
 
 

 
 

 

Grid-Brick Event Processing Framework in GEPS 
 
Antonio Amorim, Luis Pedro 
Faculdade de Ciencias, University of Lisbon, Portugal 

 

Han Fei,  Nuno Almeida, Paulo Trezentos 
ADETTI, Edificio ISCTE, University of Lisbon, Portugal 

 

Jaime E. Villate 
Department of Physics, School of Engineering, University of Porto 

Experiments like ATLAS at LHC involve a scale of computing and data management that greatly exceeds the capability of existing 
systems, making it necessary to resort to Grid-based Parallel Event Processing Systems (GEPS). Traditional Grid systems concentrate 
the data in central data servers which have to be accessed by many nodes each time an analysis or processing job starts. These systems 
require very powerful central data servers and make little use of the distributed disk space that is available in commodity computers.  
The Grid-Brick system, which is described in this paper, follows a different approach. The data storage is split among all grid nodes 
having each one a piece of the whole information. Users submit queries and the system will distribute the tasks through all the nodes and 
retrieve the result, merging them together in the Job Submit Server. The main advantage of using this system is the huge scalability it 
provides, while its biggest disadvantage appears in the case of failure of one of the nodes. A workaround for this problem involves data 
replication or backup. 

 

1. INTRODUCTION 

In many scientific disciplines, the need for Petabyte data 
storage, processing and transferring is emerging as a crucial 
problem and simultaneously large computing and storage 
facilities are always scarce resources. The storage and 
computing capabilities are often temporarily and 
geographically distributed unevenly, sometimes redundant in 
one place while almost non-existent in other. With the 
scientific and technical applications becoming more and 
more sophisticated, many researchers, working and living in 
different places, have to cooperate in the same re-search 
project and access distributed computing resources. 

It is  unlikely that conventional methods can meet the 
demands of providing and sharing these resources. A 
blueprint of computational grids leveled at addressing these 
difficulties has been proposed. [1] 

The Grid [2] is super-computing net, which can connect 
dis tributed mainframe computers, super-computers, as well 
as large numbers of desktop computing devices into easy-to-
use computing facilities. 

1.1. The LHC Computing Problem 

In the Large Hadron Collider (LHC) accelerator at CERN, 
there are 25 million collisions taking place per second. Each 
collision contains about 1 MB of information. One single 
collision is called an "event". Each event is recorded by 
surrounding particle detectors for later processing and 
filtering to select the physically interesting ones. At the end 
of the selection process, events are recorded at a typical rate 
of 100 Hz. Considering the data intensive aspect of event 
processing problems, computational grids are a possible 
solution. 

 
 

2. RELATED WORK 

One interesting development was the Gfarm (Grid Data 
Farm) project [3][4] at KEK (High Energy Accelerator 
Research Organization) and ICEPP (International Center for 
Particle Physics, the University of Tokyo). A large scale 
Gfarm file is divided into several fragments and distributed 
across the disks in the Gfarm file system. A Gfarm file is a 
logical aggregation of physical file fragments distributed 
over many CPU nodes. When a job is submitted into the 
Gfarm server, it is redistributed to nodes, which contain the 
fragment database files. When the job is finished, the results 
will be retrieved across the network. 

Parallel ROOT (PROOF) [5] is another event processing 
system. The ROOT client session creates a master server on 
a remote cluster, and then the master server in turn creates 
slave servers on all the nodes in the cluster. All the slave 
servers execute the user job in parallel. The master server 
distributes the event data packets to every slave server, 
carefully adjusting the packet size such that the slower slave 
servers get smaller data packets than faster slave servers. 
PROOF uses a TChain object to provide a single logical 
view of many geographically distributed physical files. The 
master server keeps a list of all generated packets per slave, 
so in case a slave failed then remaining slaves can reprocess 
its packets. 

