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RooFit is a library of C++ classes that facilitate data modeling in the ROOT environment. Mathematical
concepts such as variables, (probability density) functions and integrals are represented as C++ objects. The
package provides a flexible framework for building complex fit models through classes that mimic math operators,
and is straightforward to extend. For all constructed models RooFit provides a concise yet powerful interface for
fitting (binned and unbinned likelihood, χ2), plotting and toy Monte Carlo generation as well as sophisticated
tools to manage large scale projects. RooFit has matured into an industrial strength tool capable of running
the BABAR experiment’s most complicated fits and is now available to all users on SourceForge [1].

1. Introduction

One of the central challenges in performing a
physics analysis is to accurately model the distribu-
tions of observable quantities �x in terms of the physi-
cal parameters of interest �p as well as other parameters
�q needed to describe detector effects such as resolu-
tion and efficiency. The resulting model consists of a
“probability density function” (PDF) F (�x ; �p, �q) that
is normalized over the allowed range of the observables
�x with respect to the parameters �p and �q.

Experience in the BaBar experiment has demon-
strated that the development of a suitable model, to-
gether with the tools needed to exploit it, is a frequent
bottleneck of a physics analysis. For example, some
analyses initially used binned fits to small samples
to avoid the cost of developing an unbinned fit from
scratch. To address this problem, a general-purpose
toolkit for physics analysis modeling was started in
1999. This project fills a gap in the particle physi-
cists’ tool kit that had not previously been addressed.

A common observation is that once physicists are
freed from the constraints of developing their model
from scratch, they often use many observables simul-
taneously and introduce large numbers of parameters
in order to optimally use the available data and avail-
able control samples.

2. Overview

The final stages of most particle physics analysis are
performed in an interactive data analysis framework
such as PAW[2] or ROOT[3]. These applications pro-
vide an interactive environment that is programmable
via interpreted macros and have access to a graphical
toolkit designed for visualization of particle physics
data. The RooFit toolkit extends the ROOT anal-
ysis environment by providing, in addition to basics
visualization and data processing tools, a language to
describe data models.

The core features of RooFit are

• A natural and self-documenting vocabulary to
build a model in terms of its building blocks
(e.g., exponential decay, Argus function, Gaus-
sian resolution) and how they are assembled
(e.g., addition, composition, convolution). A
template is provided for users to add new
building-block PDFs specific to their problem
domain.

• A data description language to specify the ob-
servable quantities being modeled using descrip-
tive titles, units, and any cut ranges. Various
data types are supported including real valued
and discrete valued (e.g. decay mode). Data
can be read from ASCII files or ROOT ntuples.

• Generic support for fitting any model to a
dataset using a (weighted) unbinned or binned
maximum likelihood, or χ2 approach

• Tools for plotting data with correctly calculated
errors, Poisson or binomial, and superimposing
correctly normalized projections of a multidi-
mensional model, or its components.

• Tools for creating a event samples from any
model with Monte Carlo techniques, with
some variables possibly taken from a prototype
dataset, e.g. to more accurately model the sta-
tistical fluctuations in a particular sample.

• Computational efficiency. Models coded in
RooFit should be as fast or faster than hand
coded models. An array of automated optimiza-
tion techniques is applied to any model without
explicit need for user support.

• Bookkeeping tools for configuration manage-
ment, automated PDF creation and automation
of routine tasks such as goodness-of-fit studies.
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3. Object-Oriented Mathematics

To keep the distance between a physicists’ math-
ematical description of a data model and its imple-
mentation as small as possible, the RooFit interface is
styled after the language of mathematics. The object-
oriented ROOT environment is ideally suited for this
approach: each mathematical object is represented by
a C++ software object. Table I illustrates the corre-
spondence between some basic mathematical concepts
and RooFit classes.

Concept Math Symbol RooFit class name
Variable x, p RooRealVar

Function f(�x) RooAbsReal

PDF F (�x; �p, �q) RooAbsPdf

Space point �x RooArgSet

Integral
∫ �xmax

�xmin
f(�x)d�x RooRealIntegal

List of space points �xk RooAbsData

Table I Correspondence between mathematical concepts
and RooFit classes.

