

MonALISA : A Distributed Monitoring Service Architecture

H.B. Newman, I.C.Legrand, P. Galvez
California Institute of Technology, Pasadena, CA 91125, USA

R. Voicu, C. Cirstoiu
Polytechnic University Bucharest, Romania

The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) system provides a distributed monitoring service.
MonALISA is based on a scalable Dynamic Distributed Services Architecture which is designed to meet the needs of physics
collaborations for monitoring global Grid systems, and is implemented using JINI/JAVA and WSDL/SOAP technologies. The
scalability of the system derives from the use of multithreaded Station Servers to host a variety of loosely coupled self-describing
dynamic services, the ability of each service to register itself and then to be discovered and used by any other services, or clients that
require such information, and the ability of all services and clients subscribing to a set of events (state changes) in the system to be
notified automatically . The framework integrates several existing monitoring tools and procedures to collect parameters describing
computational nodes, applications and network performance. It has built-in SNMP support and network-performance monitoring
algorithms that enable it to monitor end-to-end network performance as well as the performance and state of site facilities in a Grid.
MonALISA is currently running around the clock on the US CMS test Grid as well as an increasing number of other sites. It is also
being used to monitor the performance and optimize the interconnections among the reflectors in the VRVS system.

1. THE MONALISA SERVICES
ARCHITECTURE

We are developing a globally scalable ``Dynamic

Distributed Services Architecture'' (DDSA) [1], [2] to serve
large physics collaborations. This architecture incorporates
many features that make it suitable for managing and
optimizing workflow through Data Grids composed of
hundreds of sites, with thousands of computing and storage
elements, and thousands of pending tasks, such as those
foreseen by the LHC experiments.

In order to scale and operate robustly in managing global,
resource-constrained Grid systems, the DDSA framework
uses a set of Station Servers, one per facility or site in a
Grid, that host a variety of dynamic, agent-based services.
The services are registered with, and can be mutually
discovered by a lookup service, and they are notified
automatically in case of ``events'' signaling a change of state
anywhere in a large distributed system. This allows the
ensemble of services to cooperate in real time to gather,
disseminate, and process time-dependent state and
configuration information about the site facilities, networks,
and many jobs running throughout the Grid. The monitored
information is reported to higher level services, that in turn
analyze the information, and take corrective action to
improve the overall efficiency of operation of the Grid
(through load balancing, for example) or to mitigate
problems as needed. The DDSA framework is inherently
distributed, ``loosely coupled'' and self-restarting, making it
scalable and robust. Cooperating services and applications
are able to access each other seamlessly, to adapt rapidly to a
dynamic environment (such as worldwide-distributed
analysis by hundreds of physicists in a major HEP
experiment). The services are managed by an efficient
multithreading engine that schedules and oversees their
execution, such that Grid operations are not disrupted if one
or more tasks (threads) are unable to continue. The system

design also provides reliable ``non-stop'' support for large
distributed applications under realistic working conditions,
through service replication, and automatic re -activation of
services. These mechanisms make the system robust against
the failure or inaccessibility of multiple Grid components
(when a key network link goes down, for example).

A service in the DDSA framework is a component that
interacts autonomously with other services through dynamic
proxies or agents that use self-describing protocols. By using
dedicated lookup services, a distributed services registry,
and the discovery and notification mechanisms, the services
are able to access each other seamlessly. The use of dynamic
remote event subscription allows a service to register to be
notified of a selected set of event types, even if there is no
provider to do the notification at registration time. The
lookup discovery service will then automatically notify all
the subscribed services, when a new service, or a new
service attribute, becomes available.

The code mobility paradigm (mobile agents or dynamic
proxies) used in the DDSA extends the remote procedure
call and the client server approach. Both the code and the
appropriate parameters are downloaded dynamically into the
system. Several advantages of this paradigm are: optimized
asynchronous communication and disconnected operation,
remote interaction and adaptability, dynamic parallel
execution and autonomous mobility. The combination of the
DDSA service features and code mobility makes it possible
build an extensible hierarchy of services capable of
managing very large Grids, with relatively little program
code.

