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ABSTRACT 
 

The conceptual design of the new APS Survey and Alignment Database, based on relational 
database technology, is presented in this paper. Authors outline the process of developing the 
logical database structure from data modeling to final quality check of the database design. The 
data used by the APS Survey and Alignment Group is analyzed and modeled in the entity-
relationship model (E-R model). The E-R model is then transformed into a DBMS-independent 
relational design, and the quality of the database design is examined against the normalization 
theory. Authors also evaluate the relational design in the context of possible queries that might 
be posed to the database implemented on this design. 

 
1. INTRODUCTION 
 

Since its inception in 1990, the APS Survey and Alignment Group (SAG) depends on Geonet 
software [1] for its data storage and management needs. Geonet was originally developed under 
the DOS environment at SLAC in the 1980s as an all-inclusive software package for the 
accelerator alignment community. Geonet served us well for over a decade through the times of 
fast technological advancement not only in the area of MIS, but also in metrology. With the 
arrival of laser trackers, digital levels, etc., some Geonet utilities, like data collection and data 
reduction programs, slowly became obsolete and were phased out or replaced by new tools. 
Although we still keep Geonet data on our server and use it on PCs under the Windows operating 
system, the need for a new database concept replacing the obsolete DOS-based Geonet structure 
is imminent. The original data model, on which the Geonet database was built, does not 
accurately reflect our working environment any more. The capability to track new information, 
and greater flexibility in information retrieval and record update are just a few of those factors 
prompting the design and implementation of this new database concept. At the same time, we try 
to avoid any radical restructuring of existing data tables as we intend to migrate the old Geonet 
data to the new DBMS and would like to minimize the effort associated with this task.  

After reviewing the current state of information technology, we have decided to choose the 
normalized relational model as an architectural standard because of its conceptual elegance, 
simplicity, mathematical foundation, powerful retrieval capability, flexible transaction protocols, 
and constructive design approach. The relational model also provides maximum independence 
between programs on the one hand and data representation on the other. Additionally, it supports 
a variety of very high-level data manipulation languages. The fact that the relational model is the 
foundation of the majority of today’s commercially successful DBMS products also played an 
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important role in our decision. The implementation of our database design in a well-supported 
software product with easy maintenance is an equally important goal of this project. 
 
2. DATABASE DESIGN 
 

The APS Survey and Alignment Group is responsible for precise positioning of beamline 
components for the APS accelerator systems. SAG fiducializes beamline components, aligns 
components in the accelerator tunnel, and maintains all necessary geodetic control networks to 
achieve required placement tolerances. The objective of this database design is to organize 
important information for the APS SAG in association with its tasks. Although the intention of 
this database is not to store raw survey data, the references and hyperlinks to the important 
unprocessed field measurements will be maintained within the database. 
 
2.1 The Entity-Relationship Data Model 

 
The reasonable beginning for database development is to build a data model that documents 

the entities to be represented in the database, establish relationships among them, and determine 
the characteristics of those entities that need to be stored. We utilized the E-R model as a 
modeling tool to express this logical organization of the APS SAG data. In the E-R diagram (Fig. 
1), the entity classes are shown by rectangles with the name of the entity shown inside the 
rectangle, and relationships are indicated by diamonds with the name of the relationship shown 
near the diamonds. The maximum cardinality of the relationship is indicated inside the diamond, 
and the minimum cardinality is shown across the relationship line near the entity. 

