
NEW DATABASE DESIGN
FOR THE APS SURVEY AND ALIGNMENT DATA∗

Jaromir M. Penicka, Horst W. Friedsam
Argonne National Laboratory, Argonne, Illinois, U.S.A.

ABSTRACT

The conceptual design of the new APS Survey and Alignment Database, based on relational
database technology, is presented in this paper. Authors outline the process of developing the
logical database structure from data modeling to final quality check of the database design. The
data used by the APS Survey and Alignment Group is analyzed and modeled in the entity-
relationship model (E-R model). The E-R model is then transformed into a DBMS-independent
relational design, and the quality of the database design is examined against the normalization
theory. Authors also evaluate the relational design in the context of possible queries that might
be posed to the database implemented on this design.

1. INTRODUCTION

Since its inception in 1990, the APS Survey and Alignment Group (SAG) depends on Geonet
software [1] for its data storage and management needs. Geonet was originally developed under
the DOS environment at SLAC in the 1980s as an all-inclusive software package for the
accelerator alignment community. Geonet served us well for over a decade through the times of
fast technological advancement not only in the area of MIS, but also in metrology. With the
arrival of laser trackers, digital levels, etc., some Geonet utilities, like data collection and data
reduction programs, slowly became obsolete and were phased out or replaced by new tools.
Although we still keep Geonet data on our server and use it on PCs under the Windows operating
system, the need for a new database concept replacing the obsolete DOS-based Geonet structure
is imminent. The original data model, on which the Geonet database was built, does not
accurately reflect our working environment any more. The capability to track new information,
and greater flexibility in information retrieval and record update are just a few of those factors
prompting the design and implementation of this new database concept. At the same time, we try
to avoid any radical restructuring of existing data tables as we intend to migrate the old Geonet
data to the new DBMS and would like to minimize the effort associated with this task.

After reviewing the current state of information technology, we have decided to choose the
normalized relational model as an architectural standard because of its conceptual elegance,
simplicity, mathematical foundation, powerful retrieval capability, flexible transaction protocols,
and constructive design approach. The relational model also provides maximum independence
between programs on the one hand and data representation on the other. Additionally, it supports
a variety of very high-level data manipulation languages. The fact that the relational model is the
foundation of the majority of today’s commercially successful DBMS products also played an

∗ Work supported by U.S. DOE, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

important role in our decision. The implementation of our database design in a well-supported
software product with easy maintenance is an equally important goal of this project.

2. DATABASE DESIGN

The APS Survey and Alignment Group is responsible for precise positioning of beamline
components for the APS accelerator systems. SAG fiducializes beamline components, aligns
components in the accelerator tunnel, and maintains all necessary geodetic control networks to
achieve required placement tolerances. The objective of this database design is to organize
important information for the APS SAG in association with its tasks. Although the intention of
this database is not to store raw survey data, the references and hyperlinks to the important
unprocessed field measurements will be maintained within the database.

2.1 The Entity-Relationship Data Model

The reasonable beginning for database development is to build a data model that documents

the entities to be represented in the database, establish relationships among them, and determine
the characteristics of those entities that need to be stored. We utilized the E-R model as a
modeling tool to express this logical organization of the APS SAG data. In the E-R diagram (Fig.
1), the entity classes are shown by rectangles with the name of the entity shown inside the
rectangle, and relationships are indicated by diamonds with the name of the relationship shown
near the diamonds. The maximum cardinality of the relationship is indicated inside the diamond,
and the minimum cardinality is shown across the relationship line near the entity.