Composite objects are built by creating all their
components first. For example, a Gaussian probabil-
ity density function with its variables

G(x, m, s) =
exp

(
− 1

2 ( x−m
s )2

)
∫ xH

xL
exp

(
− 1

2 ( x−m
s )2

)

is created as follows:

RooRealVar x("x","x",-10,10) ;

RooRealVar m("m","mean",0) ;

RooRealVar s("s","sigma",3) ;

RooGaussian g("g","gauss(x,m,s)",x,m,s) ;

Each object has a name, the first argument, and a
title, the second argument. The name serves as unique
identifier of each object, the title can hold a more
elaborate description of each object and only serves
documentation purposes. All objects can be inspected
with the universally implemented Print() method,
which supports three verbosity levels. In its default
terse mode, output is limited to one line, e.g.

root> f.Print() ;

RooRealVar::f: 0.531 +/- 0.072 L(0 - 1)

Object that represent variables, such as
RooRealVar in the example above, store in ad-
dition to the value of that variable a series of
associated properties, such as the validity range, a
binning specification and their role in fits (constant
vs. floating), which serve as default values in many
situations.

Function objects are linked to their ingredients: the
function object g always reflects the values of its input

variables x,m and s. The absence of any explicit invo-
cation of calculation methods allows for true symbolic
manipulation in mathematical style.
RooFit implements its data models in terms of

probability density functions, which are by definition
positive definite and unit normalized:

∫ �xmax

�xmin

f(�x)d�x ≡ 1, F (�x, �p) ≥ 0 (1)

One of the main benefits of probability density func-
tions over regular functions is increased modularity:
the interpretation of PDF parameters is independent
of the context in which the PDF is used.

The normalization of probability density functions,
traditionally one of the most difficult aspects to im-
plement, is handled internally by RooFit: all PDF
objects are automatically normalized to unity. If a
specific PDF class doesn’t provide its normalization
internally, a variety of numerical techniques is used to
calculate the normalization.

Composition of complex models from elementary
PDFs is straightforward: a sum of two PDFs is a
PDF, the product of two PDFs is a PDF. The RooFit
toolkit provides as set of ’operator’ PDF classes that
represent the sum of any number of PDFs, the prod-
uct of any number of PDFs and the convolution of two
PDFs.

Existing PDF building blocks can be tailored using
standard mathematical techniques: for example sub-
stituting a variable with a function in the preceding
code fragment,

m → m(m0, m1, y) = m0 + y ∗ m1

↓
G(x, m(m0, m1, y) , s) = G(x, y, m0, m1, s)

is represented in exactly the same style in RooFit
code:

RooRealVar m0("m0","mean offset",0) ;

RooRealVar m1("m1","mean slope",1) ;

RooRealVar y("y","y",0,3) ;

RooFormulaVar m("m","m0+y*m1",

RooArgList(m0,m1,y)) ;

RooGaussian g("g","gauss(x,m,s)",x,m,s) ;

Free-form interpreted C++ function and PDF ob-
jects such RooFormulaVar in the example above, are
available to glue together larger building blocks. The
universally applicable function composition operators
and free-style interpreted functions make it possible to
write probability density functions of arbitrary com-
plexity in a straightforward mathematical form.
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4. Composing and Using Data Models

We illustrate the process of building a model and
its various uses with some example cases.

4.1. A One-Dimensional Yield Fit

The simplest and most common use of RooFit is to
combine two or more library PDFs into a composite
PDF to to determine the yield of signal and back-
ground events in a one-dimensional dataset.

The RooFit models library provides more than 20
basic probability density functions that are commonly
used in high energy physics applications, including
basics PDFs such Gaussian, exponential and polyno-
mial shapes, physics inspired PDFs, e.g. decay func-
tions, Breit-Wigner, Voigtian, ARGUS shape, Crystal
Ball shape, and non-parametric PDFs (histogram and
KEYS[4]).

In the example below we use two such PDFs: a
Gaussian and an ARGUS background function:

// Observable

RooRealVar mes("mes","mass_ES",-10,10) ;

// Signal model and parameters

RooRealVar mB("mB","m(B0)",0) ;

RooRealVar w("w","Width of m(B0)",3) ;

RooGaussian G("G","G(meas,mB,width)",mes,mB,w) ;

// Background model and parameters

RooRealVar m0("m0","Beam energy / 2",-10,10) ;

RooRealVar k("k","ARGUS slope parameter",3) ;

RooArgusBG A("A","A(mes,m0,k)",mes,m0,k) ;

// Composite model and parameter

RooRealVar f("f","signal fraction",0,1) ;

RooAddPdf M("M","G+A",RooArgList(g,a),f) ;

The RooAddPdf operator class M combines the signal
and background component PDFs with two parame-
ters each into a composite PDF with five parameters:

M(mES ; mB , w, m0, k, f) = f · G(mES ; w, g)
+ (1 − f) · A(mES ; m0, k).

