
R-GMA: First results after deployment
Andrew Cooke and Werner Nutt
Heriot-Watt, Edinburgh, UK
James Magowan, Manfred Oevers, and Paul Taylor
IBM-UK
Ari Datta and Roney Cordenonsi
Queen Mary, University of London, UK
Rob Byrom, Laurence Field, Steve Hicks, Manish Soni, Antony Wilson, and Xiaomei Zhu
PPARC, UK
Linda Cornwall, Abdeslem Djaoui, and Steve Fisher
Rutherford Appleton Laboratory, UK
Norbert Podhorszki
SZTAKI, Hungary
Brian Coghlan, Stuart Kenny, David O’Callaghan, and John Ryan
Trinity College Dublin, Ireland

We describe R-GMA (Relational Grid Monitoring Architecture) which is being developed within the European
DataGrid Project as an Grid Information and Monitoring System. Is is based on the GMA from GGF, which is
a simple Consumer-Producer model. The special strength of this implementation comes from the power of the
relational model. We offer a global view of the information as if each VO had one large relational database. We
provide a number of different Producer types with different characteristics; for example some support streaming
of information. We also provide combined Consumer/Producers, which are able to combine information and
republish it. At the heart of the system is the mediator, which for any query is able to find and connect to
the best Producers to do the job. We are able to invoke MDS info-provider scripts and publish the resulting
information via R-GMA in addition to having some of our own sensors. APIs are available which allow the user
to deploy monitoring and information services for any application that may be needed in the future. We have
used it both for information about the grid (primarily to find what services are available at any one time) and
for application monitoring. R-GMA has been deployed in Grid testbeds, we describe the results and experiences
of this deployment.

1. Introduction

The Grid Monitoring Architecture (GMA)[2] of the
GGF, as shown in Figure 1, consists of three compo-
nents: Consumers, Producers and a directory service,
which we prefer to call a Registry).

Producer

Consumer

Registry
Transfer

Data

Store location

Lookup location

Figure 1: Grid Monitoring Architecture

In the GMA Producers register themselves with the
Registry and describe the type and structure of in-
formation they want to make available to the Grid.
Consumers can query the Registry to find out what
type of information is available and locate Producers
that provide such information. Once this information
is known the Consumer can contact the Producer di-
rectly to obtain the relevant data. By specifying the

Consumer/Producer protocol and the interfaces to the
Registry one can build inter-operable services. The
Registry communication is shown on Figure 1 by a
dotted line and the main flow of data by a solid line.

The current GMA definition also describes the reg-
istration of Consumers, so that a Producer can find a
Consumer. The main reason to register the existence
of Consumers is so that the Registry can notify them
about changes in the set of Producers that interests
them.

The GMA architecture was of course devised for
monitoring but we think it makes an excellent basis
for a combined information and monitoring system.
We have argued before[1] that the only thing which
characterises monitoring information is a time stamp,
so we insist upon a time stamp on all measurements -
saying that this is the time when the measurement was
made, or equivalently the time when the statement
represented by the tuple was true.

The GMA does not constrain any of the protocols
nor the underlying data model, so we were free when
producing our implementation to adopt a data model
which would allow the formulation of powerful queries
over the data.

R-GMA is a relational implementation of the GMA
which brings the power and flexibility of that model.
R-GMA creates the impression that you have one

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOET004 ePrint cs.DC/0306003



RDBMS per VO. However it is important to appreci-
ate that what our system provides is a way of using the
relational model in a Grid environment and that we
have not produced a general distributed RDBMS. All
the producers of information are quite independent.
It is relational in the sense that Producers announce
what they have to publish via an SQL CREATE TA-
BLE statement and publish with an SQL INSERT and
that Consumers use an SQL SELECT to collect the
information they need.

R-GMA is built using servlet technology and is be-
ing migrated rapidly to web services and specifically
to fit into an OGSA[3] framework.

2. Query types and Producer Types

We have so far defined not just a single Pro-
ducer but five different types: a DataBaseProducer,
a StreamProducer, a ResilientProducer, a LatestPro-
ducer and a CanonicalProducer. All appear to be Pro-
ducers as seen by a Consumer - but they have differ-
ent characteristics. The CanonicalProducer, though
in some respects the most general, is somewhat dif-
ferent as there is no user interface to publish data via
an SQL INSERT statement. Instead it triggers user
code to answer an SQL query. The other Producers
are all Insertable; this means that they all have an
interface accepting an SQL INSERT statement.