The model outlined in the E-R diagram in Figure 1 can be described as follows. There is an 
entity class COMPONENT and an entity class FIDUCIAL. The relationship between these two 
entities COMP-FID is one-to-many (1:N), indicating that each COMPONENT can have many 
FIDUCIALs, but every FIDUCIAL belongs to one COMPONENT only. The minimum 
cardinality of this relationship indicates that every COMPONENT must have at least one 
FIDUCIAL and each FIDUCIAL must have a COMPONENT to justify its existence in the 
database. The FIDUCIAL is a weak ID-dependent entity, and its identifier has to include an 
identifier of the COMPONENT. The FIDUCIAL has a many-to-one relationship with TARGET, 
meaning that each FIDUCIAL can accept only one TARGET at most, but one TARGET can be 
used on many FIDUCIALs. The minimum cardinality of the TARGET-FID relationship points 
out that FIDUCIAL does not need to have any TARGET and vice versa. The practical 
application of this allows theoretical and calculated points, like centers or vertices of magnets, to 
be included in the database. The term fiducial is used loosely to describe any component point. 
The entity COMPONENT has a many-to-many relationship with entity LATTICE, which 
suggests storage of historical records in the database. This aspect is especially valuable to the 
APS SAG because the APS storage ring is currently being realigned to a new lattice, and the 
majority of the components are being shifted to new locations. Booster realignment is also 
expected in the near future. Furthermore, it is worth noticing that the minimum cardinality of the 
ASSIGN-COMP relationship is zero, which suggests that a COMPONENT may not be assigned 
to any LATTICE point. This feature, combined with the selection of a serial number as an 
identifier for the COMPONENT, enables us to store spare fiducialized components in the 
database. There is also a one-to-many relationship between COMPONENT and ROLL, allowing 
for many instances of ROLL to exist for any instance of COMPONENT.  
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Figure 1 - Entity-Relationship Diagram 

Continuing interpretation of the E-R diagram, one can see that the relationships LATTICE-
IDEAL, IDEAL-FIDUCIAL, and IDEAL-COMP reflect the philosophy of allowing historical 
data to be stored in the database. The LATTICE can have many IDEALs, but each IDEAL 
belongs to exactly one LATTICE. In similar fashion, every FIDUCIAL can have several 
IDEALs, but every IDEAL belongs just to one FIDUCIAL and to one COMPONENT. There is 
also an entity class SURVEY_POINT for all measured points. The SURVEY_POINT has three 
defined subtypes: 1D_SURVEY_POINT, 2D_SURVEY_POINT, and 3D_SURVEY_POINT. 
The “m” indicates that SURVEY_POINT may belong to anywhere from one to many subtypes. 
The subtypes are not mutually exclusive, because one specific instance of a SURVEY_POINT 
can be measured with a level instrument as a 1D_SURVEY_POINT or with a laser tracker as a 
3D_SURVEY_POINT. This generalization hierarchy contains an IS-A relationship, which 
implies that the subtypes have the same identifier as the supertype SURVEY_POINT, and they 
can also inherit many other attributes of the SURVEY_POINT. Notice that all other relationships 
in this model are of type HAS-A. HAS-A relationships connect entities of different types. The 
SURVEY_POINT can also be equipped with a TARGET in a similar fashion as the FIDUCIAL. 
The E-R diagram indicates that both SURVEY_POINT and FIDUCIAL can accept, at most, one 



TARGET. This is a policy established by the APS SAG and, in most cases, enforced by the 
design of monuments and fiducials, which accept exclusively either 1.5”-diameter or 3.5”-
diameter spheres as targets. The only potential problem is created by 0.25”- diameter bushings, 
sometimes used as fiducials by vendors. In this case, the policy of using only one type of tooling 
ball, or corner cube reflector, with a 0.3125” offset is enforced.  

 
2.2 Relational Design 

 
The entities and relationships identified in the E-R diagram were mapped to the relational 

design consisting of eleven normalized relations1. The relations, including keys and all attributes, 
are listed below. Primary keys are underlined, and foreign keys are printed in italics. 

