
Event Data Definition in LHCb
Marco Cattaneo, Gloria Corti, Markus Frank, Pere Mato Vila, and Stefan Roiser
CERN, 1211 Geneva, Switzerland
Silvia Miksch
TU Vienna, 1040 Vienna, Austria

We present the approach used for defining the event object model for the LHCb experiment. This approach
is based on a high level modelling language, which is independent of the programming language used in the
current implementation of the event data processing software. The different possibilities of object modelling
languages are evaluated, and the advantages of a dedicated model based on XML over other possible candidates
are shown. After a description of the language itself, we explain the benefits obtained by applying this
approach in the description of the event model of an experiment such as LHCb. Examples of these benefits
are uniform and coherent mapping of the object model to the implementation language across the experiment
software development teams, easy maintenance of the event model, conformance to experiment coding rules, etc.

The description of the object model is parsed by means of a so called front-end which allows to feed several
back-ends. We give an introduction to the model itself and to the currently implemented back-ends which
produce information like programming language specific implementations of event objects or meta information
about these objects. Meta information can be used for introspection of objects at run-time which is essential
for functionalities like object persistency or interactive analysis. This object introspection package for C++
has been adopted by the LCG project as the starting point for the LCG object dictionary that is going to be
developed in common for the LHC experiments.

The current status of the event object modelling and its usage in LHCb are presented and the prospects of
further developments are discussed.

Keywords: event model, object description, data dictionaries, reflection

1. INTRODUCTION

This paper gives an overview of tools which are
used for the description and subsequent handling of
event data objects in LHCb [1] which is one of four
experiments being prepared at the Large Hadron
Collider machine (LHC) at the European Institute for
High Energy Physics (CERN) due to begin operation
in 2007. The work was carried out as part of Gaudi
[2, 3], which is the software framework for the LHCb
experiment.

The LHCb experiment is supposed run for at least
ten years and the amount of data that will be stored
is expected to be in the order of several Peta bytes.

The work described in this paper concentrates on
the modelling of the reconstructed data and the data
retrieved after the analysis process. For the rest of
the paper these two models will be referred to as the
LHCb Event Model.

In the next section (2) the requirements and pre-
requisites for these description tools will be discussed.
Section 3 contains an in-depth discussion of the model
that was developed for carrying out the tasks followed
by section 4 which describes the different possibili-
ties for the implementation of the the model and the
choices which were made. An example class will be
shown in section 5. Section 6 contains an evaluation
of the model in respect of user acceptance and usabil-

ity. Section 7 gives some details about the possible
future improvements and and outlook. The paper will
be concluded by a summary in section 8.

2. REQUIREMENTS

The design of the LHCb Event Model was
constrained by several requirements. These require-
ments arose both from the user and the technical side.

Requirements from the user side were such as:

• Long Lifetime: Including the construction and
planning phase, the LHCb experiment is sup-
posed to run for more than two decades. In this
respect the durability of the described data is
important. For example it should be always pos-
sible to read data back into a program that was
created several years ago by a different program
and with a different layout of the data.

• Language Independence: As the experiment
software will continue to evolve when the exper-
iments are up and running, new languages are
likely to come up which are more adequate for
the software framework and with better func-
tionality for the software developers. In order
not to reimplement the event model every time
a new language is introduced it would be impor-
tant to describe the event model with a higher

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOJT009 ePrint physics/0306104

level language from which concrete implementa-
tions can be derived.

• Easiness of Design: Physicists describing
event data should not be bothered with complex
implementation languages which are difficult to
learn and understand. The goal is to either cre-
ate a language which is easy to understand and
to learn with a simple syntax or a language po-
tential users are already used to and so can use
ad-hoc.

• Short descriptions: Data descriptions in con-
crete implementations are often verbose and so
error prone to implement. In C++ e.g. imple-
menting a data member in a class also requires
the implementation of a setter- and a getter-
method and information of this member will also
appear in many other places of an implementa-
tion of a class, e.g. the streaming functions for
output.

On the other side there were also technical constraints
such as:

• Artificial Constraints: As the LHCb software
framework is written in object oriented style, the
event model should also be capable of reflecting
these concepts. But not all capabilities of cur-
rent programming languages need to be reflected
in such a description language. While concepts
like bitfields would be useful to implement, other
concepts like abstract interfaces are perhaps not
necessary.

• Modelling Relations: There were also re-
quirements data modelling that are not reflected
in current object oriented programming lan-
guages directly, e.g. the distinction between
data members which are holding some data of an
object and relations which point to other parts
of the event model.

3. THE MODEL

To ensure that the requirements are met a model
which describes the event data structure with the
means of a high level language was designed. The
usage of a high level language for the description of
the data structures ensures flexibility and durability
of the model.