3. TRADITIONAL APROACH  

The GRID paradigm puts a strong emphasis on sharing 
computing and data resources over the global network. The 
usual approaches that are implementing the GRID like 
GLOBUS[13] or DATAGRID[14] focus on the copying and 
sharing of files as well as defining the site gateways to the 
job submission and file transferring facilities. The defined 
GRID interfaces address the traditional job submission use 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THAT004 ePrint cs.DC/0306093



 
 

 
 

case where applications have well defined input and output 
streams and almost no interaction with the user except 
trough a job description file. At each site the data is copied 
from the data center to the processing CPU, it is used as 
input and dropped after the application finishes. On the other 
end, if the data has to be accessed trough the network 
opening a global URL, even the fastest global networks are a 
problem due to the large acknowledgment time necessarily 
associated with large physical distances. 

One important by product of the previous architecture is 
the fact that the GRID enabled applications can share 
resources but do not become necessarily faster except if the 
user explicitly splits his computing job into many jobs and 
explicitly tunes the application input for this task. The 
traditional approaches actually assume that the 
parallelization can be done at a second step inside each 
GRID center. 

   One can perhaps claim that this is not the most natural 
way in which computing applications tend to evolve. 
Interactivity and access to database servers has already 
became crucial and the GRID should attempt to deliver 
results to the user much faster by assuming that the 
parallelism over independent events that are processed in 
parallel.  The parallelism over independent high-energy 
physics collisions must be exploited to define GRID services 
with the granularity of one event.  

4. GEPS APROACH 

In GEPS system we make use of the Grid infrastructure, a 
back-end database, LDAP directory query, and PHP script 
web interface. The scalability of GEPS can be easily 
obtained through freely adding into or removing any grid 
computing and storage node. The main philosophy of GEPS 
is that it works like a portal. Behind the friendly appearance 
of GEPS, many Grid related details are hidden. 
Geographically distributed physicists can easily cooperate 
over the same event processing project, share dispersed 
events data file, stage jobs, query job status, share 
computing resources, transfer data file, and visualize events 
filtering results. 

The main philosophy in which GEPS is based is that the 
data should not be moved when applying for a job 
submission. Data should be already distributed between the 
different Grid nodes. This is very a important issue if we just 
imagine the amount of data transfer that will be needed for 
processing tremendous amounts  of jobs simultaneously, each 
one of them in the order of the Mbytes. The important issue 
of scalability can be easily satisfied with this approach 
because it’s just a matter of adding more Grid nodes to the 
system which are very standard machines.   

4.1. The Events Application 

Event processing application is programmed in C++ using 
the Root Toolkits [6]. Root is an object-oriented framework, 
aimed at solving the data analysis challenges of the high-
energy physics discipline. It provides a large collection of 
specific utilities to manage information in an efficient way. 

Root provides not only an application programming 
interface (API), but an integrated Root tree class data file 
visualization environment. The creation of the Root data file 
has several steps. The first step is to create a structure to 
store all the raw information of the events - this process 
consists of the creation of a shared library, which contains 
all the variables of the event, track, vertices, as well as 
relation objects. 

The next step is to create a Root tree for the storage of all 
the objects presented in the raw information file - the Root 
tree class is optimized to reduce storage space usage and 
enhance accession speed. Inside the Root tree there is one 
branch with all events, inside this branch are all event 
variables that include the tracks, vertices, and relations. 

After data storage in the Root tree is completed, now it is 
the time for scrutinizing, one by one, which event will be the 
candidate that meets the processing standard. The calibration 
procedure based on the processing standard will be done on 
each event, and then the result will be stored in a new tree 
with the same structure. 

Based on the Grid-enabled computing net, we can split 
event raw data into different parts. These can be stored in 
geographically distributed Grid environment, namely the 
resource nodes available for data processing. After that, we 
can stage processing and filtering procedures in a parallel 
mode, monitor the running application, collect results, merge 
the different results data into final data file, and 
retrieve/display the final data. 

4.2. General architecture 

Figure 1 describes the GEPS architecture. GEPS provides 
a user friendly interface that is PHP based. This interface 
ends up being a world wide interface though which the user 
can easily access to the GEPS system. After entering in the 
main-page, a set of options are provided, each one of them 
associated with a different function in the GEPS system. The 
options are: Submit jobs, Retrieve information about a 
particular Grid node; get jobs status details. These options 
available though the web interface will be described in more 
detail in section 5.  