LATTICE (LatticePoint_ID, LatticeType, Z_LAT, X_LAT, Y_LAT, Pitch, Roll, Yaw, Date) 

SUBSYSTEM (LatticePoint_ID, Machine, Sector) 

COMPONENT (Component_SN, Description, AlignSys, Comment) 

FIDUCIAL (Component_SN, Fiducial_ID, z_comp, x_comp, y_comp, Target_ID) 

ROLL (Component_SN, Roll_ID, Date, RollValue, Method, Comment) 
IDEAL (LatticePoint_ID, LatticeType, Component_SN, Fiducial_ID, Z_APS, X_APS, Y_APS, 

AssignDate, Comment) 

TARGET (Target_ID, Description, LevelOffset, TrackerOffset, SurfaceOffset, Image) 

SURVEY_POINT (Point_ID, Machine, Sector, Description, Target_ID) 

1D_SURVEY_POINT (Point_ID, Date, Y, SY, Method, NetworkOrder, LinkToFile) 

2D_SURVEY_POINT (Point_ID, Date, Z, X, SZ, SX, Method, NetworkOrder, LinkToFile) 

3D_SURVEY_POINT (Point_ID, Date, Z, X, Y, SZ, SX, SY, Method, NetworkOrder, 
LinkToFile)  

The LATTICE relation contains three-dimensional geometric coordinates of the lattice points 
and the rotations for the beam components at these points. The Accelerator Physics Group 
generates this data. The primary key is a combination of a lattice point ID and a lattice type 
identifier. The combined key is necessary for distinguishing between two different lattices of the 
APS storage ring; the original lattice and the modified “Decker-distorted lattice.” The shifted 
lattice points retain their old IDs and therefore lose their capacity to uniquely identify tuples and 
determine the attributes in the tuples by themselves alone. 

The purpose of the relation SUBSYSTEM is to quickly identify the location of a lattice point 
in terms of the accelerator subsystem and sector.  

 

 
 

                                                           
1 A relation is a two-dimensional table with certain restrictions. We prefer to use rigorous relational mathematics 
terminology relation, tuple, and attribute, which are analogous to less strict terms table, row, and column. Some 
programmers favor similar terms file, record, and field. 
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Figure 2 – Relational design 



The objective of FIDUCIAL is to store the local component coordinates of a fiducial. The 
primary key is a composite of a fiducial ID and the serial number of the component to which the 
fiducial belongs. The foreign key, Target_ID, indicates what target is associated with this 
fiducial. 

The relation COMPONENT, with a serial number of a component as a key, holds the 
common information about a component. For example, the fact that the component is a sextupole 
magnet with a three-point support push/pull alignment system, could be stored in this relation. 

The ROLL relation contains roll values associated with some components. The primary key 
is composed from the component’s serial number, a roll ID, and a measurement date. A roll ID is 
required because some components, for example dipoles, have multiple roll measurements 
associated with them for monitoring the twist. The date attribute added to the key again permits 
the storage of historical data. A method is included to specify how the roll value was determined. 

The relation IDEAL has a dual function. First, it serves as an intersection relation to assign 
components and their fiducials to the specific lattice points. This assignment creates a unique 
primary key for IDEAL by using a combination of the primary keys from the LATTICE and 
FIDUCIAL relations. Second, the IDEAL relation is a good place for storing ideal geodetic 
coordinates of fiducial points, because IDEAL’s primary key is a determinant of these 
coordinates. 

The relation TARGET contains information related to the target used for point measurement. 
It defines the virtual point associated with the measurements or coordinates and specifies 
miscellaneous offset constants needed for reduction of different survey data to the same virtual 
point. Images of the targets are also stored in this relation.  

The SURVEY_POINT relation maintains the common data for any measured point. It 
contains information such as location, description, and link to a target associated with the point. 
As a superclass relation to subtypes 1D_SURVEY_POINT, 2D_SURVEY_POINT, and 
3D_SURVEY_POINT, it maintains all the universal information that can be inherited by the 
subtypes. In accelerator alignment processes the same points are measured repeatedly many 
times by many different methods, which justifies the existence of this relation separate from 
measured data.   

The 1D_SURVEY_POINT, 2D_SURVEY_POINT, and 3D_SURVEY_POINT differ only 
in the number of coordinates and respective standard deviations they contain. The primary key is 
point ID in combination with measured date. These relations cover measured point coordinates, 
measuring methods, and order of survey networks. In addition, they hold hyperlinks to 
measurement data files, which will be stored in a hierarchical directory on a server. 