The other producers are instantiated and given the
description of the information they have to offer by
an SQL CREATE TABLE statement and a WHERE clause
expressing a predicate that is true for the table. Cur-
rently this is of the form WHERE (column 1=value 1
AND column 2=value 2 AND ...). To publish data,
a method is invoked which takes the form of a normal
SQL INSERT statement.

Three kinds of query are supported: History, Lat-
est and Continuous. The history query might be seen
as the more traditional one, where you want to make
a query over some time period - including.“all time”.
The latest query is used to find the current value of
something and a continuous query provides the client
with all results matching the query as they are pub-
lished. A continuous query is therefore acting as a
filter on published data.

The DataBaseProducer supports history queries. It
writes each record to an RDBMS. This is slow (com-
pared to a StreamProducer) but it can handle joins.
The StreamProducer supports continuous queries and
writes information to a memory structure where it can
be picked up by a Consumer. The ResilientStream-
Producer is similar to the StreamProducer but infor-
mation is backed up to disk so that no information
is lost in the event of a system crash. The Latest-
Producer supports latest queries by holding only the
latest records in an RDBMS.

Latest records are defined in terms of something
similar to a primary key. Each record has a time
stamp, one or more fields which define what is be-
ing measured (e.g. a hostname) and one or more
fields which are the measurement (e.g. the 1 minute
CPU load average). The time stamp and the defining
fields are close to being a primary key - but as there
is no way of knowing who is publishing what across
the Grid, the concept of primary key (as something
globally unique) makes no sense. The LatestProducer
will replace an earlier record having the same defining
fields, as long as the time stamp on the new record is
more recent, or the same as the old one.

Producers, especially those using an RDBMS, may
need cleaning from time to time. We provide a mech-
anism to specify those records of a table to delete by
means of a user specified SQL WHERE clause which is
executed at intervals which are also specified by the
user. For example it might delete records more than
a week old from some table or it may only hold the
newest one hundred rows, or it might just keep one
record from each day.

Another valuable component is the Archiver which
is a combined Consumer-Producer. You just have to
tell it what to collect and it does so on your behalf.
An Archiver works by taking over control of an exist-
ing Producer and instantiating a Consumer for each
table it is asked to archive. This Consumer then con-
nects via the mediator to all suitable Producers and
data starts streaming from those Producers, through
the Archiver and into the new Producer. The inputs
to an Archiver are always streams from a StreamPro-
ducer or a ResilientStreamProducer. It will re-publish
to any kind of “Insertable”. This allows useful topolo-
gies of components to be constructed such as the one
shown in Figure 2.

Figure 2: A possible topology of R-GMA components

This shows a number of StreamProducers (labelled
SP) which is normally the entry point to R-GMA.
There is then a layer of Archivers (A) publishing

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOET004 ePrint cs.DC/0306003



to another StreamProducer. Finally there is an
Archiver to a LatestProducer (LP) and an Archiver
to a DataBaseProducer (DP) to answer both Latest
and History queries.

We intend to allow some kinds of producer to an-
swer more than one kind of query - but for now we
are keeping it simple.

3. Applications of R-GMA

R-GMA has applications right across the Grid.
First it can be used as a replacement for MDS. A
small tool (GIN) has been written to invoke the
MDS-like EDG info-providers and publish the in-
formation via R-GMA. The info-provider is a small
script which can be invoked to produce informa-
tion in LDIF format. All our information providers
conform to the GLUE (http://www.cnaf.infn.it/ ser-
gio/datatag/glue/) schema. Another tool (GOUT) is
available to republish R-GMA data to an LDAP server
for the benefit of legacy applications. However we ex-
pect that most applications will wish to benefit from
the power of relational queries. GOUT is an Archiver
with a Consumer which periodically publishes to an
LDAP database. The GIN-GOUT combination is not
efficient - but it works. Both GIN and GOUT are
driven by configuration files which define the mapping
between the LDAP schema and the relational schema.