We have built a prototype implementation of the DDSA
based on JINI [3] technology. The JINI architecture
federates groups of devices and software components into a
single, dynamic distributed system; functionality that the
future Open Grid Services Architecture (OGSA) [4] will
need to include. JINI enables services to find each other on
a network and allows these services to participate and
cooperate within certain types of operations, while
interacting autonomously with clients or other services [5].

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.DC/0306096MOET001

This architecture simplifies the construction, operation and
administration of complex systems by: (1) allowing
registered services to interact in a dynamic and robust
(multithreaded) way; (2) allowing the system to adapt when
devices or services are added or removed, with no user
intervention; (3) providing mechanisms for services to
register and describe themselves, so that services can
intercommunicate and use other services without prior
knowledge of the services' detailed implementation.

We have also included WSDL/SOAP [6], [7] bindings for
all the distributed objects, in order to provide access to the
monitoring information from other types of clients and to
facilitate a possible future migration to the Open Grid
Services Architecture

2. THE MONITORING SERVICE

An essential part of managing a global Data Grid is a

monitoring system that is able to monitor and track the many
site facilities, networks, and the many task in progress, in
real time. The monitoring information gathered also is
essential for developing the required higher level services,
and components of the Grid system that provide decision
support, and eventually some degree of automated decisions,
to help maintain and optimize workflow through the Grid.
We therefore developed the agent-based MonALISA
(Monitoring Agents in A Large Integrated Services
Architecture) [8] system, based on the DDSA framework.
MonALISA is an ensemble of autonomous multi-threaded,
self-describing agent-based subsystems which are registered
as dynamic services and are able to collaborate and
cooperate in performing a wide range of monitoring tasks in
large scale distributed applications, and to be discovered and
used by other services or clients that require such
information.

MonALISA is designed to easily integrate existing
monitoring tools and procedures and to provide this
information in a dynamic, self describing way to any other
services or clients. MonALISA services are organized in
groups and this attribute is used for registration and
discovery.

2.1. The Data Collection Engine

 The system monitors and tracks site computing farms and
network links, routers and switches using SNMP [9], and it
dynamically loads modules that make it capable of
interfacing existing monitoring applications and tools (e.g.
Ganglia [10], MRTG [11], Hawkeye [12]).

The core of the monitoring service is based on a multi-
threaded system used to perform the many data collection
tasks in parallel, independently. The modules used for
collecting different sets of information, or interfacing with
other monitoring tools, are dynamically loaded and executed
in independent threads. In order to reduce the load on
systems running MonALISA, a dynamic pool of threads is
created once, and the threads are then reused when a task

assigned to a thread is completed. This allows one to run
concurrently and independently a large number of
monitoring modules, and to dynamically adapt to the load
and the response time of the components in the system. If a
monitoring task fails or hangs due to I/O errors, the other
tasks are not delayed or disrupted, since they are executing
in other, independent threads. A dedicated control thread is
used to stop properly the threads in case of I/O errors, and to
reschedule those tasks that have not been successfully
completed. A priority queue is used for the tasks that need to
be performed periodically. A schematic view of this
mechanism of collecting data is shown in Figure 1.

Figure 1. A schematic view of the data collection mechanism
based on a multi-threaded engine.

This approach makes it relatively easy to monitor a large

number of heterogeneous nodes with different response
times, and at the same time to handle monitored units which
are down or not responding, without affecting the other
measurements. As an example, we monitored 500 compute
nodes performing a request for ~200 metric values per node
every 60 seconds. This provided a sustained rate of ~1600
metric values per second collected, using an average of 20
active threads. The number of threads necessary to monitor
a complete site is dynamically adjusted, and very dependent
on the response time for each node, which is related to its
load as well as to the quality of the network connections.

