
Using CAS to Manage Role-Based VO Sub-Groups
S. Cannon, S. Chan, D. Olson, C. Tull
Lawrence Berkeley National Laboratory, Berkeley, CA
V. Welch
Argonne National Laboratory, Argonne, IL
L. Pearlman
USC Information Sciences Institute, Marina del Rey, CA

We have developed and tested a prototype VO-Role management system using the Community Authorization Service (CAS)
from the Globus project. CAS allows for a flexible definition of resources. In this prototype we define a role as a resource
within the CAS database and assign individuals in the VO access to that resource to indicate their ability to assert the role. The
access of an individual to this VO-Role resource is then an annotation of the user's CAS proxy certificate. This annotation is
then used by the local resource managers to authorize access to local compute and storage resources at a granularity that is
based on neither VOs nor individuals. We report here on the configuration details for the CAS database and the Globus
Gatekeeper and on how this general approch could be formalized and extended to meet the clear needs of LHC experiments
using the Grid.

1. INTRODUCTION
LHC-era HENP experiments will generate

unprecedented volumes of data and require
commensurately large compute resources. These
resources are larger than can be marshaled at any one site
within the community. Production reconstruction, analysis,
and simulation will need to take maximum advantage of
these distributed computing and storage resources using
the new capabilities offered by the Grid computing
paradigm. Since large-scale, coordinated Grid computing
involves user access across many Regional Centers and
national and funding boundaries, one of the most crucial
aspects of Grid computing is that of user authentication
and authorization. While projects such as the DOE Grids
CA have gone a long way to solving the problem of
distributed authentication, the authorization problem is
still largely open.

One model of authorization is the presentation of a
group membership credential by the user to the resource
provider. The resource provider then translates that group
membership into a set of local rights to be granted to that
user. In the case of Grid computing, these groups will
often correspond to the user's membership in a Virtual
Organization (VO). In HENP the Grid VOs logically map
onto entire experiments. I.E. The four LHC experiments
(ALICE, ATLAS, CMS, LHCb) would map onto four
separate VOs. However, a finer granularity of
membership is needed to define sub-groups within a VO
which map onto groups and/or individuals performing
specific roles within the respective experiments. This VO-
Role membership attribute is not tied to a particular
individual nor applied to the Virtual Organization as a
whole.

We have developed and tested a prototype VO-Role
management system using the Community Authorization
Service (CAS) from the Globus project. CAS allows for a
flexible definition of resources. In this prototype we define
a role as a resource within the CAS database and assign
individuals in the VO access to that resource to indicate

their ability to assert the role. The access of an individual
to this VO-Role resource is then an annotation of the user's
CAS proxy certificate. This annotation is then used by the
local resource managers to authorize access to local
compute and storage resources at a granularity that is
based on neither VOs nor individuals. We report here on
the configuration details for the CAS database and the
Globus Gatekeeper and on how this general approch could
be formalized and extended to meet the clear needs of
LHC experiments using the Grid.

2. OVERVIEW OF CAS
The Community Authorization Service (CAS) [8][9] is a

system developed by the Globus Project to allow virtual
organizations (VOs) to flexibly and expressibly authorize
access to resources and data in large distributed Grids.
Since the introduction of CAS in March of 2002, CAS has
undergone significant changes based on requirements
feedback from a number of HEP resource sites.

The CAS architecture builds on public key
authentication and delegation mechanisms provided by the
Globus Toolkit [7] Grid Security Infrastructure (GSI)
[2][6], a widely used set of authentication and
authorization mechanisms that address single sign on,
delegation, and credential mapping issues that arise in VO
settings.

The Grid Security Infrastructure (GSI) software is a set
of libraries and tools that allow users and applications to
access resources securely. GSI focuses primarily on
authentication and message protection, defining single
sign-on algorithms and protocols, cross-domain
authentication protocols, and delegation mechanisms for
creating temporary credentials for users and for processes
executing on a user's behalf. GSI is based on Public Key
Infrastructure (PKI) and uses authentication credentials
composed of X.509 [3] certificates and private keys. In
brief, a GSI user generates a public-private key pair and
obtains an X.509 certificate from a trusted entity called a
Certificate Authority (CA). These credentials then form

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1TUBT004 ePrint cs.CR/0306088

the basis for authenticating the user to resources on the
Grid.

