node 3
ARMOR Microkernel

Recovery
Policy

Local Manager ARMOR

Trigger
Program

Exe
Control

TCP
Mgmt.

Pipe
Mgmt.

Process
Mgmt.

Detection
Policy

ARMOR Microkernel
Process
Mgmt.

NetworkNetwork

Node 1

Daemon
Node 2

Daemon

Remote daemons

Node 3
ARMOR Microkernel

Recovery
Policy

Local Manager ARMOR

Trigger
Program

Exe
Control

Figure 2

An example recovery element is one that automatically
migrates processes from one machine to another if a
machine is overloaded or has a hardware failure. The
ARMORs can also restart at a checkpoint.

Within the trigger, ARMORs can provide error detection
and recovery services to the trigger application and any other
process running on the L2/3 nodes. They can also watch for
hardware failures. ARMORs are designed to run under an
operating system such as Linux and Windows and are not
well suited for embedded systems with harsh memory and
processing time requirements. Using the ARMOR API, the
trigger application can report specific errors and other
information directly to elements. Data processing rate and
data quality measurements can be sent directly into the
ARMOR to be distributed to the running elements for
analysis. The BTeV online group is currently evaluating
ARMORs to watch over DAQ and trigger related processes
[5].

3.2. VLAs

The University of Syracuse and the University of
Pittsburgh are developing a concept called Very Lightweight
Agents (VLA). A VLA is a software entity designed to
collect various environmental and process related measures,
analyze them, and perform actions in a highly constrained
environment such as the level-1 trigger of BTeV. VLAs may
be realized as a standalone process, a thread, or a collection
of functions that maintain state within a larger application
[6]. Given memory, CPU time, and network bandwidth
constraints, a VLA will decide how to organize itself to
provide the best possible results. In order to achieve this
goal, a VLA may make use of real-time scheduling, priority
queuing, and a hierarchical set of rules to guide its decisions.

Within the context of the level-1 trigger, we imagine
VLAs watching for fault conditions such as trigger
algorithm crashes, link failures, inability of the processor to
keep up, and algorithm running too long. Since the level-1
trigger is so restricted, VLAs will rely on a higher-level
control system to do any complex analysis and decision-
making. It is easy to believe that running any amount of
VLA code during the first part of data taking will cause the
processor to fall behind. The VLA will need to be smart
enough to change its behavior as data taking progresses, to
know problem priorities, and to know when the best time is

to report to the larger control system. At level-2/3, VLAs
may reside directly inside the trigger executable, performing
similar function as in level-1. They will also be used to
collect other hardware specific information such as CPU
temperature readings.

3.3. Modeling Tools

The ISIS group at Vanderbilt University has produced a
graphical modeling tool called the Generic Modeling
Environment (GME) [7]. The tool enables one to do “Model
Integrated Computing” (MIC). This tool allows a designer to
model many aspects of a system by creating diagrams. The
concept is similar to CASE tools in that it does capture
component relationships and properties. It is different
because it is not tied to a particular modeling paradigm such
as UML [8]. The tool allows the designers to create a
domain specific set of rules that define the modeling
components; you create a modeling paradigm specific to
your project. GME allows one to independently capture
different aspects of a system using shapes, properties,
associations, and constraints specific to the project and then
combine them to form a system image [9]. Just as a compiler
forms a parse tree from a programming language and then
processes the information in the tree to create machine
specific assembly code, GME creates a set of data structure
representing the information in the models and allows
“model interpreters” to generate information about the
system. Typical model interpreters are C/C++ code
generators and system configuration generators. Examples of
aspects are hardware configuration, process dataflow, and
fault handling. Hardware configuration includes physical
components and their connectivity. Dataflow includes
logical connectivity and executable configuration. Fault
handling diagrams show system reactions to problems using
hierarchical state machines. The look and feel of the GME in
many of the examples we have seen is similar to electronic
circuit design tools.