2.2. Data Storage

 The collected values are stored in a relational database,
locally for each service. The JDBC framework in JAVA
offers the flexibility to dynamically load any driver and
connect to virtually any relational database. A normalized
scheme is used to store the result objects provided by the
monitoring modules in indexed tables, which are themselves
generated as needed, dynamically. As data are becoming
older, we are compressing the values stored in the database
by evaluating the mean values on larger time intervals and at
the same time keeping the fluctuation range for each
parameter.

Farm
Monitor

Dynamic
Thread Pool

Trap Agent

Trap
Listener

SNMP

Get / trap

or

Specific
protocols

Dynamic loading of
signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Farm
Monitor

Dynamic
Thread Pool

Trap Agent

Trap
Listener

SNMP

Get / trap

or

Specific
protocols

Dynamic loading of
signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.DC/0306096MOET001

2.3. Registration and Discovery

Each MonALISA service registers with a set of JINI
Lookup Discovery Services (LUS) [3] as part of a group,
and having a set of attributes. The LUSs are also JINI
services and each one may be registered with the other
LUSs. If two LUSs have common groups any information
related with a change of state detected for a service in the
common group by one is replicated to the other one. In this
way it is possible to build a distributed and reliable network
for registration of services and this technology allows
dynamically adding or removing LUSs from the system.
Any service should also provide for registration the code
base for the proxies that other services or clients need to
instantiate for using it. This approach is used to make sure
that the right proxies are used for each service while
different versions may be used in a distributed organization
at the same time. The registration is based on a lease
mechanism that is responsible to verify periodically that
each service is alive. In case a service fails to renew its
lease, it is removed from the LUSs and a notification is sent
to all the services or clients that subscribed for such events.

Any monitor client services is using the Lookup
Discovery Services to find all the active MonALISA
services running as part of one or several group
“communities”. It is possible to select the services based on
a set of matching attributes. The discovery mechanism is
used for notification when new services are started or when
services are no longer available. The communication
between interested services or clients is based on a remote
event notification mechanism which also supports
subscription.

The client application connects directly with each service
it is interested in for receiving monitoring information. To
perform this operation, it first downloads the proxies for the
service it is interested in from a list of possible URLs
specified as an attribute of each service, and than it
instantiate the necessary classes to communicate with the
service. This procedure allows each service to correctly
interact with other services.

2.4. Predicates, Filters and Alarm
Agents

The clients can get any real-time or historical data by
using a predicate mechanism for requesting or subscribing to
selected measured values. These predicates are based on
regular expressions to match the attribute description of the
measured values a client is interested in. They may also be
used to impose additional conditions or constrains for
selecting the values . In case of requests for historical data,
the predicates are used to generate SQL queries into the
local database. The subscription requests will create a
dedicated thread, to serve each client. This thread will
perform the matching test for all the predicates submitted by
a client with the measured values in the data flow. The same
thread is responsible to send the selected results back to the
client as compressed serialized objects. Having an

independent thread per client allows sending the information
they need, fast, in a reliable way and it is not affected by
communication errors which may occur with other clients.
In case of communication problems these threads will try to
reestablish the connection or to clean-up the subscriptions
for a client or a service which is not anymore active.

Monitoring data requests with the predicate mechanism is
also possible using the WSDL/SOAP binding from clients or
services written in other languages. The class description
for predicates and the methods to be used are described in
WSDL and any client can create dynamically and instantiate
the objects it needs for communication. Currently, the Web
Services technology does not provide the functionality to
register as a listener and to receive the future measurements
a client may want to receive.