3.1. Overall View

The overall design of the tools (see Figure 1) was
divided into two parts. A front-end, which will parse

the definition language and fill an in memory repre-
sentation of the processed data, and back-ends which
will use this memory representation to produce what-
ever output is needed. These back-ends will produce a
representation of the data in a given implementation
language (e.g. C++) but also other kinds of informa-
tion such as a meta representation of the data, used
for reflection purpose of the data (see section 3.3.2).

3.2. Front-end

The front-end will parse object descriptions written
by the users. These object definitions are the only
input to the system that the users have to maintain.
After parsing these descriptions an in memory repre-
sentation of the objects will be produced. The goal
was to define a language that describes objects on an
abstract level and does not need to be changed when
new back-ends are implemented. With this technique
the long lifetime of the object description will be guar-
anteed.

3.3. Back-ends

There are a number of possible back-ends that have
been developed.

3.3.1. C++

As the current implementation of the Gaudi
framework is currently done in C++, therefor the
first goal was to implement a back-end which will
produce a representation of the objects in C++.
The capabilities of the C++ back-end are limited in
the sense of C++, as the full functionality of C++
was not needed for representing the event model
in this language. The main functionality needed
was to represent members of objects and relations
between them. The members are translated into class
members of C++ classes. The relations are handled
by an internal mechanism of the Gaudi framework [4].

The goal of this back-end is to produce C++
header files which contain the object descriptions of
the event model. The back-end will also produce
implementations of simple functions like accessors to
members or serializing functions. Implementations of
more complex functions will be left to the user. With
the means of an internal database the back-end will
also be capable of including most of the necessary
header files for a given class.

In Gaudi, like in many other large software frame-
works, exist some coding guidelines. The goal of
this back-end is not only to reflect the structure of
the objects but also meet these guidelines. These
coding guidelines guarantee a uniform layout and
look-and-feel of the generated classes. This can be

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOJT009 ePrint physics/0306104

object
description

internal
model

C++ Dictionary XSLT java

C++
headers

html
documenation

java
classes

doxygen make .so

specific C++
mapping rules

LHCb rules

docu dictionary
library

dictionary
files

Figure 1: Object Description Model Overview

an advantage for people having to work with this
code, as not only the style but also the structure of
all classes generated by the back-end will be the same.

In addition to the source code also some documen-
tation for the classes and objects were generated. In
a subsequent step it is though possible to extract
this information and generate some general descrip-
tion about the event objects from it. The so retrieved
documentation can either be viewed on webpages or
printed in different formats.

3.3.2. C++ Meta-Representation

Today many modern object oriented and scripting
languages (e.g. Java, Python) provide reflection
capabilities on their objects. Reflection is the ability
to query the internal structure of objects at runtime
and also interact with them (i.e. set or get values
of members or call functions). Reflection is essential
for tasks like persistence of objects or interactive
usage, for example when working with objects from a
terminal prompt through a scripting language.

A package for reflection on C++ (see Figure
2) was developed in the Gaudi framework. The
appropriate sources to fill this reflection package were
also derived from the high level description of the
objects. These descriptions are C++ classes which
had the needed meta information about the objects
and were compiled in a later step into libraries which
then could be loaded by the reflection to provide the

meta information about their objects.

The reflection package itself is very simple and was
derived from the java.lang.reflection package 1. For
the first implementation this model seems to be suffi-
cient for the current needs but in later steps a redesign
might be needed to better resemble the specific needs
of the C++ language (e.g. pointers, references).

3.3.3. HTML

For documentation purpose the information about
the objects can also be generated in a more human
readable form, like HTML which then can be browsed
with a a web browser.

4. TECHNICAL CHOICES

After defining the logical structure of the model,
several decisions about the concrete implementation
had to be taken.

4.1. Description Language

The most important decision that had to be taken
was the one about the description language itself

1see http://java.sun.com/j2se/1.4.1/docs/api
/java/lang/reflect/package-summary.html

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOJT009 ePrint physics/0306104

Modifiers

Array

PropertyListMethodFieldClass

Item propertyList

type

fields

argumentTypes

returnType

methods

superclasses

Figure 2: Reflection Model

which will be used for describing the event data. Sev-
eral choices were possible:

• Plain Text: In previous experiments, such as of
the Large Electron Positron Collider (LEP) at
CERN, this approach was used in some cases.
The advantage of this approach would be the
easiness of creation of such files, as no special en-
vironment, such as editors or compilers, would
be needed. On the other hand the creators of
such files could not have immediate feedback
whether they created syntactically correct files
until the data is read through the tool. Also the
tool itself would be extremely difficult to imple-
ment as all the syntactic constraints needed to
be invented.

