The Metrology of LHC components prior to their installation in the tunnel

D. Missiaen, M. Dupont, M. Plusquellec, CERN, Geneva

Why do the LHC magnets need geometrical checks?

1. Mechanical reasons : to avoid inadmissible offsets in the interconnections between adjacent magnets. The table of alignment errors for the dipole shows that a misalignment of the cold bore tubes of 0.1 mm r.m.s combined with other errors leads to a max offset of 4 mm which is the maximum acceptable value for the bellows in the interconnections.

2. Beam Aperture : axis of cold bore tubes has to be included inside a toroid of 1 mm radius.

3. Alignment in the tunnel: The position of the fiducials of the dipoles have to be knowm w.r.t mechanical magnet axis. These positions combined with the co-ordinates of the points of the beam trajectory coming from MAD will give the alignment co-ordinates for the fiducials in the CERN Co-ordinates System

Laser Tracker technology

The geometrical axis of the dipole is determined by measuring the position of the axis of the two cold bore tubes
from each extremity of the dipole. This measurement is done automatically by a Laser Tracker. Network points are
used to link the measurements taken from different positions of the laser tracker

Then, the theoretical shape of the

dipole is adapted on the measured
shape using a 3D transformation program. The deviations between
the measured shape and the theoretical shape are also computed.
The positions of the fiducials are
calculated with respect to the theoretical adapted shape

Cartography of the positions of the tubes at the extremities of dipoles

For the SSS, the laser tracker is also used to : - align the Beam Position Monitor (BPM) and its drift tube with respect to the magnetic axis known through the "fiducials" measure the position of the tubes at the extremities
W.r.t the theoretical adapted shape, the position of a set of tubes at each extremity of the dipoles is measured using a laser tracker

Results and Quality Assurance

These documents are stored in an Electronic Data Management System (EDMS) so that other systems Holders know what will be done, what is neeed for doing the work and what results will be kept. All the versions of the documents are saved.
 20 magnets have been measured and their results are available immediately on the WEB using the Magnet Test Folder (MTF) interface