The relational design showing the referential integrity is summarized in Figure 2. The 
primary keys in Figure 2 are indicated by red text, and foreign keys are printed in italics. 

 
2.3 Database Design Evaluation 
 

The relational database design is supported by well-thought-out formal theories of functional 
dependencies (FDs), normal forms (NFs), normalization, information-loss verification, 
dependency-loss verification, etc. We will briefly examine our design under the aspect of 
normalization, functional dependency, and functionality. 

 



2.3.1 Functional Dependencies and Normalization 
 

Analysis of the functional dependencies (FDs) within a database is one of the essential tools 
for working with relations and the process of normalization. Functional dependency is a term 
describing a situation, when one attribute or a set of attributes uniquely determines another 
attribute. More formally: let A and B be arbitrary sets in some relation R(ABCD). Then a 
functional dependency (FD) from A to B, denoted by A → B, exists in R if for every A value 
that appears in R, the corresponding B value is unique. A functional dependency is a constraint 
on the possible relations in a relational schema. 

Normalization is a process of lossless decomposition of larger composite relations into an 
equivalent set of smaller, simpler relations. The purpose of normalization is to eliminate or 
reduce redundancy and inconsistency of data, allow for a flexible update capability in the 
database, and identify the fundamental information building blocks for the construction of larger 
information objects. In the early years of database technology, extensive research went into 
establishing formal rules for checking the quality of a relational design. These rules were 
summarized in the definition of normal forms of relations: 1NF, 2NF, 3NF, BCNF, 4NF, and 
5NF [2]. The normal forms have increasingly restrictive requirements and are nested, meaning 
that every relation in 3NF is also in 2NF, and every relation in 2NF is also in 1NF. The normal 
forms are basically restrictions on a relational database schema that prevent redundancy as well 
as anomalies in the database. If a relation is in one of these normal forms, we know that certain 
types of problems cannot happen. We also know whether we have a well-designed relational 
schema or whether we need to decompose it into smaller relations. Now let’s examine our 
design. 

A relation is in the First Normal Form (1NF) if each domain from which the attribute values 
are drawn contains only atomic values, not lists or sets. Our design satisfies this requirement. 

 The Second Normal Form is based on the concept of full dependency. To clarify the term 
full dependency, let A and B be attribute sets in a relation R. B is fully dependent on A if there 
exists a FD A → B and there is no other FD A′ → B such that A′ ⊂  A.   Now a relation is 
considered to be in the Second Normal Form (2NF) if it is in 1NF and each of its non-key 
attributes is fully dependent on the key of the relation. All relations in the relational schema 
presented meet this condition. There is no attribute in any of our relations only partially 
dependent on a key. 

A relation is in the Third Normal Form (3NF) if it is in 2NF and none of its non-key 
attributes is transitively dependent on any key. In other words, all the non-key attributes of a 
relation in 3NF are mutually independent. There is no transitive dependency in our relational 
schema. 

With the Boyce-Codd Normal Form (BCNF) the terms “determinant” and “candidate key” 
have to be introduced. A determinant is an attribute, or a set of attributes, that determines some 
other attribute of a relation. A candidate key is an attribute, or a set of attributes, that can be a 
key of a relation. Now a relation is in BCNF if and only if every determinant in the relation is a 
candidate key. Consequently, if a relation is in BCNF, every attribute of every tuple keeps a bit 
of information that cannot be inferred from the values in all other attributes in the relation by 
using only FDs. 

Our objective was to construct a database design with all relations in the Boyce-Codd 
Normal Form (BCNF) in order to eliminate all of the most common cases of insertion and 
deletion anomalies. Relations in the BCNF have no anomalies in regard to functional 



dependencies. The BCNF guarantees that no redundancy can be detected using FD information. 
We believe that we have achieved at least the BCNF in our design. 
 
 
 

Q1: “Where is the survey point “WALL127” located and what is the proper target for it?”  
 