Once the model M is constructed, a maximum likeli-
hood fit can be performed with a single function call:

M.fitTo(*data) ;

Fits performed this way can be unbinned, binned
and/or weighted, depending on the type of dataset

provided1. The result of the fit, the new parameter
values and their errors, are immediately reflected in
the RooRealVar objects that represent the parame-
ters of the PDF, mB,w,m0,k and f. Parameters can
be fixed in a fit or bounded by modifying attributes
of the parameter objects prior to the fit:

m0.setConstant(kTRUE) ;

f.setFitRange(0.5,0.9) ;

Visualization of the fit result is equally straightfor-
ward:

RooPlot* frame = mes.frame() ;

data->plotOn(frame) ;

M.plotOn(frame) ;

M.plotOn(frame,Components("A"),

LineStyle(kDashed)) ;

frame->Draw()

Figure 1 shows the result of the frame->Draw() op-
eration in the above code fragment. A RooPlot object
represents a one-dimensional view of a given observ-
able. Attributes of the RooRealVar object mes provide
default values for the properties of this view (range,
binning, axis labels,...).
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Figure 1: One dimensional plot with histogram of a
dataset, overlaid by a projection of the PDF M. The
histogram error are asymmetric, reflecting the Poisson
confidence interval corresponding to a 1σ deviation. The
PDF projection curve is automatically scaled to the size
of the plotted dataset. The points that define the curve
are chosen with an adaptive resolution-based technique
that ensures a smooth appearance regardless of the
dataset binning.

The plotOn() methods of datasets and functions
accept optional arguments that modify the style and

1Binned data can be imported from a ROOT TH1/2/3 class,
unbinned data can be imported from a ROOT TTree or a ASCII
data file.
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contents of what is drawn. The second M.plotOn()
call in the preceding example illustrates some of the
possibilities for functions: only the A component of
the composite model M is drawn and the line style is
changed to a dashed style. Additional options exists
to modify the line color, width, filling, range, normal-
ization and projection technique. The curve of the
PDF is automatically normalized to the number of
events of the dataset last plotted in the same frame.
The points of the curve are chosen by an adaptive
resolution-based technique: the deviation between the
function value and the curve will not exceed a given
tolerance2 regardless of the binning of the plotted
dataset.

The plotOn() method of datasets accepts options
to change the binning, including non-uniform binning
specifications, error calculation method and appear-
ance. The default error bars drawn for a dataset are
asymmetric and correspond to a Poisson confidence
interval equivalent to 1σ for each bin content. A
sum-of-weights error (

√
Σiw2

i ) can optionally be se-
lected for use with weighted datasets. A special op-
tion, Asym(), is available to show asymmetry distribu-
tions of the type NA−NB

NA+NB
. The errors bars will reflect

a binomial confidence interval for such histograms.

4.2. A Simple Monte Carlo Study

RooFit PDFs universally support parameterized
Monte Carlo event generation, e.g.

RooDataSet* mcdata = M.generate(mes,10000) ;

generates 10000 events in mes with the distribution of
model M.

Events are by default generated with an ac-
cept/reject sampling method. PDF classes that are
capable of generating events in a more efficient way,
for example RooGaussian, can advertise and imple-
ment an internal generator method that will be used
by generate() instead. Composite PDFs constructed
with RooAddPdf delegate event generation to the com-
ponent event generators for computational efficiency.

A common use of parameterized Monte Carlo is to
study the stability and bias of a fit, in particular when
when statistics are low3. A special tool is provided
that automates the fitting and generating cycle for
such studies and collects the relevant statistics. The

2 Tolerance is preset at 0.1% of the plot scale and recursively
evaluated halfway between each adjacent pair of curve points

3(Likelihood) fits can exhibit an intrinsic bias that scale like
1/N , where N is the number of events in the fitted dataset.
At high statistics this bias is usually negligible compared to the
statistical error, which scales like 1/

√
N , but at low N the effect

may be significant. See e.g. Eadie et al[5] for details.
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Figure 2: Left: Shape of PDF M. Right: Distribution of
10000 events generated from PDF M

example below examines the bias in the fraction pa-
rameter fsig of model M:

// Generate and fit 1000 samples of 100 events

RooMCStudy mgr(M,M,mes) ;

mgr.generateAndFit(100,1000) ;

// Show distribution of fitted value of ’fsig’

RooPlot* frame1 = mgr.plotParam(fsig) ;

// Show pull distribution for ’fsig’

RooPlot* frame2 = mgr.plotPull(fsig) ;
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Figure 3: Left: distribution of fitted value of parameter f
of model M to 1000 Monte Carlo data sets of 100 events
each. Right: Corresponding pull distribution

4.3. Multi-Dimensional Models

Multi-dimensional data models are a natural ex-
tension of one-dimensional models in data analysis.
Use of additional observables in the model enhances
the statistical sensitivity of a fit, but are tradition-
ally less frequently used due to additional logistical
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and computational challenges. While fitting a multi-
dimensional dataset is no more complex than fitting a
one-dimensional dataset, the variety of ways in which
the data and model can be visualized is much larger.
In addition, the projection of a multi-dimensional
model on a lower-dimensional view often requires
non-trivial computations. RooFit greatly automates
the visualization process and other aspects of multi-
dimensional models so that use of multi-dimensional
models is not substantially more complicated that use
of one-dimensional models.

Multi-dimensional models can be constructed in a
variety of ways:

• as a product of 1-dimensional PDFs

• as a fundamental multi-dimensional PDF object

• as a modified PDF that was originally intended
for 1-dimensional use, e.g.
G(x; m, s) → G(x; m(y, a, b), s) = G(x, y; a, b, s)

We will illustrate some of the visualization options
with a simple 3-dimensional model constructed as the
product of three Gaussians summed with a product of
three polynomials:

M = f · G(x)G(y)G(z) + (1 − f) · P (x)P (y)P (z)

encoded in RooFit classes as follows

RooRealVar x("x","x",-10,10) ;

RooRealVar mx("mx","mean x",0) ;

RooRealVar sx("sx","sigma x",3) ;

RooGaussian GX("GX","gauss(x,mx,sx)",x,mx,sx);

// Similar declarations of y,z, GY and GZ

RooRealVar ax("ax","bkg slope x",5) ;

RooPolynomial PX("PX","PX(x,ax)",x,ax) ;

// Similar declarations of PY and PZ

// Construct signal and background products

RooProdPdf S("S","sig",RooArgSet(GX,GY,GZ)) ;

RooProdPdf B("S","bkg",RooArgSet(PX,PY,PZ)) ;

// Construct sum of signal and background

RooRealVar fsig("fsig","signal frac.",0.,1.) ;

RooAddPdf M3("M3","S+B",RooArgList(S,B),fsig) ;

The RooProdPdf class represents the product of two
or more PDFs. In most analysis applications such
products factorize, e.g. f(x) · g(y) · h(z), but non-
factorizing products or partially factorizing products
such as f(x, y) · g(y) ·h(z) are supported as well. Fac-
torization of multi-dimensional PDFs greatly simpli-
fies many expressions involved in fitting, plotting and

event generation, and optimizations that take advan-
tage of (partial) factorization properties are automat-
ically applied.

4.3.1. Fitting

The procedure to fit the 3-dimensional model M3 to
a 3-dimensional dataset data3 is identical to that of
the 1-dimensional model M:

M3.fitTo(*data3) ;

4.3.2. Plotting

A three-dimensional model like M3 can be visualized
in a number of ways. First there are the straightfor-
ward projections on the x,y and z axes:

RooPlot* xframe = x.frame() ;

data->plotOn(xframe) ;

model.plotOn(xframe) ;

RooPlot* yframe = y.frame() ;

data->plotOn(yframe) ;

model.plotOn(yframe) ;

RooPlot* zframe = z.frame() ;

data->plotOn(zframe) ;

model.plotOn(zframe) ;

While the invocation of the plotOn() method is
identical to the one-dimensional case, the correspon-
dence between the drawn curve and the PDF is more
complicated: to match the projected distributions
of multi-dimensional datasets, plotOn() must calcu-
lated a matching projection of the PDF. For a projec-
tion of a PDF F (x, �y) superimposed over the distri-
bution of x of a dataset D(x, �y), this transformation
is:

PF (x) =
∫

F (x, �y)d�y∫
F (x, �y)dxd�y

(2)

For any dataset/PDF combination the set �y of ob-
servables to be projected is automatically determined:
each RooPlot object keeps track of the ’hidden’ di-
mensions of each dataset and matches those to the
dimensions of the PDF.