4. USE IN THE BTEV TRIGGER

From the controls, monitoring, and configuration
perspective, the trigger forms a natural hierarchy. Using this
hierarchy in an intelligent way is a must for the system to
scale properly. Figure 3 shows the components of the trigger
and their relationships and approximate multiplicities. The
diagram is broken up into three levels; as we move down,
we move closer to the machine. Regional and global
management nodes will be PCs running Linux. The level-2/3
branch shown has twenty-five regional management
machines each operating 100 trigger nodes (2500 total
nodes). The level-1 branch shown has six management
machines each operating 100 boards, which each containing
four embedded processors and a front end CPU. Each level
in the diagram represents a region where a particular
technology will be deployed. Software components that sit
on the border will likely utilize two different technologies.
Event processing and filtering happens at the lowest level
and therefore has the most restrictions.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THGT001 ePrint cs.DC/0306074

Global Manager

Regional Level-1 Regional Level-2/3

Database
AnalysisOperators

Worker PCFarmlet

Worker DSP

modeling Vendor APIs

1
25

1
100

1

4

1
6

1
100

Figure 3

The primary technology used on the “Worker DSP”, or
embedded system level, will be VLAs. Here we will most
likely have a simple, lightweight operating system running a
single process image containing multiple threads. The
operating system will offer basic support for facilities such
as resource locking and task preemption and interrupt
handling. One plan for the application is for it to be
composed of two separately released components: (1) a fault
and mo nitoring subsystem and (2) an event processing
subsystem. VLAs will live in subsystem (1). The event
processing subsystem can report status and measurements.
This subsystem will not necessary know if the measurements
are good or bad; it is the job of the fault management
subsystem to determine this. VLAs are likely to perform
three functions: watch the hardware resources such as
communications links, watch for algorithm crashes and
timeouts, and watch some of the measurements coming from
the trigger algorithm. The VLA infrastructure must be
flexible enough to allow dynamic configuration without
compilation or application link editing. VLAs may only have
time to watch for thresholds or limits to be exceeded and
then alert higher-level processes in the Farmlet to do the
actual analysis.

ARMORs will handle fault tolerance issues in the
“Worker PC” at level-2/3. Here ARMORs will watch over
the processes that are active, including the trigger
application. The execution elements can restart a failed
progress. ARMORs will also manage hardware monitoring
VLAs. The VLAs will collect sensor data from the system
and summarize it for use in element analysis modules.
Examples of system-level VLAs are CPU temperature,
network utilization, and I/O error monitoring. VLA code
may also be embedded within the physics event building
processes and filter program. These VLAs will report event
processing statistics and error conditions to the ARMOR for
further processing. ARMORs at the “Worker PC” will know
how to interpret the data coming in from the various VLAs
and know what the proper operating conditions are. They
will know how to perform local recovery such as restarting
processes and resetting hardware. These ARMORs are tied

to a higher-level regional manager. Error conditions that
cannot be handled locally will be sent off to this manager for
further analysis. Statistical summaries will also be sent up to
the manager.

The middle level will likely be ARMOR based. This level
has a view across many nodes in the trigger and can perform
complex analysis on statistics and errors received from the
worker nodes. It can take larger actions such as taking a
node out of service or reassigning nodes that are performing
other tasks. The top level will handle communications with
as many external entities as is needed to operate the trigger.
This top-level manager will have the widest view of the
system and can perform actions that affect the entire trigger.

5. THE ITR EXPERIENCE

5.1. Overall Comments

Five institutions make up the RTES group. Each of these
collaborating institutions has personal goals they want to
achieve and expertise in specific areas of computer science,
electrical engineering, and physics. Bringing this diverse set
of interests and experiences together forces each group to
expand their domain and include new ideas in their thinking.
We believe that the overall result will be a better solution to
the problem. Working together in this situation also forces
everyone to change his or her path toward a solution.

Each group has a set of toolkits and techniques for solving
problems they have dealt with in the past. It is natural to first
try to apply this existing set to the new problem; to reuse the
gained experience and not start from scratch. This can be
described as group momentum and it is requires a lot of
energy to change course. The scale of the BTeV trigger is
larger than any of the groups have seen before and requires
changes in process.

The institutions involved are located far apart. Developing
a coherent system requires a lot of interaction and
communication. The distance between groups impedes
progress. It is far more difficult to convene information over
the phone or by using email than it is talking person to
person. Biweekly teleconferences and bimonthly
collaboration meetings help reduce this problem.