Other applications or clients may also use the Agent
Filters to receive the information they need. The Agent
Filter is a java module which can be dynamically deployed
to any MonALISA service, and is design to perform a
dedicated data processing task on local data (by subscribing
with a predicate to the data flow) and returns back the
processed information periodically. The MonALISA service
provides the run time environment for these agents which
must be digitally signed by a trusted certificate. As an
example, such filters are used to compute the aggregate IO
traffic in a farm, or to provide the number of nodes which
are free. The same thread used for handling the predicate
subscription is used for sending the filtered results back to
each client.

Dynamically loadable alarm agents, and agents able to
take actions when abnormal behavior is detected, are
currently being developed to help with managing and
improving the working efficiency of the facilities, and the
overall Grid system being monitored.

2.5. Graphical Clients

We developed a global graphical client which is using the
discovery mechanism to find all the active services from a
list of user defined groups. This graphical client is
developed as a Web Start [13] application and it can be
easily started and used from any browser.

A MonALISA service can provide its own GUI to any
client as a complex proxy which contains the marshaled
components as an attributed to the service [3]. This GUI is
used to communicate back with each service from which the
user wants detailed information and can plot the requested
values. MonALISA provides a flexible access to real-time
or historical monitoring values, by using a predicate
subscription mechanism or dynamically loadable filter
agents. These mechanisms are used by any interested client
to query and subscribe to only the information it needs, or to
generate specific aggregate values in an appropriate format.
When a client subscribes with a predicate to certain values ,
the GUI will be automatically updated every time a new
value matching the subscription is collected.

Graphical user interfaces allow users to visualize global
parameters from multiple sites [8], as well as detailed

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.DC/0306096MOET001

tracking of parameters for any component in the entire
system. The graphical clients also use the remote notification
mechanism, and are able to dynamically show when new
services are started, or when services become unavailable.
Dedicated filers are used to provide global views with real
time updates for all the running services.

In Figure 2, we present a few examples in how real-time
and historical data are presented in MonALISA.

A generic framework for building “pseudo-clients” for the
MonALISA services was developed [14]. This has been used
for creating dedicated Web service repositories with selected
information from specific groups of MonALISA services.
The “pseudo-clients” use the same LUSs approach to find
all the active MonALISA services from a specified set of
groups and subscribes to these services with a list of
predicates and filters. These predicates or filters specify the
information the pseudo-client wants to collect from all the
services. A “pseudo-client” stores all the values received
from the running services in a local MySQL database, and is
using procedures written as Java threads to compress old
data.

A Tomcat [15] based servlet engine is used to provide a

flexible way to present global data and to construct on the
fly graphical charts for current or customized historical
values, on demand. Dedicated servlets are used to generate
Wireless Access Protocol (WAP) [16] pages containing the
same information for mobile phone users. Multiple Web
Repositories can easily be created to globally describe the
services running in a distributed environment.

2.6. Administration of Services

MonALISA also provides a secure mechanism (SSL with
X.509 certificates) for dynamic configuration, using a
dedicated GUI, of farms / network elements, and support for
other higher level services that aim to manage a distributed
set of facilities and/or optimize workflow.

It allo ws reconfiguring any monitoring services by adding
new nodes, network elements or clusters and at the same
time to dynamically loaded into the system any new
monitoring module as needed. It also allows stopping or
suspending any monitoring module. Adding dynamically
new monitoring modules is important for debugging and
understanding the way certain applications perform.

The Administration interface connects to a service using
Remote Method Invocation over SSL. X.509 certificates for
trusted administrators are imported in the keystore of each
service and they are used to establish a SSL connection
based on a client authentification procedure.
The administrative GUI can be stated automatically from the
global web start client if it used by a trusted

administrator. When the administrator loads is private key
into the global GUI client it automatically gets
administrative rights on the services that imported his
certificate in the trust keystore.

2.7. Automatic update for services

MonaALISA is currently deployed on many sites and
maintaining and updating such applications may require a
significant effort. For this reason we developed a mechanism
in MonALISA that allows us to automatically update the
monitoring service. A dedicated thread is used to

Figure 2. The main GUI in MonALISA: it provides global views of the system as well as real time and historical plots for any
parameter monitored by the system. Active services are automatically shown on the world map indicating the global load of the
farms and real time traffic on selected major international connections. The user can plot any set of parameters measured in the
entire system.