GSI now uses temporary credentials called proxy
credentials. Proxy credentials allow GSI to support single
sign-on by allowing users to access resources at multiple
sites without repeated authentication and to delegate their
rights to remote processes. This single sign-on capability
is critical to advanced Grid applications in which a single
interaction may involve the coordinated use of resources at
many locations.

3. RIGHTS GRANULARITY
Authorization and authentication are critically important

issues in realizing the vision of Grid computing. However,
with few exceptions, discussions of philosophy and
implementation for authorization and authentication of
users on the Grid have focused exclusively on two levels
of rights granularity. These two levels of rights granularity
are at the extremes of the A&A domain, ie. rights granted
to the individual and rights granted to the VO as a whole.

Authentication typically involves verifying an
individual's identity and her/his membership in a VO.
These two extremes (the individual and the VO) can be
adequate for relatively small VOs. But in a typical LHC
era experiment where the VO is comprised of up to 2000
individuals, an intermediate granularity of access control is
required.

We distinguish two intermediate granularities of access
rights which we call roles and groups. HENP experiments
typically contain sub-groupings of collaborators which we
call groups. These groups can be physics groups studying
a particular physics channel or physics process, or they can
be sub-detector groups with special responsibility for a
particular detector subsystem of the overall experimental
apparatus (eg. In ATLAS the Liquid Argon Calorimeter or
the Muon Chambers). These groups share information,
code, and files at a higher rate than the rate found across
such group boundaries. As well, they often have a
collective group responsibility (eg. Producing and
maintaining detector calibration databases.) which can
map onto specific access rights to distributed Grid
resources.

HENP experiments also contain specific roles which are
adopted for a limited time by individuals or small teams
within the collaboration. Examples of such roles include
the Software Librarian responsible for maintaining the
central software repository of the experiment, the Release
Coordinator responsible for defining, coordinating, and
building the stable experimental releases of software, and
the Production Manager responsible for running and
managing the production runs of experimental data
reduction and analysis.

These roles are typically assigned to an individual
within the collaboration for a limited term, and then
reassigned to another individual as a way of spreading
both responsibility and experience across the
collaboration. These roles come with specific
responsibilities and access rights for a wide variety of

compute resources (such as files, databases,
share/priorities of compute and storage allocation usage,
etc).

The distinction between groups and roles is that roles
typically map onto one or very few individuals but change
frequently, while groups map onto a larger subsection of
the collaboration (dozens or even hundreds of individuals)
but remain relatively stable (Members join a group at
some rate, but the overall population remains otherwise
effectively static.).

4. PROTOTYPE PROJECT

4.1. Goal of Project
CAS is being developed partly under the auspices of the

Particle Physics Data Grid (PPDG) project. Although CAS
was not specifically designed and developed to address the
issue of sub-VO role-based access control, it was
explicitly developed to be flexible and customizable to
meet all aspects of a VO's A&A needs in a Grid
environment.

The goal of this project was to take the authorization
mechanism being developed within PPDG and
demonstrate that it is capable of managing sub-VO roles
and groups without fundamentally changing the
mechanism nor the associated tools.

To demonstrate that CAS can handle the requirements
of sub-VO roles, we needed to demonstrate two things:

1> The granting and rescinding of the rights associated
with that role to one, and then a different user.

2> The use of the rights associated with the role to
access role-specific resources, and the denial of
access to those resources when the rights have been
rescinded.

To demonstrate that CAS can handle the requirements
of sub-VO groups, we needed to demonstrate granting
rights associated with that group to multiple users (ie.
members of the group), and that the these multiple users
can then use these rights to access resources equally.

For simplicity, we chose to grant access to file resources
via GSIFTP for our tests.

4.2. CAS Credential Changes
4.2.1. Credential Contents

Detailed fully in [8] and [9], the purpose of a CAS
server is to authenticate users as a member of a VO and
issue to them a cryptographically signed assertion that
allows the user to assert to third parties that the user is a
VO member and what their rights should be in regards to
VO policy.

In the current CAS prototype [3], these rights are
specific access rights on files or directory trees - e.g. the
user can read file /tmp/foo, can write to /tmp/bar/*, etc. -
however the CAS policy is flexible in this regard and is
capable of expressing any right that can be expressed as a
<action, target> tuple. By configuration of the CAS

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2TUBT004 ePrint cs.CR/0306088

database new sets of actions and types of targets can be
easily added.