The model outlined in the E-R diagram in Figure 1 can be described as follows. There is an
entity class COMPONENT and an entity class FIDUCIAL. The relationship between these two
entities COMP-FID is one-to-many (1:N), indicating that each COMPONENT can have many
FIDUCIALs, but every FIDUCIAL belongs to one COMPONENT only. The minimum
cardinality of this relationship indicates that every COMPONENT must have at least one
FIDUCIAL and each FIDUCIAL must have a COMPONENT to justify its existence in the
database. The FIDUCIAL is a weak ID-dependent entity, and its identifier has to include an
identifier of the COMPONENT. The FIDUCIAL has a many-to-one relationship with TARGET,
meaning that each FIDUCIAL can accept only one TARGET at most, but one TARGET can be
used on many FIDUCIALs. The minimum cardinality of the TARGET-FID relationship points
out that FIDUCIAL does not need to have any TARGET and vice versa. The practical
application of this allows theoretical and calculated points, like centers or vertices of magnets, to
be included in the database. The term fiducial is used loosely to describe any component point.
The entity COMPONENT has a many-to-many relationship with entity LATTICE, which
suggests storage of historical records in the database. This aspect is especially valuable to the
APS SAG because the APS storage ring is currently being realigned to a new lattice, and the
majority of the components are being shifted to new locations. Booster realignment is also
expected in the near future. Furthermore, it is worth noticing that the minimum cardinality of the
ASSIGN-COMP relationship is zero, which suggests that a COMPONENT may not be assigned
to any LATTICE point. This feature, combined with the selection of a serial number as an
identifier for the COMPONENT, enables us to store spare fiducialized components in the
database. There is also a one-to-many relationship between COMPONENT and ROLL, allowing
for many instances of ROLL to exist for any instance of COMPONENT.

LATTICE N:M

1:N

1:N

LATTICE-IDEAL

N:1

IDEAL-FIDUCIAL

ASSIGN-COMP

COMP-FID

1:NN:1

TARGET-FIDSVY_PT-TARGET

IDEAL

COMPONENT FIDUCIAL

TARGET

SURVEY_POINT

ID_SURVEY_POINT

2D_SURVEY_POINT

3D_SURVEY_POINT

N:1
IDEAL-COMP

ROLL N:1

ROLL-COMP

Figure 1 - Entity-Relationship Diagram

Continuing interpretation of the E-R diagram, one can see that the relationships LATTICE-
IDEAL, IDEAL-FIDUCIAL, and IDEAL-COMP reflect the philosophy of allowing historical
data to be stored in the database. The LATTICE can have many IDEALs, but each IDEAL
belongs to exactly one LATTICE. In similar fashion, every FIDUCIAL can have several
IDEALs, but every IDEAL belongs just to one FIDUCIAL and to one COMPONENT. There is
also an entity class SURVEY_POINT for all measured points. The SURVEY_POINT has three
defined subtypes: 1D_SURVEY_POINT, 2D_SURVEY_POINT, and 3D_SURVEY_POINT.
The “m” indicates that SURVEY_POINT may belong to anywhere from one to many subtypes.
The subtypes are not mutually exclusive, because one specific instance of a SURVEY_POINT
can be measured with a level instrument as a 1D_SURVEY_POINT or with a laser tracker as a
3D_SURVEY_POINT. This generalization hierarchy contains an IS-A relationship, which
implies that the subtypes have the same identifier as the supertype SURVEY_POINT, and they
can also inherit many other attributes of the SURVEY_POINT. Notice that all other relationships
in this model are of type HAS-A. HAS-A relationships connect entities of different types. The
SURVEY_POINT can also be equipped with a TARGET in a similar fashion as the FIDUCIAL.
The E-R diagram indicates that both SURVEY_POINT and FIDUCIAL can accept, at most, one

TARGET. This is a policy established by the APS SAG and, in most cases, enforced by the
design of monuments and fiducials, which accept exclusively either 1.5”-diameter or 3.5”-
diameter spheres as targets. The only potential problem is created by 0.25”- diameter bushings,
sometimes used as fiducials by vendors. In this case, the policy of using only one type of tooling
ball, or corner cube reflector, with a 0.3125” offset is enforced.

2.2 Relational Design

The entities and relationships identified in the E-R diagram were mapped to the relational

design consisting of eleven normalized relations1. The relations, including keys and all attributes,
are listed below. Primary keys are underlined, and foreign keys are printed in italics.

LATTICE (LatticePoint_ID, LatticeType, Z_LAT, X_LAT, Y_LAT, Pitch, Roll, Yaw, Date)

SUBSYSTEM (LatticePoint_ID, Machine, Sector)

COMPONENT (Component_SN, Description, AlignSys, Comment)

FIDUCIAL (Component_SN, Fiducial_ID, z_comp, x_comp, y_comp, Target_ID)

ROLL (Component_SN, Roll_ID, Date, RollValue, Method, Comment)
IDEAL (LatticePoint_ID, LatticeType, Component_SN, Fiducial_ID, Z_APS, X_APS, Y_APS,

AssignDate, Comment)