SELECT SURVEY_POINT.Point_ID, Machine, Sector, TARGET.Description 
FROM TARGET, SURVEY_POINT 
WHERE TARGET.Target_ID = SURVEY_POINT.Target_ID 
AND SURVEY_POINT.Point_ID = "WALL127"; 

 
Q2: “Find all elevations and their standard deviations measured by the digital level after 1/1/2000 in 

Storage Ring sectors 10 thru 15.” 
 
SELECT [1D_SURVEY_POINT].Point_ID, Date, Y, SY 
FROM SURVEY_POINT, 1D_SURVEY_POINT 
WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID 
AND [1D_SURVEY_POINT].Date > #1/1/2000#  
AND [1D_SURVEY_POINT].Method = "digital level" 
AND SURVEY_POINT.Machine = "SRING" 
AND SURVEY_POINT.Sector > 9 AND SURVEY_POINT.Sector < 16; 
 
Q3: “When was the last time the 2nd order elevation network in the Booster, quadrant 4 was measured?” 
 
SELECT MAX([1D_SURVEY_POINT].Date) 
FROM SURVEY_POINT, 1D_SURVEY_POINT 
WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID 
AND [1D_SURVEY_POINT].NetworkOrder = 2  
AND SURVEY_POINT.Machine = "BOOSTER"  
AND SURVEY_POINT.Sector = 4; 

 
Q4: “Give me the latest leveling data for any floor monument(s) in Storage Ring sector 3.” 
 
SELECT [1D_SURVEY_POINT].Point_ID, Date, Y, SY 
FROM SURVEY_POINT, 1D_SURVEY_POINT 
WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID  
AND SURVEY_POINT.Machine = "SRING"  
AND SURVEY_POINT.Sector = 3  
AND SURVEY_POINT.Description = "floor monument"  
AND [1D_SURVEY_POINT].Date IN 
         (SELECT MAX([1D_SURVEY_POINT].Date) 
         FROM SURVEY_POINT, 1D_SURVEY_POINT 
         WHERE SURVEY_POINT.Point_ID = [1D_SURVEY_POINT].Point_ID   
         AND SURVEY_POINT.Machine = "SRING"   
         AND SURVEY_POINT.Sector = 3   
         AND SURVEY_POINT.Description = "floor monument");   

 

Example 1 



2.3.2 Functionality 
 

For the evaluation of the database functionality, our design was analyzed in the context of 
possible queries that might be posed to the database. Or in other words, what questions could be 
answered from the database with the given relational design. To illustrate this process, four 
potential questions for the database are presented in Example 1. The four simple SQL queries 
indicate how to obtain answers from the underlying relational structure [3]. For a meaningful test 
of the logical design, one has to mentally pose a large number of such queries. But even this 
small example demonstrates the great data access flexibility of the relational model. Once the 
conceptual database is implemented in a DBMS, more frequently used queries would be 
parameterized and permanently saved in DBMS or embedded in application programs. The user 
will always have the option to type in SQL statements for some ad hoc queries, like the ones 
shown in Example 1, or query the database by example (QBE).  
 
3. CONCLUSION 
 

The proposed logical database concept will significantly increase retrieval and update 
flexibility of our data and eliminate a few redundancies and anomalies we still have in the 
current database. The new design captures more accurately the current stage of our ever-evolving 
working environment and new technologies. We believe that the presented logical database 
schema has no redundancies and no potential for anomalies in regard to functional dependencies. 

 The schema was developed without any particular Database Management Systems (DBMS) 
in mind. In the near future we will review commercially available DBMSs and implement our 
database design in a selected system. In addition to providing means to implement the database 
and to manipulate data efficiently, we expect the chosen DBMS to deliver physical data 
independence, concurrency control for access to shared data, automatic security enforcement, 
automatic integrity enforcement, transaction recovery, crash recovery, and other important 
features. Portability is also a very important aspect to the implementation. The selected DBMS 
should be portable from one platform to another with very little overhead. The successful 
realization of this database design in a suitable DBMS should bring us one step closer to our 
overall goal of developing a modular system for accelerator alignment that is easier to maintain 
in phase with technological progress. 
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