R-GMA is also being used for network monitoring
where the flexibility of the relational model offers a
more natural description of the problem.

It is also being used to locate replica catalogs, and
to publish information to two tables, the Service ta-
ble and the ServiceStatus table. A service publishes
its existence when it starts up with an entry in the
Service table. It does this using a StreamProducer.
An Archiver to a LatestProducer is instantiated to
collect all Service information in one place. There are
also processes which check the functioning of a service
and publish the status frequently to the ServiceStatus
table. This is also published via a StreamProducer
and is collected by the same Archiver that is used for
archiving the Service table. So the Service table says
what should exist and the ServiceStatus gives the cur-
rent state Grid wide.

GRM was written for monitoring parallel
applications[4] where it writes logging informa-
tion to a local file. This has recently been modified
to make use of R-GMA for transport.

In addition CMS have adapted their BOSS system
which previously wrote to a well known RDBMS to
simply publish the job status information via R-GMA.
This BOSS work is reported at this conference.

4. Tools

There are a number of tools available to query R-
GMA Producers. There is a command line tool, a Java
application: Pulse, and the R-GMA Browser, which is
accessible from a Web browser without any R-GMA
installation. The Browser offers a few custom queries,
and makes it easy for you to write your own.

The command line tool, which is written in Python,
is the most powerful. It is designed to do simple things
very easily - but if you want to do more complex things
you must code them yourself. It supports one instance
of each kind of producer and one archiver at any one
time. You can also find what tables exist, find details
of a table and issue any kind of query.

5. The registry and the mediator

The registry stores information about all producers
currently available. Currently there is only one physi-
cal Registry per VO. This bottleneck and single point
of failure is being eliminated. Code is being written
to allow multiple copies of the registry to be main-
tained. Each one acts as master of the information
which was originally stored in that Registry instance
and has copies of the information from other Registry
instances. Synchronisation is carried out frequently.
Currently VOs are disjoint, we plan to allow informa-
tion to be published to a set of VOs.

The mediator (which is hidden behind the Con-
sumer interface) is the component which makes R-
GMA easy to use. Producers are associated with
views on a virtual data base. Currently views have
the form:

SELECT * FROM <table> WHERE
<predicate>

This view definition is stored in the Registry. When
queries are posed, the Mediator uses the Registry to
find the right Producers and then combines informa-
tion from them.

6. Architecture

R-GMA is currently based on Servlet technology.
Each component has the bulk of its implementa-
tion in a Servlet. Multiple APIs in Java, C++, C,
Python and Perl are available to communicate with
the servlets. The basic ones are the Java and C++
APIs which are completely written by hand. The C
API calls the C++ and the Python and Perl are gen-
erated by SWIG. We make use of the Tomcat Servlet
container. Most of the code is written in Java and
is therefore highly portable. The only dependency

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOET004 ePrint cs.DC/0306003



Producer

Producer
API

Producer
Servlet

API
Registry

Registry
Servlet

a) Register Producer

create
table

register

producer

Producer

Producer
API

data

insert

Producer
Servlet

API
Registry

Registry
Servlet

b) Publish data

Producer

Producer
API

data

insert

Producer
Servlet

API
Registry

Registry
Servlet

Consumer

Consumer
API

Producer
API

Registry
APIConsumer

Servlet and select Producers
register Consumer

c) Register Consumer and select Producers

data
select

da
ta

se
le

ct

Producer

Producer
API

data

insert

Producer
Servlet

API
Registry

Registry
Servlet

d) Contact Producers

Consumer

Consumer
API

Producer
API

Registry
APIConsumer

Servlet

Consumer

Consumer
API

Producer
API

Registry
APIConsumer

Servlet

e) Transfer data to Consumer Servlet

Producer

Producer
API

data

insert

Producer
Servlet

API
Registry

Registry
Servlet

da
ta

tr
an

sf
er

Consumer

Consumer
API

Producer
API

Registry
APIConsumer

Servlet

Producer

Producer
API

data

insert

Producer
Servlet

API
Registry

Registry
Servlet

da
ta

tr
an

sf
er

transfer

data

f) Transfer data to Consumer

Figure 3: Relational Grid Monitoring Architecture

on other EDG software components is in the security
area.