If the PDF F happens to be a factorizing product,
like our signal and background PDFs S and B, Eq. 2
reduces to

PF (x) =
Fx(x)

∫
F�y(�y)d�y∫

Fx(x)dx
∫

F�y(�y)d�y
=

Fx(x)∫
Fx(x)dx

(3)

This particular optimization is automatically
recognized and implemented by the RooProdPdf
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components of the M3 model. Non-factorizing
multi-dimensional PDFs can also be drawn with
RooAbsPdf::plotOn(), in such cases a combination
of analytic and numeric integration techniques is used
to calculate the projection.

In addition to the full projections on the observables
x,y and z, it is often also desirable to view a projection
of a slice, e.g. the projection on x in a narrow band of
y, z or a box in y and z. Such projections are often
desirable because they enhance the visibility of signal
in the presence of a large background:

// Projection on X in a slice of Y
RooPlot* xframe = x.frame() ;

data->plotOn(xframe,"|y|<1") ;

model.plotOn(xframe,Slice(y,-1,+1)) ;

// Projection on Z in a slice of X and Y
RooPlot* zframe = z.frame() ;

data->plotOn(zframe,"|x|<1&&|y|<1") ;

model.plotOn(zframe,Slice(x,-1,+1)

,Slice(y,-1,+1)) ;

While the Slice() option implements a (hy-
per)cubic slice of the data, RooFit also supports
Monte Carlo projection techniques that allow to view
regions of arbitrary shape. A common application of
this technique is the ’likelihood projection plot’, where
a n-dimensional dataset and model are projected on
one dimension after a cut on the likelihood of the
model in the remaining n − 1 dimensions. Figure 4
illustrates the power to enhance the signal visibility of
such a projection. The likelihood projection technique
naturally decomposes in a small number of RooFit op-
erations: Figure 4 has been created with less than 10
lines of macro code.
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Figure 4: Example of a likelihood projection plot of
model M3. Left: projection of full dataset and PDF on x.
Right: Projection of dataset and PDF with a cut on the
likelihood Lyz, calculated in the (y, z) projection of the
PDF, at -5.0.

4.3.3. Event Generation

Event generation for multi-dimensional PDFs is
similar to that for one-dimensional PDFs. This ex-

ample

RooDataSet* mcdata =

M3.generate(RooArgSet(x,y,z),10000) ;

generates a three-dimensional dataset of 10000
events.

If a model or its components are factorizable, such
as the components S and B of model M3, the event
generation will be performed separately for each fac-
torizing group of dimensions. There is no limit to the
number of observables in the event generator, but the
presence of groups of two, three or more of observables
that do not factorize will impact the performance of
the accept/reject technique due to phase-space con-
siderations.

Sometimes it is advantageous to not let generate
all observables of the PDF, but take the distribution
of some observables from an external dataset. This
technique is commonly applied in fit validation stud-
ies where it is desirable to have a sample of Monte
Carlo events that replicates the statistical fluctuations
of the data as precisely as possible. RooFit facilitates
this technique in the event generator with the concept
of ’prototype datasets’. The prototype datasets pre-
scribe the output of the event generator for a subset
of the observables to be generated. To use the proto-
type feature of the generator, simply pass a dataset
to the generate() method. For example, for a two-
dimensional PDF M2, this code

RooDataSet* ydata ;

RooDataSet* mcdata = M2.generate(x,ydata) ;

generates a two-dimensional Monte Carlo event
sample that has exactly the same distribution in y as
the prototype dataset ydata, while the distribution of
x is generated such that it follows the correlation be-
tween x and y that is defined by the PDF M2. Figure
5 illustrates the process: Fig. 5b shows the distribu-
tion of events generated the regular way from PDF M2
(5a). Fig. 5d shows the distribution in (x,y) when
the distribution of events in y is taken from an external
prototype dataset (5c): the distribution of events in y
is exactly that of the prototype while the correlation
between x and y encoded in the PDF is preserved.