IEPM -

@ CALTECH

DataTAG
-

-

Production Traffic CERN-US
Real-time

Traffic from CERN into DataTAG

Traffic from CERN into Geant

Load on the Farm Nodes
@ CALTECH

IEPM- BW Measurements @ SLAC

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.DC/0306096MOET001

periodically check for updates of the distribution.
Alternatively a remote event notification can be used to
notify only selected services to perform an update. When
such an event is detected, the running service will trigger a
restart operation. When a MonALISA service is started, it is
using the web start mechanism [13] to describe an
application and all its dependencies and constrains into a
XML file (jnpl). This will perform an automatic download
of all the packages which were updated and will check all
the necessary constrains to run the application. All the files
downloaded in this way must be digitally signed by a
developer for which the certificate is imported in the trust
keystore. This can be done when the MonALISA service is
used for the first time.

All the running services, as well as the services which may
be stated after an update was done will run the last
“published” version and this is done in a secure way.
Users may start a MonALISA service with the auto update
flag switch off.

3. MONITORING DATA PROCESSING FARMS

MonALISA is now deployed and operating round the
clock monitoring the US CMS Test Grid and an increasing
number of other sites. The MonALISA Web repository is
now accumulating historical data for the US CMS Tie r1 and
Tier2 centers at Fermilab, Caltech, UCSD, and the
University of Florida, as well as the production farms at
CERN, at the Academia Sinica in Taiwan (ATLAS), and at
the Polytechnic University in Bucharest. As an example, the
number of nodes loaded on the US-CMS farms during a
week is presented in Figure 3.
 We also monitor the network traffic on the US-CERN
production link, and the distribution of the traffic into the
major networks and links with which we peer: EsNet,
Abilene, Mren, StarTAP, the US-CERN DataTAG link, the
CERN-Geant link, Taiwan-Chicago, and Bucharest-
Budapest. In addition to the directed measurements
performed on routers, we interfaced MonALISA to provide
access to the Internet End to End Performance
Measurements (IEPM-BW) [17].
We are currently monitoring the batch queuing systems at
CERN (LSF) and at Caltech (PBS). From these modules

Figure 3. A global plot of the US-CMS farms showing the number
of nodes with load higher than 0.5 during a period of one week.
These plots are created with the web service repository [14].

 we can report the number of (selected types) jobs running,
pending or those which exit with errors.

4. MONITORING THE VRVS SYSTEM

The Virtual Rooms VideoConferencing System (VRVS)

[18] is an enhanced web based video conferencing system
which is using a set of reflectors distributed world wide for
an efficient real-time distribution of the audio and video
streams.

For each VRVS reflector, a MonALISA service is running
using an embedded Database, for storing the results locally,
and runs in a mode that aims to minimize the reflector
resources it uses (typically less than 16MB of memory and
practically without affecting the system load). Dedicated
modules to interact with the VRVS reflectors were
developed: to collect information about the topology of the
system; to monitor and track the traffic among the reflectors
and report communication errors with the peers; and to track
the number of clients and active virtual rooms. In addition,
overall system information is mo nitored and reported in real
time for each reflector: such as the load, CPU usage, and
total traffic in and out.

A dedicated GUI for the VRVS version was developed as
a java web-start client. This GUI provides real time
information dynamically for all the reflectors which are
monitored. If a new reflector is started it will automatically
appear in the GUI and its connections to its peers will be
shown. Filter agents to compute an exponentially mediated
quality factor of each connection are dynamically deployed
to every MonALISA service, and they report this
information to all active clients who are subscribed to
receive this information.