TARGET (Target_ID, Description, LevelOffset, TrackerOffset, SurfaceOffset, Image)

SURVEY_POINT (Point_ID, Machine, Sector, Description, Target_ID)

1D_SURVEY_POINT (Point_ID, Date, Y, SY, Method, NetworkOrder, LinkToFile)

2D_SURVEY_POINT (Point_ID, Date, Z, X, SZ, SX, Method, NetworkOrder, LinkToFile)

3D_SURVEY_POINT (Point_ID, Date, Z, X, Y, SZ, SX, SY, Method, NetworkOrder,
LinkToFile)

The LATTICE relation contains three-dimensional geometric coordinates of the lattice points
and the rotations for the beam components at these points. The Accelerator Physics Group
generates this data. The primary key is a combination of a lattice point ID and a lattice type
identifier. The combined key is necessary for distinguishing between two different lattices of the
APS storage ring; the original lattice and the modified “Decker-distorted lattice.” The shifted
lattice points retain their old IDs and therefore lose their capacity to uniquely identify tuples and
determine the attributes in the tuples by themselves alone.

The purpose of the relation SUBSYSTEM is to quickly identify the location of a lattice point
in terms of the accelerator subsystem and sector.

1 A relation is a two-dimensional table with certain restrictions. We prefer to use rigorous relational mathematics
terminology relation, tuple, and attribute, which are analogous to less strict terms table, row, and column. Some
programmers favor similar terms file, record, and field.

Target_ID
Description

TrackerOffset

TARGET

SurfaceOffset
Image

LevelOffset

Roll_ID

Date
RollValue

ROLL

Comment
Method

Z_APS
X_APS

IDEAL

Y_APS
AssignDate

Comment

SUBSYSTEM

LatticeType
Z_LAT

Y_LAT
X_LAT

Pitch

LATTICE

Roll
Yaw
Date

LatticePoint_ID

Sector
Machine

Point_ID

Machine
Sector

SURVEY_POINT

Description

Z

SZ
X

SX

2D_SURVEY_POINT

NetworkOrder

Date

Method

LinkToFile

Date
Y

Method
SY

NetworkOrder
LinkToFile

ID_SURVEY_POINT

Z

Y
X

SZ
SX

3D_SURVEY_POINT

SY

NetworkOrder

Date

Method

LinkToFile

Component_SN
Description
AlignSys

Comment

COMPONENT

Fiducial_ID
z_comp
x_comp

FIDUCIAL

y_comp

Figure 2 – Relational design

The objective of FIDUCIAL is to store the local component coordinates of a fiducial. The
primary key is a composite of a fiducial ID and the serial number of the component to which the
fiducial belongs. The foreign key, Target_ID, indicates what target is associated with this
fiducial.

The relation COMPONENT, with a serial number of a component as a key, holds the
common information about a component. For example, the fact that the component is a sextupole
magnet with a three-point support push/pull alignment system, could be stored in this relation.

The ROLL relation contains roll values associated with some components. The primary key
is composed from the component’s serial number, a roll ID, and a measurement date. A roll ID is
required because some components, for example dipoles, have multiple roll measurements
associated with them for monitoring the twist. The date attribute added to the key again permits
the storage of historical data. A method is included to specify how the roll value was determined.

The relation IDEAL has a dual function. First, it serves as an intersection relation to assign
components and their fiducials to the specific lattice points. This assignment creates a unique
primary key for IDEAL by using a combination of the primary keys from the LATTICE and
FIDUCIAL relations. Second, the IDEAL relation is a good place for storing ideal geodetic
coordinates of fiducial points, because IDEAL’s primary key is a determinant of these
coordinates.

The relation TARGET contains information related to the target used for point measurement.
It defines the virtual point associated with the measurements or coordinates and specifies
miscellaneous offset constants needed for reduction of different survey data to the same virtual
point. Images of the targets are also stored in this relation.

The SURVEY_POINT relation maintains the common data for any measured point. It
contains information such as location, description, and link to a target associated with the point.
As a superclass relation to subtypes 1D_SURVEY_POINT, 2D_SURVEY_POINT, and
3D_SURVEY_POINT, it maintains all the universal information that can be inherited by the
subtypes. In accelerator alignment processes the same points are measured repeatedly many
times by many different methods, which justifies the existence of this relation separate from
measured data.