 

 
Fig 1 – GEPS general architecture. The PHP interface hides 
the implementation details from the user. 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THAT004 ePrint cs.DC/0306093



 
 

 
 

 

 
Whenever a user submits a job to the GEPS system, some 

information will be sent to the Meta-data catalogue and other 
to the Job Submission Engine (JSE). The Meta-data 
catalogue is a database that uses PostgreSQL (PgSQL) as 
Database Management System (DBMS). The JSE, through 
its broker that searches from time to time into the Meta-data 
catalogue, receives the information that a new job has been 
submitted for processing. JSE then sends the information to 
the Grid nodes that after the job has been processed it sends 
the result back to the JSE. Back there, the final result is 
merged from the various results coming from the different 
Grid nodes. At this time, JSE also updates the information in 
the Meta-data catalog. After this process the user is ready to 
retrieve the result of the processed jobs. Figure 2 shows 
schematically the dataflow between the different elements 
present in the GEPS system. 

 

 
Fig 2 - GEPS data flow 

 
For the information retrieval concerning the job status, the 

GEPS uses functions that queries the GRIS LDAP server. 
The Grid JSE will parse the job specification tuple in the 

PgSQL database, analyze the job executing environment and 
raw event data distribution demands, synthesize the RSL 
sentences, submit the jobs and monitor the status of the 
submitted job. 

 

4.3. GEPS Prototype Implementation 

The GEPS prototype uses different technologies in order 
to accomplish the behavior that is expected. The 
technologies involved are: 

• Globus toolkit – toolkit that provide GRID API 
functions 

• PgSQL – for the Databas e Management System 
(DBMS) of the Meta data catalogue and to 
store other user related information; 

• LDAP -  Query Grid node information 
• PHP – For the web interface 

 
The Globus Grid toolkit evolved out of the I-WAY high 

performance distributed computing experiment [7]. Before 
the Globus Grid became the de facto high performance 
computing environment, there were other candidate grid 
architectures, include using object-based technology and 
web technology [8]. 

 

Table 1: Globus components in GEPS 
Component Usage 

GRAM  Executable staging 
GRIS in MDS Query Grid node information 
GASS Transfer raw data, retrieve remote 

results 
 
Table 1 lists the grid components used in GEPS. In the 

Grid job submission engine, the new job specification tuples 
are selected from the backend PgSQL database. For each 
new job, by parsing the job specification tuple, a job 
Resource Specification Language (RSL) sentence is 
formulated. After that, a raw data file is transferred (by using 
GASS components) in accordance with the setting of 
relevant resources and then, the GRAM component (globus-
gram-client) is used for remotely submitting and managing 
job. In run time, stdout and stderr is defined in the RLS 
sentence. After all submitted jobs having finished, GASS 
file access functions are used for retrieving distributed event 
results. 

The Globus Toolkit provides an information Monitoring 
and Discovery Service (MDS)[9], which acts as a resource 
information registry and discovery agent. The MDS includes 
a standard, configurable information provider framework 
called a Grid Resource Information Service (GRIS). GRIS is 
implemented as an OpenLDAP [10][11] server. Each Grid 
node can run a local GRIS. 

Through GEPS, the end user can query properties of the 
grid nodes, e.g. how many processors are available at this 
moment, what bandwidth is provided, among others. The 
MDS provides two interfaces: interactive and programmatic. 
By default, a GRIS service is automatically configured and 
assigned to work on port 2135. In our GEPS, the grid-info 
routine obtains the overall Grid node information by 
querying this port through the LDAP protocol. The PHP 
script will call the grid-info routine to get the results. 

 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THAT004 ePrint cs.DC/0306093



 
 

 
 

 
Fig 3 - Querying Grid node resource information through the 
LDAP protocol. 
 

5. GEPS IN ACTION 

In this section will give a very general overview to the 
options that the user disposes in the web interface to the 
GEPS system. In the main page (Fig. 3), users can select 
different options: Get GREED information; Submit a job, 
Retrieve jobs information.  

 
Fig 3 – GEPS main page. 