• C++: C++ or any other object oriented imple-
mentation language should not be considered as
the first choice for data description. As C++
is a complex language and difficult to maintain
it should be the goal of the tools processing the
data to produce output in this language rather
than urging the users to provide description with
it.

• IDL: IDL is used in many different environ-
ments such as Corba to describe interfaces. The
syntax is very much restricted on C++ and so
the possibility to use it as a durable language
over several decades is very much limited as well.

• UML: UML again is a widely used language
to describe data in the computing environment.
This language, as IDL, has a very strict syn-
tax and the possibilities for flexible extensions
of this language are not optimal.

• XML: XML on the other hand is a very flexible
language that also provides a very strict syntax,
as this description of a syntax is already part
of the language itself. The syntax of XML
can either be described in so-called DTDs or
XML Schemas. While DTD provides a limited
functionality, XML Schema is a complex lan-
guage which gives the developer of the syntax
a lot of means to go to a very detailed level of
description. XML is also a wide spread and well
known language in the computing environment
for which several tools such as browsers, editors,
parsers and language bindings exist.

The syntax of XML consists of two main entities,
namely elements and attributes. Elements de-
fine the objects of the language while attributes
are always parts of elements and specify their
behaviour. An advantage of XML is the pos-
sibility to specify default values for attributes.
These default values can be specified in the syn-
tax and if the attribute is not explicitly specified
the default value will be taken. This is very con-
venient for users to shorten the descriptions and
to save time when typing. As the developer of
the language is also the creator of its syntax, ex-
tending it with new features is very simple and
straightforward.

Because of its ability of easy extension and its strict
syntax XML was chosen as the language for the
description of the objects. It was also decided to start
the description of the language syntax with a DTD
and switch to XML Schema if the language reaches a
level of complexity that DTD is not able to handle
anymore.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOJT009 ePrint physics/0306104

XML was also chosen because it was already used
in LHCb for the detector description. So it was hoped
that people are already used to working with this lan-
guage and it will not take a lot of time for them to
get up to speed with it.

4.2. Implementation Language

It was also necessary to decide on the implementa-
tion language for the tools which would be used for
the parsing of the description language and the differ-
ent back-ends of the system. In general any language
that would be capable of parsing a given language and
producing some output would be sufficient for this
choice. Possible choices in this case were compiled
object oriented languages such as C++ or Java
as well as scripting languages like Python or Perl.
Although the tool itself is completely independent
of Gaudi, C++ was chosen for the implementation
language because it is used throughout the framework.

As a tool for parsing the description language,
Xerces-C 2 was chosen as there existed a C++ imple-
mentation of this parser and it was also already used
in Gaudi for the detector description part. Xerces is
also able to verify XML documents either with DTD
or XML Schema.

5. EXAMPLE CLASS

To demonstrate parts of the capabilities of the sys-
tem the current implementation of the MCParticle
class was chosen. In Table I the XML description of
the XML description is shown. Producing the C++
header file out of this class will result in an file of 374
lines.

6. EVALUATION

6.1. XML

Although of having the drawback to be a verbose
language it turned out that XML was a good choice
for the description language. It allowed to start with
a minimal functionality and enhance the language in
very short development cycles when new functionality
was requested by the user community. In fact the
enhancing of the language was needed several times,
so for example bitfields were introduced or some more
detailed way to describe arguments of functions.

2see http://xml.apache.org/xerces-c/index.html

6.2. Acceptance by users

Several talks about the object description tools and
its usage were given in meetings of the collaboration.
Additionally a webpage with frequently asked ques-
tions was kept up to date. These actions led to a
quite good acceptance by the user community and also
speeded up the development cycles of the tool.

6.3. Input-Output Ratio

The ratio between input and output code is calcu-
lated on the basis of lines of XML code and its gener-
ated C++ code. The input-output ratio of XML code
to generated C++ source code is around 1:4. The
overall ratio from XML code to all generated C++
code is approximately 1:12.

6.4. Usage so far

The usage of the object description tools by the
users in LHCb started in December 2001. Since that
time 24 iterations of the LHCb event model were pro-
duced. This seems to be a quite high number, but has
to be seen in connection to the fact that the start of
the usage of the tools was also the start of the redesign
of the LHCb event model which was an urgent task at
that time.

7. FUTURE IMPROVEMENTS AND
OUTLOOK

The software for object description was developed
with the long lifetime of the experiment in mind.
From this point of view the flexibility and extensibil-
ity of the software was a major concern. Extensions
in the following fields can be carried out.

• Extensions to the Language: If needed new
concepts for the object description language it-
self will be introduced. In principle there are
three steps that need to be carried out. The
syntax has to be changed, the front-end made
aware of the new concept and finally the back-
ends need retrieve the new information and pro-
duce the corresponding output. During the de-
velopment phase of the package it was already
proven that extending the language and the de-
pending software is feasible in quite short devel-
opment cycles which allow flexible adaptation to
upcoming needs of the user community.