4.4. Advanced Fitting Options

For fits that require more detailed control over the
fitting process, or fits that require non-standard exten-
sions of the goodness-of-fit quantity to be minimized,
RooFit provides an alternate interface to the one-line
fitTo() method. In this procedure the creation of the
goodness-of-fit quantity to be minimized is separated
from the minimum finding procedure.
RooFit provides two goodness-of-fit classes that

represent the most commonly used fit scenarios
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Figure 5: Demonstration of prototype-based Monte
Carlo event generation. a) Two-dimensional PDF M2. b)
Event sample generated from M2. c) One dimensional
event sample in y with linear distribution. d) Event
sample generated from M2 using event sample shown in c)
as prototype for y distribution.

• An (extended) negative log-likelihood imple-
mentation (RooNLLVar)

• A χ2 implementation (RooChi2Var)

The χ2 implementation uses by default the asym-
metric Poisson errors for each bin of the dataset,
but can be overridden to use (symmetric) sum-of-
weights error (

√
Σiw2

i ) instead, for use with weighted
datasets. Both classes represent their goodness-of-fit
variable as a regular RooFit function so that all stan-
dard techniques can be applied. For example, plotting
the likelihood defined by PDF M and dataset data as
function of parameter fsig does not require any spe-
cialized plotting methods:

RooNLLVar nll("nll","-log(L)",M,data) ;

RooPlot* frame = fsig.frame() ;

nll.plotOn(frame) ;

Figure 6 shows the plot that results from the above
code fragment.

The second step of the fit process, minimization
of the goodness-of-fit quantity, is performed with
minuit[6], via the interface class RooMinuit:
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Figure 6: Negative log-likelihood defined by PDF M and
dataset data as function of PDF parameter fsig

// Initialize a minimization session

RooMinuit m(nll) ;

// Invoke MIGRAD and HESSE

m.migrad() ;

m.hesse() ;

// Change value and status of some parameters

p1.setConstant() ;

p2.setConstant() ;

p2.setVal(0.3) ;

// Invoke MINOS

m.minos() ;

// Save a snapshot of the fitter status

RooFitResult* r = m.save() ;

In the above example, the minuit methods migrad
and hesse are invoked first. The effect of each minuit
operation is immediately reflected in the RooRealVar
objects that represent the parameters of the fit model.
Conversely, any changes to the fit parameter value or
status are automatically propagated to minuit. The
preceding code fragment illustrates how RooFit fa-
cilitates interactive fitting in C++. The RooMinuit
interface almost completely isolates the user from any
proprietary syntax usually needed to interact with fit-
ters like minuit. One only needs to be familiar with
the meaning of the basic minuit procedures: migrad,
hesse, minos, simplex, seek and contour. The
save() method saves a full snapshot of the minuit
state: the initial and current parameter values, the
global correlations, the full correlation matrix, status
code and estimated distance to minimum.

Since the RooMinuit class can minimize any real-
valued RooFit function, it is straightforward to fit
customized goodness-of-fit expression. For example
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one can add a 1
2 ((p − α)/σα)2 penalty term to a stan-

dard negative log-likelihood using the RooFormulaVar
class:

RooNLLVar nll(nll,nll,pdf,data) ;

RooFormulaVar nllp("nllp","penalized nll",

"nll+0.5((p-alpha)/ealpha)ˆ2",

RooArgList(nll,p,alpha,ealpha)) ;

Similar modifications can be made to χ2 defini-
tions. It is also possible to develop an entirely different
goodness-of-fit quantity by implementing a new class
that derives from RooAbsOptGoodnessOfFit

5. Efficiency and Optimal Function
Calculation

As the complexity of fits increases, efficient use of
computing resources becomes increasingly important.
To speed up the evaluation of probability density func-
tions, optimization techniques such as value caching
and factorized calculations can be used.

Traditionally such optimizations require a substan-
tial programming effort due to the large amount of
bookkeeping involved, and often result in incomplete
use of available optimization techniques due to lack of
time or expertise. Ultimately such optimizations rep-
resent a compromise between development cost, speed
and flexibility.
RooFit radically changes this equation as the

object-oriented structure of its PDFs allows centrally
provided algorithms to analyze any PDFs structure
and to apply generic optimization techniques to it.
Examples of the various optimization techniques are

• Precalculation of constant terms.
In a fit, parts of a PDF may depend exclusively
on constant parameters. These components can
be precalculated once and used throughout the
fit session.

• Caching and lazy evaluation.
Functions are only recalculated if any of their
input has changed. The actual calculation is
deferred to the moment that the function value
is requested.