 
For the job submission (Fig. 4) users need to fill in the 

web form according to their needs. The form includes 
options such as to which server will the job be submitted, a 
filter expression as well as a set of examples that can be used 
to help users to fill the filter expression field. After this 
process, the jobs will be sent to the grid nodes. 

 

 
Fig 4 – GEPS – Submit a job to the system 

If the user wants to retrieve any information related to a 
particular Grid node it just need to select from which one in 
a form like the one in Figure 5. 
 

 
Fig 5 – Apply for retrieval of GREED information 
 

A summary or the detailed information about the available 
Grid resources will be then presented. 

The information about the job status it’s presented like in 
Figure 6. This information includes: 

• Which executable is being used; 
• Where does the executable reside; 
• To which Grid nodes is the executable going to   be 

submitted; 
• Where’s the raw data file; 

 

 
Fig 6 – GEPS – Job status information 

6. TESTS AND RESULTS 

From August to October in 2002, we tested 13 groups of raw 
event data, and with a total of 130 experiment executions 
(for decreasing the effect of system and network latency in 
executable staging and data transfer). The current GEPS 
demonstration prototype temporarily consists of two server, 
gandalf and hobbit. Because the GEPS topology structure 
has the feature of scalability, in the future more nodes can be 
easily incorporated. One of the advantages of computational 
grids is that any parts can be easily changed without any 
global effect. 
Different granularities of event data will dramatically affect 
the overall performance of the GEPS system. This is 
reasonable, because with many smaller files of raw event 
data, the portion of system cost dedicated to raw data 
transfer will become larger in total execution time. Based on 
the event data file size, Figure 7 gives the relation between 
running only on hobbit and running in parallel between 
gandalf and hobbit. The unit on Y-axis is time cost in 
second, and the unit in X-axis is the number of events in raw 
event data file. In raw event file each event is about 1 MB in 
size. From the illustration we can easily see that the data file 
size of approximate 2000 events is a watershed. Data files 
consisting of less than 2000 events run in tightly coupled 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THAT004 ePrint cs.DC/0306093



 
 

 
 

 

computing environments will have better performance. But 
usually our event raw data files can be easily much larger 
than 2000 events. From the results illustrated in Figure 7 we 
know that to some extent our GEPS has provided better 
performance. 

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

Number of events per file (Each event is about 1Mbytes)

E
ve

nt
s p

ro
ce

ss
in

g 
tim

e 
sc

al
e 

(U
ni

t: 
se

co
nd

)

GEPS

Hobbit

 
Fig 7 - Performance in GEPS and hobbit with different event 
raw data file sizes 
 
The GEPS network connection is fast Ethernet. User defines 
raw event data distribution by using RSL sentence. Before a 
job can be submitted to grid gatekeeper through grid client 
API, raw event data will firstly be transferred to grid nodes 
in accordance with the raw event data distribution 
specification. GEPS currently uses globus gass file access 
API for transferring raw data and result file between gird 
nodes. Figure 6 only gives the comparison of processing 
time cost between GEPS and hobbit. 

7. CONCLUSIONS AND FUTURE WORK 

We have described the GEPS prototype, which provides an 
integrated Meta computing environment for event 
processing and filtering. In GEPS, Grid related details and 
relevant middleware specifics have been hidden from the 

end user. With GEPS the scalability of intensive event data 
storage becomes easier to achieve. Using GEPS, physicists 
in any place can easily administer and share distributed data 
and take advantage of distributed computing resources. This 
prototype has successfully incorporated to date innovative 
Grid concepts and mechanisms. 
The smaller bandwidth and the larger latency due to the 
geographical distribution of the Grid computational 
resources are the main reason of parallel inefficiency. We 
are working on adding GridFTP into our prototype. Because 
multiple TCP streams and proper TCP buffer sizes are very 
important to obtaining better performance in TCP wide area 
links [12], we are trying to add this feature into the GEPS 
prototype. We are also exploring the feasibility of solving 
other physics problems in the GEPS prototype environment 
like: 

• Error handling and fault-tolerance; 
• Recover mechanisms for each node; 
• Create a redundancy mechanism to recover from 

a malfunction in the nodes; 
• Develop a storage mechanism to submit more 

work to the best nodes  - Load balancing; 

8. ACKNOWLEDGEMENTS 

 
This work was supported by Fundação da Ciência e 

Técnologia under the grant CERN/P/FIS/43719/2001. The 
first author gratefully acknowledges the postdoctoral 
fellowship by the FCT. The third author would like to thank 
ADETTI (Associação para o Desenvolvimento das 
Telecomunicações e Técnicas de Informática) for their 
support to this work. 