For our prototype we defined a new set of actions and
targets to allow expressing role membership in the tuples.
A new action was defined to indicate role membership and
a new target type was defined to identify specific roles. In
our prototype we defined roles with a two-level hierarchy
to allow for the expression of both the VO that the role
was associated with and the role's name - for example
"atlas/admin" to indicate an administrator in the Atlas VO.
While we experimented with only two levels in the role
names, there is no reason one could not define further
levels of granularity.

The result of this database configuration was that roles
could be added to the CAS database as target resources as
files could be in the original prototype and users could be
given membership right on those roles. This allowed CAS
to express rights such as "the user is a member of
atlas/admin".

4.2.2. Changes to Resource Server for
Enforcement

In the CAS model, the services on the resource are
responsible for parsing the CAS credentials, determining
the rights granted by those credentials and enforcing those
rights. Since our prototype changed the CAS credential
content from an explicit list of rights to an assertion of role
membership, this required changes to these services to
understand and enforce role assertions. The CAS prototype
[3] we worked with included a CAS-enabled GridFTP
server [1] capable of understanding and enforcing normal
CAS authorization assertions. We modified this server to
understand and handle with our CAS role assertions.

The CAS prototype comes with a set of libraries for
allowing services to make authorization queries regarding
the rights expressed in the CAS assertions. For example,
queries of the form "does the user have the 'read' right on
file '/tmp/foo'?" can be asked. These libraries allowed us to
query regarding the user's role memberships without
modification, we simply asked about the 'membership'
right on the role name we were interested in.

 We added a simple configuration file on the resource
that listed the roles honored and mapped those roles to
Unix accounts. The GridFTP server was modified to walk
through the list of groups in the configuration file, query
the CAS rights to determine if the user had a membership
in that role and if so map the user to the account associated
with the role for further enforcement.

If no role membership of the user matched any in the
configuration file (or the user had no role membership),
then the GridFTP application used the user's personal
identity to determine the local account to use as normal.

This system served to allow the local administrator to
use the configuration file to map roles to account and then
use normal local mechanisms (file permissions, quotas,
etc.) to manage policy on the role.

Finally as a security precaution we added a check to
verify that the CAS server issuing the role assertion had

permission to access the account the role mapped to (i.e.
the identity of the CAS server was authorized to map to
the account via the Globus Toolkit grid-mapfile). In
situations where more than one CAS server is accepted by
a resource (e.g. it is serving multiple VOs) this would
prevent a CAS server from one VO from either
maliciously or mistakenly issuing roles assertions for
another VO. Alternately we could have made the role to
account mappings specific to the CAS server.

4.3. Prototype & Testbed Setup
Standard usage of CAS involves three distinct actors

(Typically on three different host machines.):
1> The user (ie. Someone who wishes to access

resources using rights granted by CAS.) running
client software

2> The CAS Server providing the extended X.509
certificate for use by the user

3> The resource server (eg. a Gridftp Server) providing
the actual resource

Figure 1. Standard (non-prototype) CAS Architecture in
action.

Figure 1 shows the typical interactions when a user
accesses a Gridftp server modified to do CAS
authorization. The CAS user first gets a standard Grid
proxy certificate, then requests credentials from a CAS
server. The CAS server replies with credentials based on
the rights granted to the user in the CAS database. The
user then presents the CAS credentials to the resource
server (This is done by running unmodified GSI client
applications with a simple wrapper script.) which uses
them in making policy decisions about access to resources.

On the user's client machine, a standard CAS session
looks something like:

Initialize Grid certificate
% grid-proxy-init
Your identity:
/O=doesciencegrid.org/OU=People/CN=Craig E. Tull
49565
Enter GRID pass phrase for this identity:
Creating proxy... Done
Your proxy is valid until Wed Mar 19 20:30:53
2003

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3TUBT004 ePrint cs.CR/0306088

Initialize CAS certificate with tag="castag"
% cas-proxy-init castag
Use CAS tag to connect
% cas-wrap castag gsincftp pdsfgrid3
NcFTP 3.0.3 (April 15, 2001) by Mike Gleason
(ncftp@ncftp.com).
Connecting to 128.55.24.28...
pdsfgrid3.nersc.gov FTP server (GridFTP Server
1.0 -- CAS enabled [GSI patch v0.5] wu-2.6.2(2)
Wed Mar 5 17:42:41 PST 2003) ready.