The 1D_SURVEY_POINT, 2D_SURVEY_POINT, and 3D_SURVEY_POINT differ only
in the number of coordinates and respective standard deviations they contain. The primary key is
point ID in combination with measured date. These relations cover measured point coordinates,
measuring methods, and order of survey networks. In addition, they hold hyperlinks to
measurement data files, which will be stored in a hierarchical directory on a server.

The relational design showing the referential integrity is summarized in Figure 2. The
primary keys in Figure 2 are indicated by red text, and foreign keys are printed in italics.

2.3 Database Design Evaluation

The relational database design is supported by well-thought-out formal theories of functional
dependencies (FDs), normal forms (NFs), normalization, information-loss verification,
dependency-loss verification, etc. We will briefly examine our design under the aspect of
normalization, functional dependency, and functionality.

2.3.1 Functional Dependencies and Normalization

Analysis of the functional dependencies (FDs) within a database is one of the essential tools
for working with relations and the process of normalization. Functional dependency is a term
describing a situation, when one attribute or a set of attributes uniquely determines another
attribute. More formally: let A and B be arbitrary sets in some relation R(ABCD). Then a
functional dependency (FD) from A to B, denoted by A → B, exists in R if for every A value
that appears in R, the corresponding B value is unique. A functional dependency is a constraint
on the possible relations in a relational schema.

Normalization is a process of lossless decomposition of larger composite relations into an
equivalent set of smaller, simpler relations. The purpose of normalization is to eliminate or
reduce redundancy and inconsistency of data, allow for a flexible update capability in the
database, and identify the fundamental information building blocks for the construction of larger
information objects. In the early years of database technology, extensive research went into
establishing formal rules for checking the quality of a relational design. These rules were
summarized in the definition of normal forms of relations: 1NF, 2NF, 3NF, BCNF, 4NF, and
5NF [2]. The normal forms have increasingly restrictive requirements and are nested, meaning
that every relation in 3NF is also in 2NF, and every relation in 2NF is also in 1NF. The normal
forms are basically restrictions on a relational database schema that prevent redundancy as well
as anomalies in the database. If a relation is in one of these normal forms, we know that certain
types of problems cannot happen. We also know whether we have a well-designed relational
schema or whether we need to decompose it into smaller relations. Now let’s examine our
design.

A relation is in the First Normal Form (1NF) if each domain from which the attribute values
are drawn contains only atomic values, not lists or sets. Our design satisfies this requirement.

 The Second Normal Form is based on the concept of full dependency. To clarify the term
full dependency, let A and B be attribute sets in a relation R. B is fully dependent on A if there
exists a FD A → B and there is no other FD A′ → B such that A′ ⊂ A. Now a relation is
considered to be in the Second Normal Form (2NF) if it is in 1NF and each of its non-key
attributes is fully dependent on the key of the relation. All relations in the relational schema
presented meet this condition. There is no attribute in any of our relations only partially
dependent on a key.

A relation is in the Third Normal Form (3NF) if it is in 2NF and none of its non-key
attributes is transitively dependent on any key. In other words, all the non-key attributes of a
relation in 3NF are mutually independent. There is no transitive dependency in our relational
schema.

With the Boyce-Codd Normal Form (BCNF) the terms “determinant” and “candidate key”
have to be introduced. A determinant is an attribute, or a set of attributes, that determines some
other attribute of a relation. A candidate key is an attribute, or a set of attributes, that can be a
key of a relation. Now a relation is in BCNF if and only if every determinant in the relation is a
candidate key. Consequently, if a relation is in BCNF, every attribute of every tuple keeps a bit
of information that cannot be inferred from the values in all other attributes in the relation by
using only FDs.

Our objective was to construct a database design with all relations in the Boyce-Codd
Normal Form (BCNF) in order to eliminate all of the most common cases of insertion and
deletion anomalies. Relations in the BCNF have no anomalies in regard to functional

dependencies. The BCNF guarantees that no redundancy can be detected using FD information.
We believe that we have achieved at least the BCNF in our design.

Q1: “Where is the survey point “WALL127” located and what is the proper target for it?”

SELECT SURVEY_POINT.Point_ID, Machine, Sector, TARGET.Description
FROM TARGET, SURVEY_POINT
WHERE TARGET.Target_ID = SURVEY_POINT.Target_ID
AND SURVEY_POINT.Point_ID = "WALL127";

Q2: “Find all elevations and their standard deviations measured by the digital level after 1/1/2000 in

Storage Ring sectors 10 thru 15.”