 
 
 
 

References 

[1] I.Foster and C. Kesselman: The Grid: Blueprint for a 
new Computing Infrastructure. Mor-gan Kaufmann (1999) 
 
[2] S. Barnard, R. Biswas, S. Saini, R. Van der Wijngaart, 
M. Yarrow, L. Zechter, I. Foster, O. Larsson:  Large-Scale 
Distributed Computational Fluid Dynamics on the 
Information Power Grid using Globus. Proc. of Frontiers '99 
(1999) 
 
[3]. Y.Morita, O.Tatebe, S.Matsuoka, N.Soda, H.Sato, 
Y.Tanaka, S.Sekiguchi, S.Kawabata, Y.Watase, M.Imori, 
T.kobayashi: Grid Data Farm for Atlas Simulation Data 
Challenges, Proceedings of CHEP 2001 (International 
Conference on Computing in High Energy and Nuclear 
Physics) (2001) 699-701 
 

[4] Osamu Tatebe, Youhei Morita, Satoshi Matsuoka, 
Noriyuki Soda, Hiroyuki Sato, Yoshio Tanaka, Satoshi 
Sekiguchi, Yoshiyuki Watase, Masatoshi Imori, Tomio 
Kobayashi: Grid Data Farm for Petascale Data Intensive. 
Electrotechnical Laboratory, Techinical Report, TR-2001-4. 
http://datafarm.apgrid.org 
 
[5] René Brun, Fons Rademakers: Distributed Parallel 
Interactive Data Analysis Using the Proof System. 
Proceedings of CHEP 2001 (International Conference on 
Computing in High En-ergy and Nuclear Physics) (2001) 
704-707 
 
[6] http://root.cern.ch/ 
 
[7] I. Foster, J. Geisler, W. Nickless, W. Smith, S. Tuecke: 
Software Infrastructure for the I-WAY High Performance 
Distributed Computing Experiment. Proc. 5th IEEE 
Symposium on High Performance Distributed Computing 
(1997) 562-571 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THAT004 ePrint cs.DC/0306093



 
 

 
 

 
[8] S. Brunett, K. Czajkowski, S. Fitzgerald, I. Foster, A. 
Johnson, C. Kesselman, J. Leigh, S. Tuecke: Application 
Experiences with the Globus Toolkit. Proceedings of 7th 
IEEE Symp. on High Performance Distributed Computing, 
July 1998 
 
[9] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, 
W. Smith, S. Tuecke: A Directory Service for Configuring 
High-Performance Distributed Computations. Proc. 6th 
IEEE Sym-posium on High-Performance Distributed 
Computing (1997) 365-375 
 
[10] Heinz Johner, Michel Melot, Harri Stranden, Permana 
Widhiasta: LDAP Implementation Cookbook. SG24-5110-
00, IBM. International Technical Support Organization, 
http://www.redbooks.ibm.com 
 

[11] Heinz Johner, Larry Brown, Franz-Stefan Hinner, 
Wolfgang Reis, Johan Westman. Under-standing LDAP. 
SG24-4986-00, IBM. International Technical Support 
Organization, http://www.redbooks.ibm.com 
 
[12]. J. Lee, D. Gunter, B. Tierney, B, Allcock, J. Bester, J. 
Bresnahan, S. Tuecke: Applied Techniques for High 
Bandwidth Data Transfers Across Wide Area Networks. 
Proceedings of International Conference on Computing in 
High Energy and Nuclear Physics, Beijing, China, 
September (2001) 
 
[13] The globus project: http://www.globus.org/ 
 
[14] The DataGrid project http://eu-datagrid.web.cern.ch/eu-

datagrid/ 
 
 
 

 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6THAT004 ePrint cs.DC/0306093