It provides real-time information about the way the VRVS
system is used (number of conferences or clients) the
topological connectivity of the reflectors and the quality of it
and system related information (IO traffic CPU load).
Clients can also get historical data for any of these
parameters.

The subscription mechanism allows one to monitor in

real time any measured parameter in the system as all the
updates are dynamically displayed on the open windows.
Examples of some of the services and information available,
visualizing the number of clients and the active virtual
rooms, the traffic in and out of all the reflectors, as well as
problems such as lost packets between reflectors are
presented in Figure 4.

In addition to dedicated monitoring modules and filters for
the VRVS system, we developed agents able to supervise the
running of the VRVS reflectors automatically. This will be
particularly important when scaling up the VRVS system
further.

In case a VRVS reflector stops or does not answer
correctly to the monitoring requests, the agent will try to
restart it.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint cs.DC/0306096MOET001

If this operation fails twice the Agent will send an email to
a list of administrators. These agents are the first generation
of modules capable of reacting and taking well defined
actions when errors occur in the system. These agents,
capable to take action in the system, may be dynamically
loaded. For security reasons such agents

Figure 4. Monitoring the VRVS Reflectors.

must be digitally signed by developers with trusted
certificates, declared for each running service.

4.1. Optimized Dynamic Routing

We developed agents able to provide an optimized
dynamic routing of the videoconferencing data streams.
These agents require information about the quality of the
alternative connections in the system and they solve, in real-
time, a minimum spanning tree problem to optimize the data
flow at the global level.

To evaluate the connection quality with possible peer
reflectors we developed monitoring agents performing ping
like measurements using UDP packages, which are deployed
on all the MonALISA services. These agents perform
continuously (every 2s) such measurements with a selected
set of possible peers, which can be dynamically
reconfigured, for each reflector. We are using small UDP
packages to evaluate the Round Trip Time (RTT), its jitter
and the percentage of lost packages.

The reflectors and all these possible peer connections we
are measuring define a graph (Figure 5). The best routing
path for reapplication of the multimedia streams is defined
as a Minimum Spanning Tree (MST) [19]. This means that
we need to find the tree that contains all the reflectors
(vertices in the graph G) for which the total connection
“cost” is minimized:

The “cost” of the connection between two reflectors (w) is
evaluated using the UDP measurements from both sides.
This cost function is build with an exponentially mediated
RTT and if lost packages are detected or the jitter of the

RTT is high the cost function will increase rapidly.
 Based on these values provided by the deployed agents ,
the MST is calculated nearly in real - time. We implemented
the Baruvka‘s Algorithm [19], as it is well suited for a
parallel/distributed implementation. Once a link is part of
the MST a momentum factor is attached to that link. This is
to avoid triggering reconnections for small fluctuations in
the system. Such cases may occur when two possible peers
have very similar parameters (or they may be at the same
location). In Figure 5 an example of a dynamically MST for
connecting the VRVS reflectors is presented.
 This is an example of a high level service developed to
optimize a real-time world wide distributed application and
to help in operating such complex systems. These
developments are transforming the VRVS system into a new
class of large scale distributed systems with real time
constraints.

))),((min(
),(

∑
∈

=
Guv

uvwMST

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint cs.DC/0306096MOET001

Figure 5. The Minimum Spanning Tree connections and peers
quality for a set of VRVS reflectors

The MonALISA framework is a means of carrying out the
development of this system, both in terms of its operational
characteristics (heuristic, self-discovering, autonomous) and
the relatively short development time required for
implementing a distributed monitoring and management
system of this scale and complexity.

5. STATUS AND FUTURE PLANS

Deploying these monitoring services on many sites and

interfacing it with other monitoring tools (SNMP, Ganglia,
MRTG, IEPM-BW) as well as with batch queuing systems
(Condor, LSF, PBS) has provided very useful experience,
and has enabled us to begin building reliable and scalable
distributed services.