To accomplish the demonstration of CAS as a sub-VO
group & role manager, we added new service types to the
CAS database and then added new actions to that service
type. In our case, we added service type "group" and
added action "member". This was trivially done with the
standard mechanism for extending the CAS database: An
ascii file is created with the appropriate commands, and
then loaded into the CAS database.

We then added two new objects of service type "group"
to the database. We called the two groups "atlas/admin"
and "atlas/data" denoting an administrator group and a
data-management group. Users in the CAS database can
then be added and removed from the "atlas/data" group by
granting and rescinding the "atlas/data" "group" rights to
the user in question. This is typically done with the CAS
GUI which makes it a trivial process as well.

In our tests, we were operating our modified Gridftp
server along side a standard (unmodified) server. This was
accomplished by binding the modified server to a different
port on the server machine, and specifying that port on the
command line when connecting with client software. IP
filters and the hosts.allow file were tweaked to allow
secure access from the client host.

In a client session, the user can specify the CAS-granted
rights that he/she wants associated with a particular CAS
tag (The tag is in effect the identifier of which CAS proxy
is to be used.) by specifying those rights in an ascii
configuration file which is then passed to the cas-proxy-
init command via a flag. An example file requesting
membership in the atlas/admin group with read access to
all appropriate files on the pdsfgrid3 server looks like:

file containing Role privileges
group member atlas/admin wildcard
file read ftp://pdsfgrid3.nersc.gov/* wildcard

A user who wants to perform tasks associated with
multiple roles or groups would generate multiple CAS
proxies, each associated with a tag which associates that
proxy and access rights to each subsequent command in
the session. A typical user session using the groups
capability of CAS might then look like:

Initialize Grid certificate
% grid-proxy-init
Your identity:
/O=doesciencegrid.org/OU=People/CN=George Orwell
1984
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until Wed Mar 19 20:30:53
2003
Initialize 1 CAS certificate for each Role
% cas-proxy-init tull

% cas-proxy-init -f admin admin
% cas-proxy-init -f data data
Use Role Tag to connect
% cas-wrap data gsincftp -P 2813 pdsfgrid3
NcFTP 3.0.3 (April 15, 2001) by Mike Gleason
(ncftp@ncftp.com).
Connecting to 128.55.24.28...
pdsfgrid3.nersc.gov FTP server (GridFTP Server
1.0 -- CAS enabled [GSI
patch v0.5] wu-2.6.2(2) Wed Mar 5 17:42:41 PST
2003) ready.

Each invocation of a GSI command with the cas-wrap
script then specifies the role tag that the user wishes to
associate with that command. The cas-proxy-init
command without an input file specified simply associates
the normal CAS rights for user tull (in this case) with the
proxy. A proxy has a limited lifetime, but until it expires,
it can be used repeatedly by denoting the appropriate tag
as the first argument to cas-wrap.

5. SUMMARY, ANALYSIS, & CONCLUSION

5.1. Suitability of CAS for this task.
Our tests demonstrate that access to files on a server can

be controlled at the sub-VO group or role level by using
CAS to create, control, and grant rights associated for that
group or role. This allows a single user to adopt multiple
rights-sets associated with membership in groups or tenure
in a role, and to specify those rights-sets by a simple
mechanism (ie. The CAS tag/configuration file mechanism
described above.).

In our tests, we chose to interpret the roles and groups as
Unix user accounts on the server side. Meaning that
multiple individuals come in as the same Unix user for
groups, and that the individual associated with a Unix
account will change over time for roles. Typical security
policies at many computer centers prohibit this kind of
"shared account". However, since the X.509 certificate
associated with the CAS proxy accessing that accounts
contains the distinguished name of the individual
accessing the compute resources, auditing of activity on
the server host is easily accomplished. This is the main
objection that computer centers have to shared accounts.

We conclude that the use of CAS is appropriate for this
task. We have not yet tested the use of a modified
Gatekeeper for access to CPU resources, but expect that
this will be no more complicated than modifying the
Gridftp Server.