• New Back-ends: Not only changes to the lan-
guage itself but also new back-ends could be
needed in the future for e.g. C# or other lan-
guages that may become important. In that case

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOJT009 ePrint physics/0306104

Table I MCParticle.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE gdd SYSTEM "gdd.dtd">

<gdd>

<package name="Event">

<class name="MCParticle" id="210" location="MC/Particles" author="G. Corti" desc="The...">

<base name="KeyedObject<int>"/>

<attribute name="momentum" type="HepLorentzVector" init="0.0,0.0,0.0,0.0" desc="4-moment-..."/>

<attribute name="particleID" type="ParticleID" init="0" desc="Particle ID" />

<attribute name="hasOscillated" type="bool" init="false" desc="Describe if a particle has..."/>

<attribute name="helicity" type="double" desc="Helicity" />

<method name="virtualMass" type="double" const="TRUE" desc="Retrieve virtual mass">

<code> return m momentum.m(); </code>

</method>

<method name="pt" type="double" const="TRUE" desc="Short-cut to pt value">

<code> return m momentum.perp(); </code>

</method>

<method name="mother" type="const MCParticle*" const="TRUE" desc="Pointer to parent particle">

<code> if(originVertex()) return originVertex()->mother(); else return 0; </code>

</method>

<relation name="originVertex" type="MCVertex" desc="Pointer to origin vertex"/>

<relation name="endVertices" type="MCVertex" multiplicity="M" desc="Vector of pointers to..."/>

<relation name="collision" type="Collision" desc="Ptr to Collision to which the vertex be..."/>

</class>

</package>

</gdd>

a new tool will be created. It will make use of the
already existing front-end and the model that is
filled with it. Walking through this model it will
output the descriptions of the event model in the
syntax of the new language. As language inde-
pendence was a key issue when designing the
software the new languages should be able to be
filled with the existing syntax of the description
language.

• Integration with LCG software: The LHC
Computing Grid (LCG) is a new project at
CERN which aims to provide hard- and software
computing facilities for the 4 upcoming experi-
ments. Concerning the LCG software there are
already some projects [5, 6, 7]. In the future
LHCb will adopt these software packages and
integrate them into the Gaudi framework.

• Improvements to Reflection: The current
implementation of the reflection package was de-
rived from the java.lang.reflect package. The
structure of this module is quite simple and was
appropriate for a first implementation of the
package. Nevertheless C++ has some concepts
which have no equivalence in Java, like pointers

or references. In a later step a redesign of the re-
flection package might be envisaged, which will
also lead to some adaptations for the generated
code to fill the reflection module.

8. SUMMARY

In this paper we introduced the concept of a high
level language for description of concrete implemen-
tation languages of the LHCb Event Model. The key
issues of the model like long lifetime, flexibility and
durability were pointed out. The model itself was de-
scribed in depth with its possibilities for future exten-
sions. A concept for reflection in C++ was introduced
which goes hand in hand with the object description
tools which are able to fill it. It was also shown that
the model has proven its usability for during more
than a year and was accepted by the user community.

References

[1] “LHCb : Technical Proposal”, Geneva, CERN,
February 20th, 1998, CERN-LHCC-98-004, ISBN:

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6MOJT009 ePrint physics/0306104

92-9083-123-5
[2] P. Mato et al., “Status of the GAUDI event-

processing framework”, International conference
on computing in high energy and nuclear physics,
Beijing, P.R. China, September 2001

[3] M. Cattaneo et al., “GAUDI - The software
architecture and framework for building LHCb
data processing applications”, International Con-
ference on Computing in High Energy and Nuclear
Physics, Padova, Italy, February 2000

[4] M. Frank on behalf of the LHCb Gaudi team,
“Data persistency solution for LHCb”, Interna-
tional Conference on Computing in High Energy
and Nuclear Physics, Padova, Italy, February 2000

[5] D. Düllmann et al., “POOL Project Overview”,

2003 Conference for Computing in High Energy
and Nuclear Physics, La Jolla, Ca, USA, March
2003

[6] D. Düllmann, M. Frank, G. Govi, I. Papadopoulos
and S. Roiser, “POOL Storage, Cache and Con-
version Services”, 2003 Conference for Computing
in High Energy and Nuclear Physics, La Jolla, Ca,
USA, March 2003

[7] J. Generowicz, M. Marino, P. Mato, L. Moneta,
S. Roiser and L. Tuura, “SEAL: Common core li-
braries and services for LHC applications”, 2003
Conference for Computing in High Energy and Nu-
clear Physics, La Jolla, Ca, USA, March 2003

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7MOJT009 ePrint physics/0306104