This experience also has been important in enabling us to
start building higher level services, to perform job
scheduling and data replication tasks effectively; service that
adapt themselves dynamically to respond to changing load
patterns in large Grids.

Through the Internet2 End-to-End Performance Initiative
[20] MonALISA is also going to be used to monitor and help
manage the Internet2 Abilene backbone. We are working to
enhance the end-to-end measurements provided by
MonALISA to meet the needs of Internet2, as well as the
proposed UltraLight next -generation optical network [21].

6. SUMMARY

These developments have a broader range of applications,

to the global distributed Grid-based systems required for
major HENP experiments, and other data-intensive project.
This real time system also includes much of the functionality
required of the OGSA standardized services planned by the
Global Grid Forum in the future.

Effective and robust integrated applications require higher
level service components able to adapt to a wide range of
requests, and changes in the state of the system (such as
changes in the available resources, for example).

These services should be capable of ``learning'' from
previous experience, and apply ``self-organizing neural
network'' [22] or other heuristic algorithms to the
information gathered, to optimize dynamically the system,
by minimizing a set of ``cost functions''.

Acknowledgments

The authors wish to thank to S. Ravot, S. Singh and V.
Litvin form Caltech, Richard J. Cavanaugh from University
of Florida, Lothar Bauerdick, Ian Fisk, Greg Graham and
Yujun Wu from Fermilab, N. Tapus from the Polytechnic
University Bucharest, Les Cottrel and Warren Matthews
from SLAC for their help and support in deploying and
developing MonALISA as a real distributed service.

References

[1] H.B. Newman, I.C. Legrand, J.J. Bunn, “A

Distributed Agent-based Architecture for Dynamic
Services” CHEP 2001, Beijing, Sept 2001,
http://clegrand.home.cern.ch/clegrand/CHEP01/chep0
1_10-010.pdf

[2] Julian Bunn and Harvey Newman
Data Intensive Grids for High Energy Physics Grid
Computing: Making the Global Infrastructure a
Reality, edited by Fran Berman, Geoffrey Fox and
Tony Hey, March 2003 by Wiley

[3] Jini web page , http://www.jini.org
[4] OSGA , http://www.globus.org/
[5] The Openwings Project, http://www.openwings.org/
[6] World Wide Web Consortium, http://www.w3.org
[7] The Glue Web Services Pacakage

http://www.themindelectric.com/
[8] MonALISA web page

http://monalisa.carc.caltech.edu
[9] The Net-Snmp Web Page, http://www.net-snmp.org/
[10] Ganglia Monitoring tool,

http://ganglia.sourceforge.net/
[11] MRTG monitoring tool. http://www.mrtg.org
[12] Hawkeye monitoring tool,

http://www.cs.wisc.edu/condor/hawkeye/
[13] Java Web Start,

http://java.sun.com/products/javawebstart/
[14] MonaLISA web repository,

http://monalisa.carc.caltech.edu:8080/
[15] The Jakarta Project, http://jakarta.apache.org/
[16] WAP Forum, http://www.wapforum.org/
[17] Internet End-to-end Performance Monitoring

http://www-iepm.slac.stanford.edu/
[18] The VRVS Web Page, http://www.vrvs.org
[19] Nancy A. Lynch, Distributed Algorithms, Morgan

Kauffman Publishers, 1996

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint cs.DC/0306096MOET001

[19] Michael T. Goodrich, Roberto Tamassia, Algorithm
Design, John Wiley & Sons, 2001

[20] Internet2 End-to-End Performance Initiative,
http://www.internet2.edu/e2epi

[21] The Ultralight Project, http://ultralight.caltech.edu

[22] H.B. Newman, I.C. Legrand
A Self-Organizing Neural Network for Job
Scheduling in Distributed Systems
CMS NOTE 2001/009, January 8, 2001
http://clegrand.home.cern.ch/clegrand/SONN/note01_
009.pdf

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8 ePrint cs.DC/0306096MOET001