5.2. Integration of Work into Future CAS
Releases

In reviewing our modifications, as described in Section
4.2, to the existing CAS prototype we note that the only
code changes were in the authorization enforcement code
in the resource service (i.e. the GridFTP server). All the
changes required to issue role-based assertions was
accomplished through simple runtime reconfiguration of
the CAS database through the existing administrative
interface.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4TUBT004 ePrint cs.CR/0306088

The Globus Project is currently re-implementing the
GridFTP server code and plans on allowing for a
configurable, modular authorization system that allows for
authorization code to be written as dynamic libraries and
loaded into the server at runtime. This will allow for code
to understand and enforce role-based assertions to be
written as a module and placed into a resource service
without modifying the resource service, as we were
required to do for our prototype.

5.3. Standardization of Assertion Format
In modifying CAS to issue an assertion of role

membership to a user, it becomes very similar in
functionality to the virtual organization membership
service (VOMS) [11]. The VOMS system was primarily
designed to work with the Globus Toolkit resource
management system to allow resources to specify policy
based on user's role in a VO. In doing so the VOMS server
issues assertions of role membership to users, which they
then present to the resource (architecturally identical to the
CAS system we used in our prototype).

As with CAS, the VOMS system currently uses a non-
standard format for the role-based assertion, requiring
custom software on the resource to parse the assertion. By
standardizing the format of these assertions we could
allow the development of authorization software that could
easily understand assertions from either system easily.

Two potential existing standards for such assertion
formats already exist, X.509 attribute certificates [5] and
security assertion markup language (SAML). While either
of these solutions would be appropriate, current research
with CAS is investigating SAML due to its current
integration with Web services, something that appears to
be taking on greater importance in the Grid community.

5.4. Use of Unix Group memberships
Our system described in this paper works well for

situations where a user only takes on a single role for a
given activity. However, it would potentially be the case
that a user with authorization to take on different roles
may need to do so to accomplish a particular take. For
example, if they want to copy a file, readable through their
membership in one role, to storage for which they only
have write access by membership in another role.

One possible way to allow this is to base role policy not
on Unix accounts, but on Unix groups. Since a process
(e.g., the GridFTP server) can be a member of multiple
Unix groups at a time, this would allow a process to take
on rights associated with multiple roles.

Acknowledgments

This work was supported in part by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department
of Energy, under contracts W-31-109-Eng-38. Initial
funding for CAS was supplied by the Earth Systems Grid
project.

This work was supported in part by the Office of
Science. Nuclear Physics, U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.

The CAS prototype was developed using the pyGlobus
from Keith Jackson of LBNL.

The Globus Toolkit is a trademark owned by the
University of Chicago.

This is LBNL report number LBNL-52978.

References
[1] B. Allcock, J. Bester, J. Bresnahan, A. L.

Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, and S. Tuecke. Data
Management and Transfer in High Performance
Computational Grid Environments. Parallel
Computing Journal 28 (5), May 2002, pp. 749-771.

[2] Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke,
S., Volmer, J. and Welch, V. A National-Scale
Authentication Infrastructure. IEEE Computer, 33 (12).
60-66. 2000.

[3] CAS AlpahR2 Web Site,
http://www.globus.org/Security/cas/alpha-
r2/index.html, September 2002.

[4] CCITT Recommendation X.509: The Directory –
Authentication Framework. 1988

[5] S. Farrell, and R. Housley. An Internet Attribute
Certificate Profile for Authorization, RFC 3281,
IETF, April 2002.

[6] Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. A
Security Architecture for Computational Grids. ACM
Conference on Computers and Security, 1998, 83-91.

[7] Foster, I. and Kesselman, C. Globus: A
Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Applications, 11 (2).
115-129. 1998.

[8] Pearlman, L., Welch, V., Foster, I., Kesselman, C.,
Tuecke, S., The Community Authorization Service:
Status and Future, CHEP 2003 (To appear).

[9] Pearlman, L., Welch, V., Foster, I., Kesselman, C.
and Tuecke, S., A Community Authorization
Service for Group Collaboration. IEEE 3rd
International Workshop on Policies for Distributed
Systems and Networks, 2002.

[10] Security Assertion Markup Language (SAML) 1.0
Specification, OASIS, November 2002.

[11] VOMS Architecture v1.1, http://grid-
auth.infn.it/docs/VOMS-v1_1.pdf, May 2002.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5TUBT004 ePrint cs.CR/0306088