Figure 3 shows the communication between the
APIs and the Servlets. When a Producer is created its
registration details are sent via the Producer Servlet
to the Registry (Figure 3a). The Registry records de-
tails about the Producer, which include the descrip-
tion and view of the data published, but not the data
itself. The description of the data is actually stored as
a reference to a table in the Schema. In practise the
Schema is co-located with the Registry. Then when
the Producer publishes data, the data are transferred
to a local Producer Servlet (Figure 3b).

When a Consumer is created its registration details
are also sent to the Registry although this time via a
Consumer Servlet (Figure 3c). The Registry records
details about the type of data that the Consumer is
interested in. The Registry then returns a list of Pro-
ducers back to the Consumer Servlet that match the
Consumers selection criteria.

The Consumer Servlet then contacts the relevant
Producer Servlets to initiate transfer of data from the
Producer Servlets to the Consumer Servlet as shown
in Figures 3d-e.

The data are then available to the Consumer on the
Consumer Servlet, which should be close in terms of
the network to the Consumer (Figure 3f).

As details of the Consumers and their selection cri-
teria are stored in the Registry, the Consumer Servlets
are automatically notified when new Producers are
registered that meet their selection criteria.

The system makes use of soft state registration to
make it robust. Producers and Consumers both com-
mit to communicate with their servlet within a certain
time. A time stamp is stored in the Registry, and if
nothing is heard by that time, the Producer or Con-
sumer is unregistered. The Producer and Consumer
servlets keep track of the last time they heard from
their client, and ensure that the Registry time stamp
is updated in good time.

7. Results so far

Unfortunately we have few results to offer at this
stage. It has taken some time to get from the state
of having something which passes all its unit tests
(about 400 for the Java API) to a stable distributed
system - which we think we now have. We have just
started running performance tests to understand the
behaviour of the code. We have so far tested with
many Producers, and one Archiver feeding into a Lat-
estProducer which is then queried to make sure that
the Archiver is keeping up with the total flow of data.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOET004 ePrint cs.DC/0306003



The Producers are publishing data following the pat-
tern expected of a “typical” site having an SE (Stor-
age Element) and 3 CEs (Computing Elements). We
found that we were able to support around 40 to 50
sites publishing data every 30 seconds.

A producer is able to publish individual tuples or
a vector of tuples. Changing this buffering had little
effect on the maximum number of sites the system
is able to support. We will use tools to analyse the
code to understand precisely where the bottlenecks
are occurring - in particular to find out why buffering
did not have the beneficial effect we expected.

In general we expect to be able to do better by
modifying tomcat settings, the virtual machine set-
tings and getting more physical memory. To achieve
better performance we may need a layer of Archivers
combining streams into bigger streams so as to limit
the fan-in to any one node. The other way to obtain
significantly better performance is not to attempt to
get all the information into one place. As the media-
tor becomes more powerful, it will be able to make use
of multiple LatestProducer archives, and carry out a
distributed query over them.

The effort involved in making meaningful measure-
ments on such a system as R-GMA should not be un-
derestimated!

8. Conclusion

We have a useful architecture and an effective im-
plementation with a number of components which

work well together. We hope that R-GMA will
have a long, happy and useful life, both in its cur-
rent form and when reincarnated within an OGSA
framework. For more details of R-GMA, please see:
http://hepunx.rl.ac.uk/edg/wp3/

Acknowledgments

The authors wish to thank our patient users, the
EU and our national funding agencies.

References

[1] B. Coghlan, A. Djaoui, S. Fisher, J. Magowan,
and M. Oevers, in BNCOD 2001 - Advances in
Database Systems, edited by K. D. Oneill and B. J.
Read (BNCOD, 2001), no. RAL-CONF-2001-003
in RAL-CONF.

[2] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Tay-
lor, R. Wolski, and M. Swany, Tech. Rep. GWD-
Perf-16-1, GGF (2001).

[3] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, C. Kesselman, and P. Vanderbilt, Tech. Rep.,
GGF (2002).

[4] Z. Balaton, P. Kacsuk, and N. Podhorszki, Tech.
Rep. LPDS-1/2000, Laboratory of Parallel and
Distributed System, Hungary (2000).

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOET004 ePrint cs.DC/0306003