• Factorization.
Objects representing a sum, product or convolu-
tion of other PDFs, can often be factorized from
a single N-dimensional problem to a product of
N easier-to-solve 1-dimensional problems.

• Parallelization.
Calculation of likelihoods and other goodness-
of-fit quantities can, due to their repetitive na-
ture, easily be partitioned in to set of partial re-
sults that can be combined a posteriori. RooFit

automates this process and can calculate par-
tial results in separate processes, exploiting all
available CPU power on multi-CPU hosts.

Optimizations are performed automatically prior to
each potentially CPU intensive operation, and are
tuned to the specific operation that follows. This re-
alizes the maximum available optimization potential
for every operation at no cost for the user.

6. Data and Project Management Tools

As analysis projects grow in complexity, users are
often confronted with an increasing amount of logisti-
cal issues and bookkeeping tasks that may ultimately
limit the complexity of their analysis. RooFit provides
a variety of tools to ease the creation and management
of large numbers of datasets and probability density
functions such as

• Discrete variables.
A discrete variable in RooFit is a variable with
a finite set of named states. The naming of
states, instead of enumerating them, facilitates
symbolic notation and manipulation. Discrete
variables can be used to consolidate multiple
datasets into a single dataset, where the discrete
variables states label the subset to which each
events belongs.

• Automated PDF building.
A common analysis technique is to classify the
events of a dataset D into subsets Di, and si-
multaneously fit a set of PDFs Pi(�x, �pi) to these
subsets Di. In cases were individually adjusted
PDFs Pi(�x, �pi) can describe the data better than
a single global PDF P (�x, �p), a better statisti-
cal sensitivity can be obtained in the fit. Of-
ten, such PDFs do not differ in structure, just
in the value of their parameters. RooFit offers
a utility class to automate the creation the the
PDFs Pi(�x, �pi): given a prototype PDF P (�x, �p)
and a set of rules that explain how the proto-
type should be altered for use in each subset
(e.g. ’Each subset should have its own copy of
parameter foo’) this utility builds entire set of
PDFs Pi(�x, �pi). It can handle an unlimited set
of prototype PDFs, specialization rules and data
subdivisions.

• Project configuration management.
Advanced data analysis projects often need to
store and retrieve projection configuration, such
as initial parameters values, names of input files
and other parameter that control the flow of ex-
ecution. RooFit provides tools to store such in-
formation in a standardized way in easy-to-read
ASCII files.
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The use of standardized project management tools
promotes structural similarity between analyses and
increases users abilities to understand other RooFit
projects and to exchange ideas and code.

7. Development Trajectory and Status

RooFit was initially released as RooFitTools in
1999 in the BaBar collaboration and started with a
small subset of its present functionality. Extensive
stress testing of the initial design by BaBar physicists
in 1999 and 2000 revealed a great desire to have a
tool like RooFit, but identified a number of bottle-
necks and weaknesses, that could only be mitigated
by a complete redesign.

The redesign effort was started in late 2000 and
has introduced many of the core features that de-
fine RooFit in its current form: strong mathemati-
cal styling of the user interface, nearly complete ab-
sence of any implementation-level restrictions of any
PDF building or utilization methods, efficient auto-
mated function optimization and powerful data and
PDF management tools.

The new package, renamed RooFit, has been avail-
able to BaBar users since fall 2001. The functionality
has been quite stable since early 2002 and most recent
efforts have been spent on stabilization, fine tuning of
the user interface and documentation. At present five
tutorials comprising more than 250 slides and 20 ed-
ucational macros are available, as well as a reference
manual detailing the interface of all RooFit classes.

Since October 2002 RooFit is available to the en-
tire HEP community: the code and documentation
repository has been moved from BaBar to Source-
Forge, an OpenSource development platform, which
provides easy and equal access to all HEP users.

(http://roofit.sourceforge.net),

8. Current Use and Prospects

Since the package’s initial release RooFit has been
adopted by most BaBar physics analyses. Analysis
topics include searches for rare B decays, measure-
ments of B branching fractions and CP-violating rate
asymmetries, time-dependent analyses of B and D de-
cays to measure lifetime, mixing, and symmetry prop-
erties, and Dalitz analyses of B decays to determine
form factors.

The enthusiastic adoption of RooFit within BaBar
demonstrates the clear need and benefits of such
tools in particle physics. Since its migration to
SourceForge, RooFit is steadily gaining users from
other HEP collaborations.
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