We have an overall research goal in mind: creation of
methodologies and a toolkit to be used to add fault tolerance
to the BTeV trigger. It is not easy to balance individual
group research goals and interests with the overall goal.
Some research may not be directly useful in a trigger due to
constraints, but may be useful in solving a similar large-
scale cluster-computing problem. Some of the developments
are far different from traditional methods used in the physics
community and require an open mind and creative thinking
to discover potential uses in a triggering system.

5.2. The approach so far

Discussions, prototyping, and simple demonstrations have
been the primary tools used so far to move towards the goal.
The discussions include concept refinement, such as what a
VLA really is, what it means to schedule tasks, what a

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THGT001 ePrint cs.DC/0306074

trigger system does, and how a large-scale system operates
(physically and sociologically). RTES sponsored a workshop
[10] to discuss ideas and other fault tolerance issues in large
systems.

The Vanderbilt group has created DSP boards that mimic
the processing that go on in level-1. This platform is being
used to understand what types of recovery are possible in
this confined environment and how communications take
place and are managed. Each of the groups has used this
hardware to some extent. Another purpose of this board is to
help the group define boundaries between subsystems and
develop abstractions and code that are necessary to run
actual BTeV level-1 hardware.

5.3. Achieving the goal

We are currently in the process of creating a set of
requirements that will be used to drive the development
process. The interactions between the trigger subsystems and
the RTES toolkits will be captured in a set of use cases [11].
The use cases will serve as acceptance criteria for RTES
components. A model of the level-1 and level-2/3 trigger
system has been defined to set the problem context and aid
in the understanding of system boundaries. It also serves as a
way for everyone to understand a common set of terms and
definitions.

6. CONCLUSION

We are working towards having a single fault
management toolkit to be used in the BTeV trigger and
DAQ systems. This toolkit provides APIs for both system
level services and application level programs. It can be used
for resource and application monitoring, process
management, error reporting, and encapsulation of recovery
procedures. The goal is to have a system that is fault
tolerant, efficient to operate, and possible to quickly
comprehend and extend. This system has an enormous
number of resources that must be functional and operating at
peak performance to accomplish its task. RTES will enable
the operations group to automate problem handling; a must
in a system such as this. The expandable nature of RTES
components will allow the system to be as smart as the
modules that are plugged into it. Careful planning and
configuration can lead to an increase in trigger uptime and
resource utilization. It will also reduce the time needed to

diagnose comp lex problems and understand the operating
characteristics of the software.

The BTeV trigger is a good model for large-scale fault
management research. The real-time constraints of the
trigger mean interesting research for computer scientists and
engineers regarding scheduling and deadline management.
We are confident that the new experiences brought in by the
RTES group will have a positive effect on BTeV.

7. REFERENCES

[1] “The BTeV proposal (May 2000),” http://www-
btev.fnal.gov/public/hep/general/proposal/index.shtml
.

[2] “BTeV real time embedded systems (RTES),”
http://www-
btev.fnal.gov/public/hep/detector/rtes/index.shtml .

[3] “Information Technology Research (ITR) Homepage”,
http://www.itr.nsf.gov/.

[4] Z.T.Kalbarczyk, R.K.Iyer, S.Bagchi, K.Whisnant,
“Chameleon: A software infrastructure for adaptive
fault tolerance,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 6, pp.560-579, June
1999.

[5] L.Piccoli, “Evaluation of RTES Components in a Large
Scale DAQ,” IEEE NPSS Real Time Conference,
Montreal, Canada, May 2003.

[6] S.Tamhankar, J.Oh, D.Mosse, “Design of very
lightweight agents for reactive embedded systems,”
IEEE Conference on the Engineering of Computer
Based Systems (ECBS), Huntsville, AL, April 2003.

[7] “GME 2000, The Generic Modeling Environment,”
http://www.isis.vanderbilt.edu/Projects/gme/default.ht
ml.

[8] G.Booch, J.Rumbaugh, I.Jacobson, The Unified
Modeling Language User Guide, Reading,
Massachusetts, Addison Wesley, 1998.

[9] T.Elrad, R.Filman, A.Bader, “Aspect-Oriented
Programming”, Communications of the ACM, vol.44,
no.10, pp.29-32, Oct 2001.

[10] “FALSE02 Workshop Website”,
http://false2002.vanderbilt.edu.

[11] A.Cockburn, Writing Effective Use Cases, Boston,
Addison Wesley, 2001.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THGT001 ePrint cs.DC/0306074