SELECT [1D_SURVEY_POINT].Point_ID, Date, Y, SY
FROM SURVEY_POINT, 1D_SURVEY_POINT
WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID
AND [1D_SURVEY_POINT].Date > #1/1/2000#
AND [1D_SURVEY_POINT].Method = "digital level"
AND SURVEY_POINT.Machine = "SRING"
AND SURVEY_POINT.Sector > 9 AND SURVEY_POINT.Sector < 16;

Q3: “When was the last time the 2nd order elevation network in the Booster, quadrant 4 was measured?”

SELECT MAX([1D_SURVEY_POINT].Date)
FROM SURVEY_POINT, 1D_SURVEY_POINT
WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID
AND [1D_SURVEY_POINT].NetworkOrder = 2
AND SURVEY_POINT.Machine = "BOOSTER"
AND SURVEY_POINT.Sector = 4;

Q4: “Give me the latest leveling data for any floor monument(s) in Storage Ring sector 3.”

SELECT [1D_SURVEY_POINT].Point_ID, Date, Y, SY
FROM SURVEY_POINT, 1D_SURVEY_POINT
WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID
AND SURVEY_POINT.Machine = "SRING"
AND SURVEY_POINT.Sector = 3
AND SURVEY_POINT.Description = "floor monument"
AND [1D_SURVEY_POINT].Date IN
 (SELECT MAX([1D_SURVEY_POINT].Date)
 FROM SURVEY_POINT, 1D_SURVEY_POINT
 WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID
 AND SURVEY_POINT.Machine = "SRING"
 AND SURVEY_POINT.Sector = 3
 AND SURVEY_POINT.Description = "floor monument");

Example 1

2.3.2 Functionality

For the evaluation of the database functionality, our design was analyzed in the context of
possible queries that might be posed to the database. Or in other words, what questions could be
answered from the database with the given relational design. To illustrate this process, four
potential questions for the database are presented in Example 1. The four simple SQL queries
indicate how to obtain answers from the underlying relational structure [3]. For a meaningful test
of the logical design, one has to mentally pose a large number of such queries. But even this
small example demonstrates the great data access flexibility of the relational model. Once the
conceptual database is implemented in a DBMS, more frequently used queries would be
parameterized and permanently saved in DBMS or embedded in application programs. The user
will always have the option to type in SQL statements for some ad hoc queries, like the ones
shown in Example 1, or query the database by example (QBE).

3. CONCLUSION

The proposed logical database concept will significantly increase retrieval and update
flexibility of our data and eliminate a few redundancies and anomalies we still have in the
current database. The new design captures more accurately the current stage of our ever-evolving
working environment and new technologies. We believe that the presented logical database
schema has no redundancies and no potential for anomalies in regard to functional dependencies.

 The schema was developed without any particular Database Management Systems (DBMS)
in mind. In the near future we will review commercially available DBMSs and implement our
database design in a selected system. In addition to providing means to implement the database
and to manipulate data efficiently, we expect the chosen DBMS to deliver physical data
independence, concurrency control for access to shared data, automatic security enforcement,
automatic integrity enforcement, transaction recovery, crash recovery, and other important
features. Portability is also a very important aspect to the implementation. The selected DBMS
should be portable from one platform to another with very little overhead. The successful
realization of this database design in a suitable DBMS should bring us one step closer to our
overall goal of developing a modular system for accelerator alignment that is easier to maintain
in phase with technological progress.

4. REFERENCES

[1] GEONET, Stanford Linear Accelerator Center Survey and Alignment Workshop on Data Processing Using

Geonet for Accelerator Alignment, SLAC-PUB-395, February 1992.

[2] W. Kent, A Simple Guide to Five Normal Forms in Relational Database Theory, Communications of the

ACM, Vol. 26, No. 2., pp 120-125, February 1983.

[3] J. Melton and A. Simon, Understanding the New SQL: A Complete Guide., Morgan Kaufmann, 1993.

	toc:
	HETO: Proceedings of the 7th International Workshop on Accelerator Alignment, SPring-8, 2002
	557: 557
	556: 556
	555: 555
	554: 554
	553: 553
	552: 552
	551: 551
	550: 550
	549: 549

